Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-24T19:26:49.570Z Has data issue: false hasContentIssue false

5 - Earth system models

A tool to understand changes in the Earth system

Published online by Cambridge University Press:  05 November 2012

Sarah E. Cornell
Affiliation:
Stockholm Resilience Centre
I. Colin Prentice
Affiliation:
Macquarie University, Sydney
Joanna I. House
Affiliation:
University of Bristol
Catherine J. Downy
Affiliation:
European Space Agency
Get access

Summary

This chapter provides an overview of Earth system models, the various model ‘flavours’, their state of development including model evaluation, benchmarking and optimization against observational data and their application to climate change issues.

Introduction

The Earth system can be conceptualized as a suite of interacting physical, chemical, biological and anthropogenic processes that regulate the planet’s low of matter and energy. Earth system models (ESMs; Box 5.1 ) are built to mirror these processes. In fact, ESMs are the only tool available to the scientific community to investigate the system properties of the Earth, as we do not have an alternative planet to manipulate that could serve as a scientist’s laboratory.

The term ‘Earth system model’ is commonly used to describe coupled land–ocean–atmosphere models that include interactive biogeochemical components. Such models have developed progressively from the physical climate models first created in the 1960s and 1970s. Conventional climate models apply physical laws to simulate the general circulation of atmosphere and ocean. As our understanding of the natural and anthropogenic controls on climate has grown, and given the steady advances in computing power, global climate models have been extended to include more comprehensive representations of biological and geochemical processes, involving the addition of the various interacting components of the Earth system with their own feedback mechanisms. Figure 5.1 shows the conceptual differences between a conventional global coupled atmosphere–ocean general circulation model (AOGCM) and an ESM. In terms of the coupling between components, ESMs are more complex, and they have correspondingly higher computational demands.

Type
Chapter
Information
Understanding the Earth System
Global Change Science for Application
, pp. 129 - 159
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, M. R.Stott, P. A. 2003 Estimating signal amplitudes in optimal fingerprinting, Part 1: theoryClimate Dynamics 21 477CrossRefGoogle Scholar
Archer, D. 2005 Fate of fossil fuel CO2 in geologic timeJournal of Geophysical Research 110 doi:10.1029/2004JC002625CrossRefGoogle Scholar
Archer, D.Kheshgi, H.Maier-Reimer, E. 1997 Multiple timescales for neutralization of fossil fuel CO2Geophysical Research Letters 24 405CrossRefGoogle Scholar
Archer, D.Eby, M.Brovkin, V. 2009 Atmospheric lifetime of fossil-fuel carbon dioxideAnnual Reviews of Earth and Planetary Sciences 37 117CrossRefGoogle Scholar
Arora, V. K.Scinocca, J. F.Boer, G. J. 2011 Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gasesGeophysical Research Letters 38 doi:10.1029/2010GL046270CrossRefGoogle Scholar
Bahurel, P.MERCATOR Project Team 2006 Ocean Weather Forecasting, an Integrated View of OceanographyChassignet, E. P.Verron, J.BerlinSpringer-VerlagGoogle Scholar
Bartlein, P. J.Harrison, S. P.Brewer, S. 2011 Pollen-based continental climate reconstructions at 6 and 21 ka: a global synthesisClimate Dynamics 37 775CrossRefGoogle Scholar
Blyth, E.Clark, D. B.Ellis, R. 2011 A comprehensive set of benchmark tests for a land surface model of simultaneous fluxes of water and carbon at both the global and seasonal scaleGeoscientific Model Development 4 255CrossRefGoogle Scholar
Bopp, L.Aumont, O.Cadule, P.Alvain, S.Gehlen, M. 2005 Response of diatoms distribution to global warming and potential implications: a global model studGeophysical Research Letters 32 doi: 10.1029/2005GL019606CrossRefGoogle Scholar
Braconnot, P.Otto-Bliesner, B.Harrison, S. 2007 Results of PMIP2 coupled simulations of the mid-Holocene and last glacial maximum – Part 1: experiments and large-scale featuresClimate of the Past 3 261CrossRefGoogle Scholar
Bretherton, F. P. 1985 Earth system science and remote sensingProceedings of the IEEE 73 1118CrossRefGoogle Scholar
Cadule, P.Friedlingstein, P.Bopp, L. 2010 Benchmarking coupled climate–carbon models against long-term atmospheric CO2 measurementsGlobal Biogeochemical Cycles 24 doi:10.1029/2009GB003556CrossRefGoogle Scholar
Castles, I.Henderson, D. 2003 The IPCC Emission Scenarios: an economic-statistical critiqueEnergy and Environment 14 159CrossRefGoogle Scholar
Clark, D. B.Mercado, L. M.Sitch, S. 2011 The Joint UK Land Environment Simulator (JULES), model description – Part 2: carbon fluxes and vegetationGeoscientific Model Development Discussions 4 641CrossRefGoogle Scholar
Claussen, M. 1997 Modelling biogeophysical feedback in the African and Indian Monsoon regionClimate Dynamics 13 247CrossRefGoogle Scholar
Claussen, M.Mysak, L. A.Weaver, A. J. 2002 Earth system models of intermediate complexity: closing the gap in the spectrum of climate system modelsClimate Dynamics 18 579Google Scholar
Colbourn, C. 2011 Weathering effects on the carbon cycle in an Earth system modelUniversity of East AngliaNorwichGoogle Scholar
Coleman, K.Jenkinson, D. S. 1999 RothC 26.3 – A model for the turnover of carbon in soil: model description and Windows Users GuideHarpendenIACR-Rothamsted ResearchGoogle Scholar
Collins, W. J.Bellouin, N.Doutriaux-Boucher, M. 2011 Development and evaluation of an Earth-system model – HadGEM2Geoscientific Model Development Discussions 4 997CrossRefGoogle Scholar
Costanza, R.Leemans, R.Boumans, R.Gaddis, E. 2007 Sustainability or Collapse: An Integrated History and Future of People on EarthCostanza, R.Graumlich, L. J.Steffen, W.Cambridge, MAMIT PressGoogle ScholarPubMed
Cox, P. M. 2001 Description of the TRIFFID Dynamic Global Vegetation ModelExeterHadley CentreGoogle Scholar
Cox, P. M.Betts, R. A.Jones, C. D.Spall, S. A.Totterdell, I. J. 2000 Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate modelNature 408 184CrossRefGoogle Scholar
Cubasch, U.Meehl, G. A.Boer, G. J. 2001 Climate Change 2001: The Scientific Basis. The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate ChangeHoughton, J. T.Ding, Y.Griggs, D. J.CambridgeCambridge University PressGoogle Scholar
Daley, R. 1991 Atmospheric Data AnalysisCambridgeCambridge University PressGoogle Scholar
de Noblet, N.Prentice, I. C.Joussaume, S. 1996 Possible role of atmosphere–biosphere interactions in triggering the last glaciationGeophysical Research Letters 23 3191CrossRefGoogle Scholar
de Noblet-Ducoudré, N.Claussen, M.Prentice, I. C. 2000 Mid-Holocene greening of the Sahara: first results of the GAIM 6000 yr BP experiment with two asynchronously coupled atmosphere/biome modelsClimate Dynamics 16 643CrossRefGoogle Scholar
Der Kiureghian, A.Ditlevsen, O. 2009 Aleatory or epistemic? Does it matter?Structural Safety 31 105CrossRefGoogle Scholar
ECMWF – European Centre for Medium-range Weather Forecasts 2001 www.ecmwf.int/newsevents/training/rcourse_notes/DATA_ASSIMILATION/index.html
Edwards, N. R.Shepherd, J. G. 2002 Bifurcations of the thermohaline circulation in a simplified three-dimensional model of the world ocean and the effects of inter-basin connectivityClimate Dynamics 19 31Google Scholar
Edwards, N. R.Marsh, R. 2005 Uncertainties due to transport-parameter sensitivity in an efficient 3-D ocean–climate modeClimate Dynamics 24 415CrossRefGoogle Scholar
Eyring, V.Harris, N. R. P.Rex, M. 2005 A strategy for process-oriented validation of coupled chemistry–climate modelsBulletin of the American Meteorological Society 86 1117CrossRefGoogle Scholar
Feely, R. A.Sabine, C. L.Lee, K. 2004 Impact of anthropogenic CO2 on the CaCO3 system in the oceansScience 305 362CrossRefGoogle ScholarPubMed
Ferro, C. A. T.Jupp, T. E.Lambert, F. H.Huntingford, C.Cox, P. M. 2012 Model complexity versus ensemble size: allocating resources for climate predictionPhilosophical Transactions of the Royal Society A 370 1087CrossRefGoogle ScholarPubMed
Fisher, J. B.Sitch, S.Malhi, Y. 2010 Carbon cost of plant nitrogen acquisition: a mechanistic, globally applicable model of plant nitrogen uptake, retranslocation, and fixationGlobal Biogeochemical Cycles 24 doi:10.1029/2009GB003621CrossRefGoogle Scholar
Fisher, R.McDowell, N.Purves, D. 2010 Assessing uncertainties in a second-generation dynamic vegetation model caused by ecological scale limitationsNew Phytologist 187 666CrossRefGoogle Scholar
Fraedrich, K.Jansen, H.Kirk, E.Luksch, U.Lunkeit, F. 2005 The Planet Simulator: towards a user friendly modelMeteorologische Zeitschrift 14 299CrossRefGoogle Scholar
Frank, D. C.Esper, J.Raible, C. C. 2010 Ensemble reconstruction constraints on the global carbon cycle sensitivity to climateNature 463 527CrossRefGoogle ScholarPubMed
Friedlingstein, P.Cox, P.Betts, R. 2006 Climate–carbon cycle feedback analysis, results from the C4MIP model intercomparisonJournal of Climate 19 3337CrossRefGoogle Scholar
Friedrichs, M. A. M.Dusenberry, J. 2007 Assessment of skill and portability in regional marine biogeochemical models: the role of multiple plankton groupsJournal of Geophysical Research 112 doi:10.1029/2006JC003852CrossRefGoogle Scholar
Glecker, P.Taylor, K. E.Doutriaux, C. 2008 Performance metrics for climate modelsJournal of Geophysical Research 113 doi:10.1029/2007JD008972Google Scholar
Gordon, C.Cooper, C.Senior, C.A. 2000 The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustmentsClimate Dynamics 16 147CrossRefGoogle Scholar
Gregg, W. W.Friedrichs, M. A. M.Robinson, A. R. 2009 Skill assessment in ocean biological data assimilationJournal of Marine Systems 76 16CrossRefGoogle Scholar
Guenther, A.Karl, T.Harley, P. 2006 Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature)Atmospheric Chemistry and Physics 6 3181CrossRefGoogle Scholar
Hallegatte, S.Lahellec, A.Grandpeix, J.-Y. 2006 An elicitation of the dynamic nature of water vapor feedback in climate change using a 1D modelJournal of Atmospheric Science 63 1878CrossRefGoogle Scholar
Hannah, C.Vezina, A.St John, M. 2010 The case for marine ecosystem models of intermediate complexityProgress in Oceanography 84 121CrossRefGoogle Scholar
Hansen, J.Lacis, A.Rind, D. 1984 Climate Processes and Climate SensitivityHansen, J. E.Takahashi, T.American Geophysical UnionCrossRefGoogle Scholar
Hargreaves, J. C. 2010 Skill and uncertainty in climate modelsWIREs Climate Change 1 556CrossRefGoogle Scholar
Hargreaves, J. C.Annan, J. D.Edwards, N. R.Marsh, R. 2004 An efficient climate forecasting method using an intermediate complexity Earth system model and the ensemble Kalman filterClimate Dynamics 23 745CrossRefGoogle Scholar
Hargreaves, J. C.Abe-Ouchi, A.Annan, J. D. 2007 Linking glacial and future climates through an ensemble of GCM simulationsClimate of the Past 3 77CrossRefGoogle Scholar
Harrison, S. P.Prentice, I. C. 2003 Climate and CO2 controls on global vegetation distribution at the last glacial maximum: analysis based on palaeovegetation data, biome modeling and palaeoclimate simulationsGlobal Change Biology 9 983CrossRefGoogle Scholar
Hasselmann, K. 1997 On multifingerprint detection and attribution of anthropogenic climate changeClimate Dynamics 13 601CrossRefGoogle Scholar
Höök, M.Sivertsson, A.Aleklett, K. 2009 Validity of the fossil fuel production outlooks in the IPCC emission scenariosNatural Resources Research 19 63CrossRefGoogle Scholar
Huntingford, C.Cox, P. M. 2000 An analogue model to derive additional climate change scenarios from existing GCM simulationsClimate Dynamics 16 575CrossRefGoogle Scholar
Huntingford, C.Lowe, J. 2007 ‘Overshoot’ scenarios and climate changeScience 316 829CrossRefGoogle ScholarPubMed
Huntingford, C.Stott, P. A.Allen, M. R.Lambert, F. H. 2006 Incorporating model uncertainty into attribution of observed temperature changeGeophysical Research Letters 33 doi:10.1029/2005GL024831CrossRefGoogle Scholar
Huntingford, C.Booth, B. B. B.Sitch, S. 2010 IMOGEN: an intermediate complexity model to evaluate terrestrial impacts of a changing climateGeoscientific Model Development 3 679CrossRefGoogle Scholar
Huntingford, C.Cox, P. M.Mercado, L. M. 2011 Highly contrasting effects of different climate forcing agents on terrestrial ecosystem servicesPhilosophical Transactions of the Royal Society A 369 2026CrossRefGoogle ScholarPubMed
IPCC 2000 Special Report on Emissions Scenarios: a Special Report of Working Group III of the Intergovernmental Panel on Climate ChangeCambridgeCambridge University PressGoogle Scholar
IPCC 2005 Guidance notes for Lead Authors of the IPCC Fourth Assessment Report on addressing uncertaintiesGenevaIntergovernmental Panel on Climate ChangeGoogle Scholar
IPCC 2007 Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate ChangeSolomon, S.Qin, D.Manning, M.CambridgeCambridge University PressGoogle Scholar
Ito, A.Penner, J. E. 2005 Historical emissions of carbonaceous aerosols from biomass and fossil fuel burning for the period 1870–2000Global Biogeochemical Cycl 19 doi:10.1029/2004GB002374Google Scholar
Johns, T. C.Royer, J.-F.Höschel, I. 2011 Climate change under aggressive mitigation: the ENSEMBLES multi-model experimentClimate Dynamics 37Google Scholar
Jones, C. D.Cox, P. M.Huntingford, C. 2006 Climate–carbon cycle feedbacks under stabilization: uncertainty and observational constraintsTellus B 58 603CrossRefGoogle Scholar
Joos, F.Bruno, M.Fink, R. 1996 An efficient and accurate representation of complex oceanic and biospheric models of anthropogenic carbon uptakeTellus B 48 397CrossRefGoogle Scholar
Jouzel, J.Masson-Delmotte, V.Cattani, O. 2007 Orbital and millennial Antarctic climate variability over the past 800,000 yearsScience 317 793CrossRefGoogle ScholarPubMed
Kalnay, E. M.Kanamitsu, M.Kistler, R.Collins, W.Deaven, D. 1996 The NCEP/NCAR 40-year reanalysis projectBulletin of the American Meteorological Society 77 4372.0.CO;2>CrossRefGoogle Scholar
Kaminski, T.Blessing, S.Giering, R.Scholze, M.Voßbeck, M. 2007 Testing the use of adjoints for estimation of GCM parameters on climate time-scalesMeteorologische Zeitschrift 16 643CrossRefGoogle Scholar
Kelly, D. L.Kolstad, C. D. 1999 International Yearbook of Environmental and Resource Economics 1999/2000: A Survey of Current IssuesFolmer, H.Tietenberg, T.CheltenhamEdward ElgarGoogle Scholar
Kohfeld, K. E.Ridgwell, A. 2009 2Surface Ocean-Lower Atmosphere ProcessesLe Quéré, C.Saltzman, E.S.AGU Geophysical MonographGoogle Scholar
Le Quéré, C.Harrison, S. P.Prentice, I. C. 2005 Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry modelsGlobal Change Biology 11 2016Google Scholar
Le Treut, H.Somerville, R.Cubasch, U. 2007 Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate ChangeSolomon, S.Qin, D.Manning, M.CambridgeCambridge University PressGoogle Scholar
Lee, T.Awaji, T.Balmaseda, M.A.Greiner, E.Stammer, D. 2009 Ocean state estimation for climate researchOceanography 22 160CrossRefGoogle Scholar
Lenton, T.Britton, C. 2006 Enhanced carbonate and silicate weathering accelerates recovery from fossil fuel CO2 perturbationsGlobal Biogeochemical Cycles 20 doi:10.1029/2005GB002678CrossRefGoogle Scholar
Lenton, T. M.Marsh, R.Price, A. R. 2007 A modular, scalable, Grid ENabled Integrated Earth system modelling (GENIE) framework: effects of atmospheric dynamics and ocean resolution on bi-stability of the thermohaline circulationClimate Dynamics 29 591CrossRefGoogle Scholar
Longhurst, A. R.Sathyendranath, S.Platt, T.Caverhill, C. 1995 An estimate of global primary production in the ocean from satellite radiometer dataJournal of Plankton Research 17 1245CrossRefGoogle Scholar
Lorenz, E. N. 1975 Climate PredictabilityGenevaWorld Meteorological AssociationGoogle Scholar
Loulergue, L.Schilt, A.Spahni, R. 2008 Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 yearsNature 453 383CrossRefGoogle ScholarPubMed
Lucht, W.Prentice, I. C.Myneni, R. B. 2002 Climatic control of the high-latitude vegetation greening trend and Pinatubo effectScience 296 1687CrossRefGoogle ScholarPubMed
Lüthi, D.Le Floch, M.Bereiter, B. 2008 High-resolution carbon dioxide concentration record 650,000–800,000 years before presentNature 453 379CrossRefGoogle ScholarPubMed
Masson-Delmotte, V.Jouzel, J. 2005 GRIP deuterium excess reveals rapid and orbital-scale changes in Greenland moisture originScience 309 118CrossRefGoogle ScholarPubMed
Masson, D.Knutti, R. 2011 Climate model genealogGeophysical Research Letter 38 doi:10.1029/2011GL046864CrossRefGoogle Scholar
Matthews, B. 2005 www.chooseclimate.org/jcm/index.html
McCormick, M.Thomason, L.Trepte, C. 1995 Atmospheric effects of the Mount Pinatubo eruptionNature 373 399CrossRefGoogle Scholar
Meehl, G. A.Stocker, T. F.Collins, W. D. 2007 Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate ChangeSolomon, S.Qin, D.Manning, M.CambridgeCambridge University PressGoogle Scholar
Meehl, G. A.Covey, C.Delworth, T. 2007 The WCRP CMIP3 multi-model dataset: a new era in climate change researchBulletin of the American Meteorological Society 88 1383CrossRefGoogle Scholar
Meinshausen, M.Wigley, T. M. L.Raper, S. C. B. 2011 Emulating atmosphere–ocean and carbon cycle models with a simpler model, MAGICC6 – Part 2: applicationsAtmospheric Chemistry and Physics 11 1Google Scholar
Moorcroft, P. R.Hurtt, G. C.Pacala, S. W. 2001 A method for scaling vegetation dynamics: the ecosystem demography model (ED)Ecological Monographs 71 557CrossRefGoogle Scholar
Moore, J. K.Doney, S. C.Lindsay, K. 2004 Upper ocean ecosystem dynamics and iron cycling in a global three dimensional modelGlobal Biogeochemical Cycles 18 doi:10.1029/2004GB002220CrossRefGoogle Scholar
Morgenstern, O.Braesicke, P.O’Connor, F. M. 2009 Evaluation of the new UKCA climate-composition model – Part 1: The stratosphereGeoscientific Model Development 2 43CrossRefGoogle Scholar
Moss, R. H.Schneider, S. H. 2000 Guidance Papers on the Cross-Cutting Issues of the Third Assessment Report of the IPCCPachauri, R.Taniguchi, T.Tanaka, K.GenevaWorld Meteorological OrganizationGoogle Scholar
Moss, R. H.Edmonds, J. A.Hibbard, K. A. 2010 The next generation of scenarios for climate change research and assessmentNature 463 747CrossRefGoogle ScholarPubMed
Munhoven, G. 2007 Glacial–interglacial rain ratio changes: implications for atmospheric CO2 and ocean–sediment interactionDeep-Sea Research II 54 722CrossRefGoogle Scholar
Murphy, J. M.Sexton, D. M. H.Barnett, D. N. 2004 Quantification of modelling uncertainties in a large ensemble of climate change simulationsNature 430 768CrossRefGoogle Scholar
Palmer, J. R.Totterdell, I. J. 2011 Production and export in a global ocean ecosystem modelDeep Sea Research I 48 1169CrossRefGoogle Scholar
Panchuk, K.Ridgwell, A.Kump, L. R. 2008 Sedimentary response to Paleocene Eocene Thermal Maximum carbon release: a model–data comparisonGeology 36 315CrossRefGoogle Scholar
Patzek, T. W.Croft, G. D. 2010 A global coal production forecast with multi-Hubbert cycle analysisEnergy 35 3109CrossRefGoogle Scholar
Pechony, O.Shindell, D. T. 2010 Driving forces of global wildfires over the past millennium and the forthcoming centuryProceedings of the National Academy of Sciences USAdoi:10.1073/pnas.1003669107Google ScholarPubMed
Petoukhov, V.Ganopolski, A.Brovkin, V. 2000 CLIMBER-2: a climate system model of intermediate complexity. Part I: model description and performance for present climateClimate Dynamics 16 1CrossRefGoogle Scholar
Prentice, I. C.Guiot, J.Huntley, B.Jolly, D.Cheddadi, R. 1996 Reconstructing biomes from palaeoecological data: a general method and its application to European pollen data at 0 and 6 kaClimate Dynamics 12 185CrossRefGoogle Scholar
Prentice, I. C.Kelley, D. I.Foster, P. N. 2011 Modeling fire and the terrestrial carbon balancGlobal Biogeochemical Cycles 25 doi:10.1029/2010GB003906CrossRefGoogle Scholar
Randall, D. A.Wielicki, B. A. 1997 Measurements, models, and hypotheses in the atmospheric sciencesBulletin of the American Meteorological Society 78 3992.0.CO;2>CrossRefGoogle Scholar
Randerson, J. T.Hoffman, F. M.Thornton, P. E. 2009 Systematic assessment of terrestrial biogeochemistry in coupled climate–carbon modelsGlobal Change Biology 15 2462CrossRefGoogle Scholar
Rayner, P. J.Scholze, M.Knorr, W. 2005 Two decades of terrestrial carbon fluxes from a carbon cycle data assimilation system (CCDAS)Global Biogeochemical Cycles 19 doi:10.1029/2004GB002254CrossRefGoogle Scholar
Ridgwell, A. 2007 Interpreting transient carbonate compensation depth changes by marine sediment core modelingPaleoceanography 22 doi:10.1029.2006PA001372CrossRefGoogle Scholar
Ridgwell, A.Zeebe, R. E. 2005 The role of the global carbonate cycle in the regulation and evolution of the Earth systemEarth and Planetary Science Letters 234 299CrossRefGoogle Scholar
Ridgwell, A.Edwards, U. 2007 Greenhouse Gas SinksReay, D.Hewitt, N.Grace, J.Smith, K.WallingfordCABIGoogle Scholar
Ridgwell, A.Hargreaves, J. 2007 Regulation of atmospheric CO2 by deep-sea sediments in an Earth system modeGlobal Biogeochemical Cycles 21 doi:10.1029/2006GB002764CrossRefGoogle Scholar
Ridgwell, A.Hargreaves, J. C.Edwards, N. R. 2007 Marine geochemical data assimilation in an efficient Earth system model of global biogeochemical cyclingBiogeosciences 4 87CrossRefGoogle Scholar
Sabine, C. L.Feely, R. A.Gruber, N. 2004 The oceanic sink for atmospheric carbonScience 305 367CrossRefGoogle Scholar
Santaren, D.Peylin, P.Viovy, N.Ciais, P. 2007 Optimizing a process-based ecosystem model with eddy-covariance flux measurements: a pine forest in southern FranceGlobal Biogeochemical Cycles 21 doi:10.1029/2006GB002834CrossRefGoogle Scholar
Schellnhuber, H. J. 1999 ‘Earth system’ analysis and the second Copernican revolutionNature 402 C19CrossRefGoogle Scholar
Schewe, J.Levermann, A.Meinshausen, M. 2011 Climate change under a scenario near 1.5 ºC of global warming: monsoon intensification, ocean warming and steric sea level riseEarth System Dynamics 2 25CrossRefGoogle Scholar
Schneider, S. 1997 Integrated assessment modeling of global climate change: transparent rational tool for policy making or opaque screen hiding value-laden assumptions?Environmental Modeling and Assessment 2 229CrossRefGoogle Scholar
Scholze, M.Knorr, W.Arnell, N. W.Prentice, I. C. 2006 A climate change risk analysis for world ecosystemsProceedings of the National Academy of Sciences USA 103 13116CrossRefGoogle ScholarPubMed
Scholze, M.Kaminski, T.Rayner, P.Knorr, W.Giering, R. 2007 Propagating uncertainty through prognostic carbon cycle data assimilation system simulationsJournal of Geophysical Research 112 doi:10.1029/2007JD008642CrossRefGoogle Scholar
Senior, C. A.Mitchell, J. F. B. 2000 The time-dependence of climate sensitivityGeophysical Research Letters 27 2685CrossRefGoogle Scholar
Shaffer, G.Malskær Olsen, S.Pepke Pedersen, J. O. 2008 Presentation, calibration and validation of the low-order, DCESS Earth System Model (Version 1)Geoscientific Model Development 1 17CrossRefGoogle Scholar
Simmons, A. J.Gibson, J. K. 2000
Simmons, A. J.Hollingsworth, A. 2002 Some aspects of the improvement in skill of numerical weather predictionQuarterly Journal of the Royal Meteorological Society 128 647CrossRefGoogle Scholar
Sloan, N. A.Vance-Borland, K.Ray, G. C. 2007 Fallen between the cracks: conservation linking land and seaConservation Biology 21 897CrossRefGoogle ScholarPubMed
Smith, J.Gottschalk, P.Bellarby, J. 2010 Estimating changes in Scottish soil carbon stocks using ECOSSE. I. Model description and uncertaintiesClimate Research 45 179CrossRefGoogle Scholar
Smith, R. S.Gregory, J. M.Osprey, A. 2008 A description of the FAMOUS (version XDBUA) climate model and control runGeoscientific Model Development 1 53CrossRefGoogle Scholar
Smith, R. S.Gregory, J. M. 2012 The last glacial cycle: transient stimulations with an AOGCMClimate Dynamics 38 1545CrossRefGoogle Scholar
Solomon, S.Qin, D.Manning, M. 2007 Climate Change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate ChangeSolomon, S.Qin, D.Manning, M.CambridgeCambridge University PressGoogle Scholar
Stainforth, D. A.Aina, T.Christensen, C. 2005 Uncertainty in predictions of the climate response to rising levels of greenhouse gasesNature 433 403CrossRefGoogle ScholarPubMed
Stammer, D.Wunsch, C.Giering, R. 2003 Volume, heat, and fresh-water transports of the global ocean circulation 1993–2000, estimated from a general circulation model constrained by World Ocean Circulation Experiment (WOCE) dataJournal of Geophysical Research 108 doi:10.1029/2001JC001115CrossRefGoogle Scholar
Stocker, T. F.Wright, D. G.Mysak, L. A. 1992 A zonally averaged, coupled ocean–atmosphere model for paleoclimate studiesJournal of Climate 5 7732.0.CO;2>CrossRefGoogle Scholar
Stott, P. A.Tett, S. F. B.Jones, G. S. 2000 External control of 20th century temperature change to natural and anthropogenic forcingsScience 290 2133CrossRefGoogle Scholar
Stott, P. A.Allen, M. R.Jones, G. S. 2003 Estimating signal amplitudes in optimal fingerprinting, Part II: application to general circulation modelsClimate Dynamics 21CrossRefGoogle Scholar
Tarantola, A. 2005 Inverse Problem Theory and Methods for Model Parameter EstimationPhiladelphia, PASociety for Industrial and Applied MathematicsCrossRefGoogle Scholar
Telford, P. J.Lathiere, J.Abraham, N. L. 2010 Effects of climate-induced changes in isoprene emissions after the eruption of Mount PinatuboAtmospheric Chemistry and Physics 10 7117CrossRefGoogle Scholar
Texier, D.de Noblet, N.Harrison, S. P. 1997 Quantifying the role of biosphere–atmosphere feedbacks in climate change: coupled model simulations for 6000 yr BP and comparison with palaeodata for northern Eurasia and northern AfricaClimate Dynamics 13 865CrossRefGoogle Scholar
Thomas, M. A.Giorgetta, M. A.Timmreck, C.Graf, H.-F.Stenchikov, G. 2009 Simulation of the climate impact of Mt. Pinatubo eruption using ECHAM5 – Part 2: sensitivity to the phase of the QBO and ENSOAtmospheric Chemistry and Physics 9 3001CrossRefGoogle Scholar
Thonicke, K.Spessa, A.Prentice, I. C. 2010 The influence of vegetation, fire spread and fire behaviour on global biomass burning and trace gas emissions: results from a process-based modelBiogeosciences 7 1991CrossRefGoogle Scholar
Tol, R. S. J. 2006 Integrated Assessment ModellingHamburg University and Centre for Marine and Atmospheric Sciencehttp://ideas.repec.org/p/sgc/wpaper/102.htmlGoogle Scholar
UNFCCC 1992 United Nations Framework Convention on Climate Change, United Nations, Rio de JaneiroBonnUnited Nations Framework Convention on Climate Changewww.unfccc.int/resource/ccsites/senegal/conven.htmGoogle Scholar
Van Vuuren, D. P.Meinshausen, M.Plattner, G.-K. 2008 Temperature increase of 21st century mitigation scenariosProceedings of the National Academy of Sciences USA 105 15258CrossRefGoogle ScholarPubMed
Vernon, C.Thompson, E.Cornell, S. 2011 Carbon dioxide emission scenarios: limitations of the fossil fuel resourceProcedia Environmental Sciences 64 206CrossRefGoogle Scholar
Walsh, J. J.Biscaye, P. E.Csanady, G. T. 1991 Importance of continental margins in the marine biogeochemical cycling of carbon and nitrogenNature 359 53CrossRefGoogle Scholar
Wang, Y. P.Leuning, R.Cleugh, H. A.Coppin, P. A. 2001 Parameter estimation in surface exchange models using nonlinear inversion: how many parameters can we estimate and which measurements are most useful?Global Change Biology 7 495CrossRefGoogle Scholar
Ward, B. A.Friedrichs, M. A. M.Anderson, T. R.Oschlies, A. 2010 Parameter optimisation techniques and the problem of under-determination in marine biogeochemical modelsJournal of Marine Systems 81 34CrossRefGoogle Scholar
Williamson, M. S.Lenton, T. M.Shepherd, J. G.Edwards, N. R. 2006 An efficient numerical terrestrial scheme (ENTS) for Earth system modelingEcological Modelling 198 362CrossRefGoogle Scholar
Zachos, J. C.Röhl, U.Schellenberg, S. A. 2005 Rapid acidification of the ocean during the Paleocene–Eocene thermal maximumScience 308 1611CrossRefGoogle ScholarPubMed
Zachos, J. C.Dickens, G. R.Zeebe, R. E. 2008 An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamicsNature 451 279CrossRefGoogle ScholarPubMed
Zeebe, R. E. 2011 LOSCAR: Long-term Ocean-atmosphere-Sediment CArbon cycle Reservoir ModelGeoscientific Model Development Discussions 4 1435CrossRefGoogle Scholar
Zeebe, R. E.Zachos, J. C.Dickens, G. R. 2009 Carbon dioxide forcing alone insufficient to explain Palaeocene–Eocene thermal maximum warmingNature Geosciences 2 576CrossRefGoogle Scholar
Zeng, N.Neelin, J. D. 2000 The role of vegetation–climate interaction and interannual variability in shaping the African savannaJournal of Climate 13 26652.0.CO;2>CrossRefGoogle Scholar
Ziehn, T.Kattge, J.Knorr, W.Scholze, M. 2011 Improving the predictability of global CO2 assimilation rates under climate changeGeophysical Research Letters 38 doi:10.1029/2011GL047182CrossRefGoogle Scholar
Zweck, C.Huybrechts, P. 2005 Modeling of the northern hemisphere ice sheets during the last glacial cycle and glaciological sensitivityJournal of Geophysical Research 110 doi: 10.1029/2004JD005489CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×