Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-26T12:55:28.900Z Has data issue: false hasContentIssue false

Section VII - Pharmacotherapy for Dystonia

Published online by Cambridge University Press:  31 May 2018

Dirk Dressler
Affiliation:
Hannover Medical School
Eckart Altenmüller
Affiliation:
Hochschule für Musik, Theater und Medien, Hannover
Joachim K. Krauss
Affiliation:
Hannover Medical School
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Treatment of Dystonia , pp. 261 - 296
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Albanese, A, Asmus, F, Bhatia, KP, Elia, AE, Elibol, B, Filippini, G, Gasser, T, Krauss, JK, Nardocci, N, Newton, A, Valls-Solé, J (2011) EFNS guidelines on diagnosis and treatment of primary dystonias. Eur J Neurol 18: 518.CrossRefGoogle ScholarPubMed
Balash, Y, Giladi, N (2004) Efficacy of pharmacological treatment of dystonia: evidence-based review including meta-analysis of the effect of botulinum toxin and other cure options. Eur J Neurol 11: 361370.Google Scholar
Burke, RE, Fahn, S, Marsden, C (1986) Torsion dystonia: a double-blind, prospective trial of high-dosage trihexyphenidyl. Neurology 36: 160164.CrossRefGoogle ScholarPubMed
Chen, JJ, Ondo, WG, Dashtipour, K, Swope, DM (2012) Tetrabenazine for the treatment of hyperkinetic movement disorders: a review of the literature. Clin Therapeutics 7: 14871504.CrossRefGoogle Scholar
Cloud, LJ, Jinnah, HA (2010) Treatment strategies for dystonia. Expert Opin Pharmacotherap 11: 515.Google Scholar
Consroe, P, Sandyk, R, Snider, SR (1986) Open label evaluation of cannabidiol in dystonic movement disorders. Int J Neurosci 30: 277282.CrossRefGoogle ScholarPubMed
Delnooz, CCS, van de Warrenburg, BPC (2012) Current and future medical treatment in primary dystonia. Ther Adv Neurol Disord 5: 221240.CrossRefGoogle ScholarPubMed
Dressler, D, Altenmueller, E, Bhidayasiri, R, Boholega, S, Chana, P, Chung, TM, Frucht, S, Garcia-Ruiz, PJ, Kaelin, A, Kaji, R, Kanovsky, P, Laskawi, R, Micheli, F, Orlova, O, Relja, M, Rosales, R, Slawek, J, Timerbaeva, S, Warner, TT, Adib Saberi, F (2015a) Strategies for treatment of dystonia. J Neural Transm 123: 251258.Google Scholar
Dressler, D, Berweck, S, Chatzikalfas, A, Ebke, M, Frank, B, Hesse, S, Huber, M, Krauss, JK, Mücke, K-H, Nolte, A, Oelmann, H-D, Schönle, PW, Schmutzler, M, Pickenbrock, H, Van der Ven, C, Veelken, N, Vogel, M, Vogt, T, Adib Saberi, F (2015b) Intrathecal baclofen therapy in Germany: proceedings of the IAB-Interdisciplinary Working Group for Movement Disorders consensus meeting. J Neural Transm 122:15731579.Google Scholar
Fox, SH, Kellett, M, Moore, AP, Crossman, AR, Brotchie, JM (2002) Randomised, double blind, placebo-controlled trial to assess the potential of cannabinoid receptor stimulation in the treatment of dystonia. Mov Disord 17:145149.Google Scholar
Grassi, E, Latorraca, S, Piacentini, S, Marini, P, Sorbi, S (2000) Risperidone in idiopathic and symptomatic dystonia: preliminary experience. Neurol Sci 21:121123.CrossRefGoogle ScholarPubMed
Greene, P (1992) Baclofen in the treatment of dystonia. Clin Neuropharmacol 15: 276288.Google Scholar
Greene, P, Shale, H, Fahn, S (1988) Analysis of open-label trials in torsion dystonia using high dosages of anticholinergics and other drugs. Mov Disord 3: 4660.CrossRefGoogle ScholarPubMed
Isgreen, WP (1976) Carbamazepine in torsion dystonia. Adv Neurol 14: 411416.Google Scholar
Jankovic, J (2006) Treatment of dystonia. Lancet Neurol 5: 864872.Google Scholar
Jankovic, J (2009) Treatment of hyperkinetic movement disorders. Lancet Neurol 8: 844855.CrossRefGoogle ScholarPubMed
Jankovic, J (2013) Medical treatment of dystonia. Mov Disord 28: 10011012.CrossRefGoogle ScholarPubMed
Kluger, B, Triolo, P, Jones, W, Jankovic, J (2015) The therapeutic potential of cannabinoids for movement disorders. Mov Disord 30: 313327.Google Scholar
Koppel, BS, Brust, JC, Fife, T, Bronstein, J, Youssof, S, Gronseth, G, Gloss, D (2014) Systematic review: efficacy and safety of medical marijuana in selected neurologic disorders. Neurology 82: 15561563.Google Scholar
Lang, AE (1988) Dopamine agonists and antagonists in treatment of idiopathic dystonia. Adv Neurol 50: 561570.Google Scholar
Lin, JJ, Chang, DC (2004) Improvement of generalized dystonia by olanzapine treatment. J Clin Neurosci 11: 8486.Google Scholar
Lucetti, C, Nuti, A, Gambaccini, G, Bernardini, S, Brotini, S, Manca, ML, Bonuccelli, U (2000) Mexiletine in the treatment of torticollis and generalized dystonia. Clin Neuropharmacol 23: 186189.Google Scholar
Marsden, CD, Marion, MH, Quinn, N (1984) The treatment of severe dystonia in children and adults. J Neurol Neurosurg Psychiatry 47: 11661173.Google Scholar
Nutt, JG, Hammerstad, JP, Carter, JH, deGarmo, PL (1985) Lisuride treatment of focal dystonias. Neurology 35: 12421243.Google Scholar
Thiel, A, Dressler, D, Kistel, C, Rüther, E (1994) Clozapine treatment of spasmodic torticollis. Neurology 44: 957958.Google Scholar
van der Plus, AA, Schilder, JC, Marinus, J, van Hilten, JJ (2013) An explanatory study evaluating the muscle relaxant effects of intramuscular magnesium sulphate for dystonia in complex regional pain syndrome. J Pain 14: 13411348.CrossRefGoogle Scholar
Zuddas, A, Cianchetti, C (1996) Efficacy of risperidone in idiopathic segmental dystonia. Lancet 347: 127128.Google Scholar

References

Albright, AL (1996) Spasticity and movement disorders in cerebral palsy. J Child Neurol 11(Suppl. 1), S1–4.Google ScholarPubMed
Battini, R, Casarano, M, Sgandurra, G, Olivieri, I, Di Pietro, R, Romeo, DM, Mercuri, E, Cioni, G (2014) Responsiveness of the MD-childhood rating scale in dyskinetic cerebral palsy patients undergoing anticholinergic treatment. Eur J Paediatr Neurol 18, 698703.Google Scholar
Ben-Pazi, H (2011) Trihexyphenidyl improves motor function in children with dystonic cerebral palsy: a retrospective analysis. J Child Neurol 26, 810816.Google Scholar
Brans, JW, Lindeboom, R, Snoek, JW, Zwarts, MJ, van Weerden, TW, Brunt, ER, van Hilten, JJ, van der Kamp, W, Prins, MH, Speelman, JD (1996) Botulinum toxin versus trihexyphenidyl in cervical dystonia: a prospective, randomized, double-blind controlled trial. Neurology 46, 10661072.Google Scholar
Burke, RE, Fahn, S, Marsden, CD (1986) Torsion dystonia: a double-blind, prospective trial of high-dosage trihexyphenidyl. Neurology 36, 160164.Google Scholar
Carranza-del Rio, J, Clegg, NJ, Moore, A, Delgado, MR (2011) Use of trihexyphenidyl in children with cerebral palsy. Pediatr Neurol 44, 202206.Google Scholar
Chuang, C, Fahn, S, Frucht, SJ (2002) The natural history and treatment of acquired hemidystonia: report of 33 cases and review of the literature. J Neurol Neurosurg Psychiatry 72, 5967.Google Scholar
Deuschl, G (2003) Dystonic tremor. Rev Neurol (Paris) 159, 900905.Google Scholar
Eskow Jaunarajs, KL, Bonsi, P, Chesselet, MF, Standaert, DG, Pisani, A (2015) Striatal cholinergic dysfunction as a unifying theme in the pathophysiology of dystonia. Prog Neurobiol 127–128C, 91107.Google Scholar
Fahn, S (1983) High dosage anticholinergic therapy in dystonia. Neurology 33, 12551261.CrossRefGoogle ScholarPubMed
Fasano, A, Bove, F, Lang, AE (2014) The treatment of dystonic tremor: a systematic review. J Neurol Neurosurg Psychiatry 85, 759769.CrossRefGoogle ScholarPubMed
Granana, N, Ferrea, M, Scorticati, MC, Diaz, S, Arrebola, M, Torres, L, Micheli, F (1999) Beneficial effects of diphenhydramine in dystonia. Medicina (B Aires) 59, 3842.Google ScholarPubMed
Greene, P, Shale, H, Fahn, S (1988) Analysis of open-label trials in torsion dystonia using high dosages of anticholinergics and other drugs. Mov Disord 3, 4660.Google Scholar
Hoon, AH, Jr, Freese, PO, Reinhardt, EM, Wilson, MA, Lawrie, WT, Jr, Harryman, SE, Pidcock, FS, Johnston, MV (2001) Age-dependent effects of trihexyphenidyl in extrapyramidal cerebral palsy. Pediatr Neurol 25, 5558.Google Scholar
Hughes, AJ, Lees, AJ, Marsden, CD (1991) Paroxysmal dystonic head tremor. Mov Disord 6, 8586.Google Scholar
Jankovic, J (2013) Medical treatment of dystonia. Mov Disord 28, 10011012.CrossRefGoogle ScholarPubMed
Kostic, V, Przedborski, S, Jackson-Lewis, V, Cadet, JL, Burke, RE (1991) Effect of unilateral perinatal hypoxic-ischemic brain injury in the rat on striatal muscarinic cholinergic receptors and high-affinity choline uptake sites: a quantitative autoradiographic study. J Neurochem 57, 19621970.CrossRefGoogle Scholar
Lang, AE (1986) High dose anticholinergic therapy in adult dystonia. Can J Neurol Sci 13, 4246.CrossRefGoogle ScholarPubMed
Maltese, M, Martella, G, Madeo, G, Fagiolo, I, Tassone, A, Ponterio, G, Sciamanna, G, Burbaud, P, Conn, PJ, Bonsi, P, Pisani, A (2014). Anticholinergic drugs rescue synaptic plasticity in DYT1 dystonia: role of M1 muscarinic receptors. Mov Disord 29, 16551665.Google Scholar
Martella, G, Tassone, A, Sciamanna, G, Platania, P, Cuomo, D, Viscomi, MT, Bonsi, P, Cacci, E, Biagioni, S, Usiello, A, Bernardi, G, Sharma, N, Standaert, DG, Pisani, A (2009) Impairment of bidirectional synaptic plasticity in the striatum of a mouse model of DYT1 dystonia: role of endogenous acetylcholine. Brain 132, 23362349.Google Scholar
Oztekin, NS, Saygi, SS, Dalkara, T, Senses, I, Zileli, T (1991) High dose anticholinergic therapy (biperiden) in dystonia. Clin Neurol Neurosurg 93, 3537.CrossRefGoogle ScholarPubMed
Pettigrew, LC, Jankovic, J (1985) Hemidystonia: a report of 22 patients and a review of the literature. J Neurol Neurosurg Psychiatry 48, 650657.CrossRefGoogle Scholar
Pidcock, FS, Hoon, AH, Jr, Johnston, MV (1999) Trihexyphenidyl in posthemorrhagic dystonia: motor and language effects. Pediatr Neurol 20, 219222.CrossRefGoogle ScholarPubMed
Pisani, A, Bernardi, G, Ding, J, Surmeier, DJ (2007) Re-emergence of striatal cholinergic interneurons in movement disorders. Trends Neurosci 30, 545553.CrossRefGoogle ScholarPubMed
Poewe, W, Lees, AJ, Steiger, D, Stern, GM (1987) Foot dystonia in Parkinson’s disease: clinical phenomenology and neuropharmacology. Adv Neurol 45, 357360.Google Scholar
Poewe, WH, Lees, AJ, Stern, GM (1988) Dystonia in Parkinson’s disease: clinical and pharmacological features. Ann Neurol 23, 7378.Google Scholar
Povlsen, UJ, Pakkenberg, H (1990) Effect of intravenous injection of biperiden and clonazepam in dystonia. Mov Disord 5, 2731.CrossRefGoogle ScholarPubMed
Rice, J, Waugh, MC (2009) Pilot study on trihexyphenidyl in the treatment of dystonia in children with cerebral palsy. J Child Neurol 24, 176182.CrossRefGoogle ScholarPubMed
Robottom, BJ, Reich, SG (2011) Exposure to high dosage trihexyphenidyl during pregnancy for treatment of generalized dystonia: case report and literature review. Neurologist 17, 340341.Google Scholar
Rosenbaum, F, Jankovic, J (1988) Focal task-specific tremor and dystonia: categorization of occupational movement disorders. Neurology 38, 522527.Google Scholar
Sanger, TD, Bastian, A, Brunstrom, J, Damiano, D, Delgado, M, Dure, L, Gaebler-Spira, D, Hoon, A, Mink, JW, Sherman-Levine, S, Welty, LJ, Child Motor Study Group (2007) Prospective open-label clinical trial of trihexyphenidyl in children with secondary dystonia due to cerebral palsy. J Child Neurol 22, 530537.Google Scholar
Schneider, SA, Bhatia, KP (2007) The entity of jaw tremor and dystonia. Mov Disord 22, 14911495.Google Scholar
Taylor, AE, Lang, AE, Saint-Cyr, JA, Riley, DE, Ranawaya, R (1991) Cognitive processes in idiopathic dystonia treated with high-dose anticholinergic therapy: implications for treatment strategies. Clin Neuropharmacol 14, 6277.Google Scholar
Thenganatt, MA, Jankovic, J (2014) Treatment of dystonia. Neurotherapeutics 11, 139152.Google Scholar
Truong, DD, Sandroni, P, van den Noort, S, Matsumoto, RR (1995). Diphenhydramine is effective in the treatment of idiopathic dystonia. Arch Neurol 52, 405407.Google Scholar
Van der Burg, JJ, Jongerius, PH, Van Hulst, K, Van Limbeek, J, Rotteveel, JJ (2006) Drooling in children with cerebral palsy: effect of salivary flow reduction on daily life and care. Dev Med Child Neurol 48, 103107.Google Scholar
van’t Groenewout, JL, Stone, MR, Vo, VN, Truong, DD, Matsumoto, RR (1995) Evidence for the involvement of histamine in the antidystonic effects of diphenhydramine. Exp Neurol 134, 253260.CrossRefGoogle ScholarPubMed
Vidailhet, M (2013) Treatment of movement disorders in dystonia-choreoathtosis cerebral palsy. Handb Clin Neurol 111, 197202.Google Scholar

References

Asher, SW, Aminoff, MJ (1981). Tetrabenazine and movement disorders. Neurology 31:10511054.Google Scholar
Fasano, A, Bove, F, Lang, AE (2014). The treatment of dystonic tremor: a systematic review. J Neurol Neurosurg Psychiatry 85:759769.Google Scholar
Frank, S, Ondo, W, Fahn, S, Hunter, C, Oakes, D, Plumb, S, Marshall, F, Shoulson, I, Eberly, S, Walker, F, Factor, S, Hunt, V, Shinaman, A, Jankovic, J (2008). A study of chorea after tetrabenazine withdrawal in patients with Huntington disease. Clin Neuropharmacol 31:127133.Google Scholar
Godwin-Austen, RB (1979). The treatment of the choreas and athetotic dystonias. J R Coll Physicians Lond 13:3538.Google Scholar
Huntington Study Group (2006). Tetrabenazine as antichorea therapy in Huntington disease: a randomized controlled trial. Neurology 66:366372.Google Scholar
Jankovic, J (1982). Treatment of hyperkinetic movement disorders with tetrabenazine: a double-blind crossover study. Ann Neurol 11:4147.Google Scholar
Jankovic, J (1995). Tardive syndromes and other drug-induced movement disorders. Clin Neuropharmacol 18:197214.Google Scholar
Jankovic, J, Beach, J (1997). Long-term effects of tetrabenazine in hyperkinetic movement disorders. Neurology 48:358362.Google Scholar
Jankovic, J, Orman, J (1988). Tetrabenazine therapy of dystonia, chorea, tics, and other dyskinesias. Neurology 38:391394.CrossRefGoogle ScholarPubMed
Kazamatsuri, H, Chien, C, Cole, JO (1972). Treatment of tardive dyskinesia. I. Clinical efficacy of a dopamine-depleting agent, tetrabenazine. Arch Gen Psychiatry 27:9599.Google Scholar
Kazamatsuri, H, Chien, CP, Cole, JO (1973). Long-term treatment of tardive dyskinesia with haloperidol and tetrabenazine. Am J Psychiatry 130:479483.Google ScholarPubMed
Kenney, C, Hunter, C, Mejia, N, Jankovic, J (2006). Is history of depression a contraindication to treatment with tetrabenazine? Clin Neuropharmacol 29:259264.Google Scholar
Kenney, C, Hunter, C, Jankovic, J (2007). Long-term tolerability of tetrabenazine in the treatment of hyperkinetic movement disorders. Mov Disord 22:193197.Google Scholar
LeWitt, PA (2013). Tardive dyskinesia caused by tetrabenazine. Clin Neuropharmacol 36:9293.Google Scholar
Luciano, AY, Jinnah, HA, Pfeiffer, RF, Truong, DD, Nance, MA, LeDoux, MS (2014). Treatment of myoclonus-dystonia syndrome with tetrabenazine. Parkinsonism Relat Disord 20:14231426.Google Scholar
Marsden, CD, Marion, MH, Quinn, N (1984). The treatment of severe dystonia in children and adults. J Neurol Neurosurg Psychiatry 47:11661173.Google Scholar
Ondo, WG, Hanna, PA, Jankovic, J (1999). Tetrabenazine treatment for tardive dyskinesia: assessment by randomized videotape protocol. Am J Psychiatry 156:12791281.Google Scholar
Paleacu, D, Giladi, N, Moore, O, Stern, A, Honigman, S, Badarny, S (2004). Tetrabenazine treatment in movement disorders. Clin Neuropharmacol 27:230233.Google Scholar
Schrader, C, Dengler, R, Dressler, D (2010). Tetrabenazin in der Behandlung hyperkinetischer Bewegungsstörungen. Psychopharmakotherapie 17:8590.Google Scholar
Soares-Weiser, K, Fernandez, HH (2007). Tardive dyskinesia. Semin Neurol 27:159169.Google Scholar
Swash, M, Roberts, AH, Zakko, H, Heathfield, KW (1972). Treatment of involuntary movement disorders with tetrabenazine. J Neurol Neurosurg Psychiatry 35:186191.Google Scholar
Watson, MW, Skelton, D, Jamali, F (1988). Treatment of tardive dyskinesia: preliminary report on use of tetrabenazine. Can J Psychiatry 33:1113.Google Scholar

References

Abdenur, JE, Abeling, N, Specola, N, Jorge, L, Schenone, AB, van Cruchten, AC, et al. 2006. Aromatic l-aminoacid decarboxylase deficiency: unusual neonatal presentation and additional findings in organic acid analysis. Molecular Genetics and Metabolism 87(1):4853.Google Scholar
Abeling, NG, Duran, M, Bakker, HD, Stroomer, L, Thony, B, Blau, N, et al. 2006. Sepiapterin reductase deficiency: an autosomal recessive DOPA-responsive dystonia. Molecular Genetics and Metabolism 89(1–2):116120.Google Scholar
al Aqeel, A, Ozand, PT, Gascon, G, Nester, M, al Nasser, M, Brismar, J, et al. 1991. Biopterin-dependent hyperphenylalaninemia due to deficiency of 6-pyruvoyl tetrahydropterin synthase. Neurology 41(5):730737.Google Scholar
Allen, GF, Land, JM, Heales, SJ. 2009. A new perspective on the treatment of aromatic L-amino acid decarboxylase deficiency. Molecular Genetics and Metabolism 97(1):614.Google Scholar
Allen, GF, Neergheen, V, Oppenheim, M, Fitzgerald, JC, Footitt, E, Hyland, K, et al. 2010. Pyridoxal 5′-phosphate deficiency causes a loss of aromatic L-amino acid decarboxylase in patients and human neuroblastoma cells, implications for aromatic L-amino acid decarboxylase and vitamin B(6) deficiency states. Journal of Neurochemistry 114(1):8796.Google Scholar
Anselm, IA, Darras, BT. 2006. Catecholamine toxicity in aromatic L-amino acid decarboxylase deficiency. Pediatric Neurology 35(2):142144.Google Scholar
Arrabal, L, Teresa, L, Sanchez-Alcudia, R, Castro, M, Medrano, C, Gutierrez-Solana, L, et al. 2011. Genotype–phenotype correlations in sepiapterin reductase deficiency: a splicing defect accounts for a new phenotypic variant. Neurogenetics 12(3):183191.Google Scholar
Bandmann, O, Wood, NW. 2002. Dopa-responsive dystonia: the story so far. Neuropediatrics 33(1):15.Google Scholar
Blau, N, Ichinose, H, Nagatsu, T, Heizmann, CW, Zacchello, F, Burlina, AB. 1995. A missense mutation in a patient with guanosine triphosphate cyclohydrolase I deficiency missed in the newborn screening program. The Journal of Pediatrics 126(3):401405.Google Scholar
Bruggemann, N, Spiegler, J, Hellenbroich, Y, Opladen, T, Schneider, SA, Stephani, U, et al. 2012. Beneficial prenatal levodopa therapy in autosomal recessive guanosine triphosphate cyclohydrolase 1 deficiency. Archives of Neurology 69(8):10711075.Google Scholar
Brun, L, Ngu, LH, Keng, WT, Ch’ng, GS, Choy, YS, Hwu, WL, et al. 2010. Clinical and biochemical features of aromatic L-amino acid decarboxylase deficiency. Neurology 75(1):6471.Google Scholar
Cai, C, Shi, W, Zeng, Z, Zhang, M, Ling, C, Chen, L, et al. 2013. GTP cyclohydrolase I and tyrosine hydroxylase gene mutations in familial and sporadic dopa-responsive dystonia patients. PLoS One 8(6):e65215.Google Scholar
Cao, L, Zheng, L, Tang, WG, Xiao, Q, Zhang, T, Tang, HD, et al. 2010. Four novel mutations in the GCH1 gene of Chinese patients with dopa-responsive dystonia. Movement Disorders: Official Journal of the Movement Disorder Society 25(6):755760.Google Scholar
Chang, YT, Sharma, R, Marsh, JL, McPherson, JD, Bedell, JA, Knust, A, et al. 2004. Levodopa-responsive aromatic L-amino acid decarboxylase deficiency. Annals of Neurology 55(3):435438.Google Scholar
Chi, CS, Lee, HF, Tsai, CR. 2012. Tyrosine hydroxylase deficiency in Taiwanese infants. Pediatric Neurology 46(2):7782.Google Scholar
Chieng, KS, Hussain, N, Gosalakkal, JA. 2007. Dystonia during feeding as an early sign of dopa-responsive dystonia. Pediatric Neurology 37(3):215217.Google Scholar
Clot, F, Grabli, D, Cazeneuve, C, Roze, E, Castelnau, P, Chabrol, B, et al. 2009. Exhaustive analysis of BH4 and dopamine biosynthesis genes in patients with dopa-responsive dystonia. Brain: A Journal of Neurology 132(Pt 7):17531763.Google Scholar
Concolino, D, Muzzi, G, Rapsomaniki, M, Moricca, MT, Pascale, MG, Strisciuglio, P. 2008. Serum prolactin as a tool for the follow-up of treated DHPR-deficient patients. Journal of Inherited Metabolic Disease 31(Suppl. 2):S193S197.Google Scholar
Coughlin, CR, 2nd, Hyland, K, Randall, R, Ficicioglu, C. 2013. Dihydropteridine reductase deficiency and treatment with tetrahydrobiopterin: a case report. JIMD Reports 10:5356.Google Scholar
Davis, MD, Ribeiro, P, Tipper, J, Kaufman, S. 1992. ‘7-tetrahydrobiopterin’, a naturally occurring analogue of tetrahydrobiopterin, is a cofactor for and a potential inhibitor of the aromatic amino acid hydroxylases. Proceedings of the National Academy of Sciences of the United States of America 89(21):1010910113.Google Scholar
de la Fuente-Fernandez, R. 1999. Drug-induced motor complications in dopa-responsive dystonia: implications for the pathogenesis of dyskinesias and motor fluctuations. Clinical Neuropharmacology 22(4):216219.Google Scholar
de Rijk-Van Andel, JF, Gabreels, FJ, Geurtz, B, Steenbergen-Spanjers, GC, van Den Heuvel, LP, Smeitink, JA, et al. 2000. L-dopa-responsive infantile hypokinetic rigid parkinsonism due to tyrosine hydroxylase deficiency. Neurology 55(12):19261928.Google Scholar
Del, P, Nassogne, MC, van Gennip, AH, van Cruchten, AC, Billatte de Villemeur, T, Cretz, M, et al. 2000. Tyrosine hydroxylase deficiency unresponsive to L-dopa treatment with unusual clinical and biochemical presentation. Journal of Inherited Metabolic Disease 23(8):819825.Google Scholar
Demos, MK, Waters, PJ, Vallance, HD, Lillquist, Y, Makhseed, N, Hyland, K, et al. 2005. 6-pyruvoyl-tetrahydropterin synthase deficiency with mild hyperphenylalaninemia. Annals of Neurology 58(1):164167.Google Scholar
Dhondt, J-L, Farriaux, J-P, Boudha, A, Largillière, C, Ringel, J, Roger, M-M, et al. 1985. Neonatal hyperphenylalaninemia presumably caused by guanosine triphosphate-cyclohydrolase deficiency. The Journal of Pediatrics. 106(6):954956.Google Scholar
Diepold, K, Schutz, B, Rostasy, K, Wilken, B, Hougaard, P, Guttler, F, et al. 2005. Levodopa-responsive infantile parkinsonism due to a novel mutation in the tyrosine hydroxylase gene and exacerbation by viral infections. Movement Disorders: Official Journal of the Movement Disorder Society 20(6):764767.Google Scholar
Dill, P, Wagner, M, Somerville, A, Thony, B, Blau, N, Weber, P. 2012. Child neurology: paroxysmal stiffening, upward gaze, and hypotonia – hallmarks of sepiapterin reductase deficiency. Neurology 78(5):e29e32.Google Scholar
Dionisi-Vici, C, Hoffmann, GF, Leuzzi, V, Hoffken, H, Brautigam, C, Rizzo, C, et al. 2000. Tyrosine hydroxylase deficiency with severe clinical course: clinical and biochemical investigations and optimization of therapy. The Journal of Pediatrics 136(4):560562.Google Scholar
Doummar, D, Clot, F, Vidailhet, M, Afenjar, A, Durr, A, Brice, A, et al. 2009. Infantile hypokinetic-hypotonic syndrome due to two novel mutations of the tyrosine hydroxylase gene. Movement Disorders: Official Journal of the Movement Disorder Society 24(6):943945.Google Scholar
Dudesek, A, Roschinger, W, Muntau, AC, Seidel, J, Leupold, D, Thony, B, et al. 2001. Molecular analysis and long-term follow-up of patients with different forms of 6-pyruvoyl-tetrahydropterin synthase deficiency. European Journal of Pediatrics 160(5):267276.Google Scholar
Echenne, B, Roubertie, A, Assmann, B, Lutz, T, Penzien, JM, Thony, B, et al. 2006. Sepiapterin reductase deficiency: clinical presentation and evaluation of long-term therapy. Pediatric Neurology 35(5):308313.Google Scholar
Fiumara, A, Brautigam, C, Hyland, K, Sharma, R, Lagae, L, Stoltenborg, B, et al. 2002. Aromatic L-amino acid decarboxylase deficiency with hyperdopaminuria: clinical and laboratory findings in response to different therapies. Neuropediatrics 33(4):203208.Google Scholar
Friedman, J, Hyland, K, Blau, N, MacCollin, M. 2006. Dopa-responsive hypersomnia and mixed movement disorder due to sepiapterin reductase deficiency. Neurology 67(11):20322035.Google Scholar
Friedman, J, Roze, E, Abdenur, JE, Chang, R, Gasperini, S, Saletti, V, et al. 2012. Sepiapterin reductase deficiency: a treatable mimic of cerebral palsy. Annals of Neurology 71(4):520530.Google Scholar
Furukawa, Y, Shimadzu, M, Rajput, AH, Shimizu, Y, Tagawa, T, Mori, H, et al. 1996. GTP-cyclohydrolase I gene mutations in hereditary progressive and dopa-responsive dystonia. Annals of Neurology 39(5):609617.Google Scholar
Furukawa, Y, Kish, SJ, Bebin, EM, Jacobson, RD, Fryburg, JS, Wilson, WG, et al. 1998. Dystonia with motor delay in compound heterozygotes for GTP-cyclohydrolase I gene mutations. Annals of Neurology 44(1):1016.Google Scholar
Furukawa, Y, Filiano, JJ, Kish, SJ. 2004. Amantadine for levodopa-induced choreic dyskinesia in compound heterozygotes for GCH1 mutations. Movement Disorders: Official Journal of the Movement Disorder Society 19(10):12561258.Google Scholar
Garavaglia, B, Invernizzi, F, Carbone, ML, Viscardi, V, Saracino, F, Ghezzi, D, et al. 2004. GTP-cyclohydrolase I gene mutations in patients with autosomal dominant and recessive GTP-CH1 deficiency: identification and functional characterization of four novel mutations. Journal of Inherited Metabolic Disease 27(4):455463.Google Scholar
Giovanniello, T, Leuzzi, V, Carducci, C, Carducci, C, Sabato, ML, Artiola, C, et al. 2007. Tyrosine hydroxylase deficiency presenting with a biphasic clinical course. Neuropediatrics 38(4):213215.Google Scholar
Giovanniello, T, Claps, D, Carducci, C, Carducci, C, Blau, N, Vigevano, F, et al. 2012. A new tyrosine hydroxylase genotype associated with early-onset severe encephalopathy. Journal of Child Neurology 27(4):523525.Google Scholar
Gizewska, M, Hnatyszyn, G, Sagan, L, Cyrylowski, L, Zekanowski, C, Modrzejewska, M, et al. 2009. Maternal tetrahydrobiopterin deficiency: the course of two pregnancies and follow-up of two children in a mother with 6-pyruvoyl-tetrahydropterin synthase deficiency. Journal of Inherited Metabolic Disease 32(Suppl. 1):S83S89.Google Scholar
Goldstein, DS, Hahn, SH, Holmes, C, Tifft, C, Harvey-White, J, Milstien, S, et al. 1995. Monoaminergic effects of folinic acid, L-DOPA, and 5-hydroxytryptophan in dihydropteridine reductase deficiency. Journal of Neurochemistry 64(6):28102813.Google Scholar
Grattan-Smith, PJ, Wevers, RA, Steenbergen-Spanjers, GC, Fung, VS, Earl, J, Wilcken, B. 2002. Tyrosine hydroxylase deficiency: clinical manifestations of catecholamine insufficiency in infancy. Movement Disorders: Official Journal of the Movement Disorder Society 17(2):354359.Google Scholar
Grimes, DA, Barclay, CL, Duff, J, Furukawa, Y, Lang, AE. 2002. Phenocopies in a large GCH1 mutation positive family with dopa responsive dystonia: confusing the picture? Journal of Neurology, Neurosurgery, and Psychiatry 72(6):801804.Google Scholar
Hagenah, J, Saunders-Pullman, R, Hedrich, K, Kabakci, K, Habermann, K, Wiegers, K, et al. 2005. High mutation rate in dopa-responsive dystonia: detection with comprehensive GCHI screening. Neurology 64(5):908911.Google Scholar
Han, B, Zou, H, Han, B, Zhu, W, Cao, Z, Liu, Y. 2014. Diagnosis, treatment and follow-up of patients with tetrahydrobiopterin deficiency in Shandong province, China. Brain & Development 37:592598.Google Scholar
Harwood, G, Hierons, R, Fletcher, NA, Marsden, CD. 1994. Lessons from a remarkable family with dopa-responsive dystonia. Journal of Neurology, Neurosurgery, and Psychiatry 57(4):460463.Google Scholar
Haugarvoll, K, Bindoff, LA. 2011. A novel compound heterozygous tyrosine hydroxylase mutation (p.R441P) with complex phenotype. Journal of Parkinson’s Disease 1(1):119122.Google Scholar
Haussler, M, Hoffmann, GF, Wevers, RA. 2001. L-dopa and selegiline for tyrosine hydroxylase deficiency. The Journal of Pediatrics 138(3):451452.Google Scholar
Hoffmann, GF, Assmann, B, Brautigam, C, Dionisi-Vici, C, Haussler, M, de Klerk, JB, et al. 2003. Tyrosine hydroxylase deficiency causes progressive encephalopathy and dopa-nonresponsive dystonia. Annals of Neurology 54(Suppl. 6):S56S65.Google Scholar
Horvath, GA, Stockler-Ipsiroglu, SG, Salvarinova-Zivkovic, R, Lillquist, YP, Connolly, M, Hyland, K, et al. 2008. Autosomal recessive GTP cyclohydrolase I deficiency without hyperphenylalaninemia: evidence of a phenotypic continuum between dominant and recessive forms. Molecular Genetics and Metabolism 94(1):127131.Google Scholar
Hu, FY, Xu, YM, Yu, LH, Ma, MY, He, XH, Zhou, D. 2011. A novel missense mutation in GTP cyclohydrolase I (GCH1) gene causes dopa-responsive dystonia in Chinese Han population. European Journal of Neurology: The Official Journal of the European Federation of Neurological Societies 18(2):362364.Google Scholar
Hwu, WL, Wang, PJ, Hsiao, KJ, Wang, TR, Chiou, YW, Lee, YM. 1999. Dopa-responsive dystonia induced by a recessive GTP cyclohydrolase I mutation. Human Genetics 105(3):226230.Google Scholar
Hyland, K, Clayton, PT. 1990. Aromatic amino acid decarboxylase deficiency in twins. Journal of Inherited Metabolic Disease 13(3):301304.Google Scholar
Hyland, K, Surtees, RA, Rodeck, C, Clayton, PT. 1992. Aromatic L-amino acid decarboxylase deficiency: clinical features, diagnosis, and treatment of a new inborn error of neurotransmitter amine synthesis. Neurology 42(10):19801988.Google Scholar
Ihara, M, Kohara, N, Urano, F, Ichinose, H, Takao, S, Nishida, T, et al. 2002. Neuroleptic malignant syndrome with prolonged catatonia in a dopa-responsive dystonia patient. Neurology 59(7):11021104.Google Scholar
Imamura, T, Okano, Y, Shintaku, H, Hase, Y, Isshiki, G. 1999. Molecular characterization of 6-pyruvoyl-tetrahydropterin synthase deficiency in Japanese patients. Journal of Human Genetics 44(3):163168.Google Scholar
Irons, M, Levy, HL, O’Flynn, ME, Stack, CV, Langlais, PJ, Butler, IJ, et al. 1987. Folinic acid therapy in treatment of dihydropteridine reductase deficiency. The Journal of Pediatrics 110(1):6167.Google Scholar
Jaggi, L, Zurfluh, MR, Schuler, A, Ponzone, A, Porta, F, Fiori, L, et al. 2008. Outcome and long-term follow-up of 36 patients with tetrahydrobiopterin deficiency. Molecular Genetics and Metabolism 93(3):295305.Google Scholar
Jankovic, J. 2006. Treatment of dystonia. Lancet Neurology 5(10):864872.Google Scholar
Janssen, RJ, Wevers, RA, Haussler, M, Luyten, JA, Steenbergen-Spanjers, GC, Hoffmann, GF, et al. 2000. A branch site mutation leading to aberrant splicing of the human tyrosine hydroxylase gene in a child with a severe extrapyramidal movement disorder. Annals of Human Genetics 64(Pt 5):375382.Google Scholar
Jardim, LB, Giugliani, R, Coelho, JC, Dutra-Filho, CS, Blau, N. 1994. Possible high frequency of tetrahydrobiopterin deficiency in south Brazil. Journal of Inherited Metabolic Disease 17(2):223229.Google Scholar
Jarman, PR, Bandmann, O, Marsden, CD, Wood, NW. 1997. GTP cyclohydrolase I mutations in patients with dystonia responsive to anticholinergic drugs. Journal of Neurology, Neurosurgery, and Psychiatry 63(3):304308.Google Scholar
Jeon, BS, Jeong, JM, Park, SS, Kim, JM, Chang, YS, Song, HC, et al. 1998. Dopamine transporter density measured by [123I]beta-CIT single-photon emission computed tomography is normal in dopa-responsive dystonia. Annals of Neurology 43(6):792800.Google Scholar
Kaindl, AM, Steinberger, D, Heubner, G, Müller, U, Blau, N, Neubert, K, et al. 2005. Phenotype of five patients with dopa-responsive dystonia and mutations in GCH1. Journal of Pediatric Neurology 3(2):8387.Google Scholar
Karkheiran, S, Hubert, B, Moghaddam, H, Darvish, H, Paisan-Ruiz, C. 2013. Phenotypic heterogeneity and full penetrance in a family with dopa-responsive dystonia. Clinical Genetics 83(4):392394.Google Scholar
Koht, J, Rengmark, A, Opladen, T, Bjornara, KA, Selberg, T, Tallaksen, CM, et al. 2014. Clinical and genetic studies in a family with a novel mutation in the sepiapterin reductase gene. Acta Neurologica Scandinavica Supplementum 198:712.Google Scholar
Korenke, GC, Christen, HJ, Hyland, K, Hunneman, DH, Hanefeld, F. 1997. Aromatic L-amino acid decarboxylase deficiency: an extrapyramidal movement disorder with oculogyric crises. European Journal of Paediatric Neurology: Official Journal of the European Paediatric Neurology Society 1(2–3):6771.Google Scholar
Kurian, MA, Gissen, P, Smith, M, Heales, S, Jr, Clayton, PT. 2011. The monoamine neurotransmitter disorders: an expanding range of neurological syndromes. Lancet Neurology 10(8):721733.Google Scholar
Kusmierska, K, Jansen, EE, Jakobs, C, Szymanska, K, Malunowicz, E, Meilei, D, et al. 2009. Sepiapterin reductase deficiency in a 2-year-old girl with incomplete response to treatment during short-term follow-up. Journal of Inherited Metabolic Disease 32(Suppl. 1):S5–S10.Google Scholar
Lee, JY, Yang, HJ, Kim, JM, Jeon, BS. 2013. Novel GCH-1 mutations and unusual long-lasting dyskinesias in Korean families with dopa-responsive dystonia. Parkinsonism & Related Disorders 19(12):11561159.Google Scholar
Lee, LK, Cheung, KM, Cheng, WW, Ko, CH, Lee, HH, Ching, CK, et al. 2014. A rare cause of severe diarrhoea diagnosed by urine metabolic screening: aromatic L-amino acid decarboxylase deficiency. Hong Kong Medical Journal = Xianggang yi xue za zhi/Hong Kong Academy of Medicine 20(2):161164.Google Scholar
Lee, NC, Cheng, LY, Liu, TT, Hsiao, KJ, Chiu, PC, Niu, DM. 2006. Long-term follow-up of Chinese patients who received delayed treatment for 6-pyruvoyl-tetrahydropterin synthase deficiency. Molecular Genetics and Metabolism 87(2):128134.Google Scholar
Lee, WW, Jeon, BS. 2014. Clinical spectrum of dopa-responsive dystonia and related disorders. Current Neurology and Neuroscience Reports 14(7):461.Google Scholar
Leeming, RJ, Harpey, JP, Brown, SM, Blair, JA. 1982. Tetrahydrofolate and hydroxocobolamin in the management of dihydropteridine reductase deficiency. Journal of Mental Deficiency Research 26(Pt 1):2125.Google Scholar
Leuzzi, V, Carducci, CA, Carducci, CL, Pozzessere, S, Burlina, A, Cerone, R, et al. 2010. Phenotypic variability, neurological outcome and genetics background of 6-pyruvoyl-tetrahydropterin synthase deficiency. Clinical Genetics 77(3):249257.Google Scholar
Leuzzi, V, Carducci, C, Tolve, M, Giannini, MT, Angeloni, A, Carducci, C. 2013. Very early pattern of movement disorders in sepiapterin reductase deficiency. Neurology 81(24):21412142.Google Scholar
Leuzzi, V, Mastrangelo, M, Polizzi, A, Artiola, C, van Kuilenburg, AB, Carducci, C, et al. 2014. Report of two never treated adult sisters with aromatic L-amino acid decarboxylase deficiency: a portrait of the natural history of the disease or an expanding phenotype? JIMD Reports 15:3945.Google Scholar
Lin, Y, Wang, DN, Chen, WJ, Lin, X, Lin, MT, Wang, N. 2014. Growth hormone deficiency in a dopa-responsive dystonia patient with a novel mutation of guanosine triphosphate cyclohydrolase 1 gene. Journal of Child Neurology 30:796799.Google Scholar
Ling, H, Polke, JM, Sweeney, MG, Haworth, A, Sandford, CA, Heales, SJ, et al. 2011. An intragenic duplication in guanosine triphosphate cyclohydrolase-1 gene in a dopa-responsive dystonia family. Movement Disorders: Official Journal of the Movement Disorder Society 26(5):905909.Google Scholar
Lipson, AH, Earl, JW, Wilcken, B, Yu, JS, O’Halloran, M, Cotton, RG. 1991. Successful treatment of dihydropteridine reductase deficiency, with an interesting effect of 5-hydroxytryptophan deficiency on sleep patterns. Journal of Inherited Metabolic Disease 14(1):4952.Google Scholar
Liu, KM, Liu, TT, Lee, NC, Cheng, LY, Hsiao, KJ, Niu, DM. 2008. Long-term follow-up of Taiwanese Chinese patients treated early for 6-pyruvoyl-tetrahydropterin synthase deficiency. Archives of Neurology 65(3):387392.Google Scholar
Liu, X, Zhang, SS, Fang, DF, Ma, MY, Guo, XY, Yang, Y, et al. 2010. GCH1 mutation and clinical study of Chinese patients with dopa-responsive dystonia. Movement Disorders: Official Journal of the Movement Disorder Society 25(4):447451.Google Scholar
Longo, N. 2009. Disorders of biopterin metabolism. Journal of Inherited Metabolic Disease 32(3):333342.Google Scholar
Lopez-Laso, E, Ochoa-Sepulveda, JJ, Ochoa-Amor, JJ, Bescansa-Heredero, E, Camino-Leon, R, Gascon-Jimenez, FJ, et al. 2009. Segawa syndrome due to mutation Q89X in the GCH1 gene: a possible founder effect in Cordoba (southern Spain). Journal of Neurology 256(11):18161824.Google Scholar
Lopez-Laso, E, Beyer, K, Opladen, T, Artuch, R, Saunders-Pullman, R. 2012. Dyskinesias as a limiting factor in the treatment of Segawa disease. Pediatric Neurology 46(6):404406.Google Scholar
Lu, DY, Ye, J, Han, LS, Qiu, WJ, Zhang, HW, Zhou, JD, et al. 2014. QDPR gene mutation and clinical follow-up in Chinese patients with dihydropteridine reductase deficiency. World Journal of Pediatrics 10(3):219226.Google Scholar
Maller, A, Hyland, K, Milstien, S, Biaggioni, I, Butler, IJ. 1997. Aromatic L-amino acid decarboxylase deficiency: clinical features, diagnosis, and treatment of a second family. Journal of Child Neurology 12(6):349354.Google Scholar
Manegold, C, Hoffmann, GF, Degen, I, Ikonomidou, H, Knust, A, Laass, MW, et al. 2009. Aromatic L-amino acid decarboxylase deficiency: clinical features, drug therapy and follow-up. Journal of Inherited Metabolic Disease 32(3):371380.Google Scholar
Mastrangelo, M, Caputi, C, Galosi, S, Giannini, MT, Leuzzi, V. 2013. Transdermal rotigotine in the treatment of aromatic L-amino acid decarboxylase deficiency. Movement Disorders: Official Journal of the Movement Disorder Society 28(4):556557.Google Scholar
Moller, LB, Romstad, A, Paulsen, M, Hougaard, P, Ormazabal, A, Pineda, M, et al. 2005. Pre- and postnatal diagnosis of tyrosine hydroxylase deficiency. Prenatal Diagnosis 25(8):671675.Google Scholar
Naiya, T, Misra, AK, Biswas, A, Das, SK, Ray, K, Ray, J. 2012. Occurrence of GCH1 gene mutations in a group of Indian dystonia patients. Journal of Neural Transmission 119(11):13431350.Google Scholar
Nardocci, N, Zorzi, G, Blau, N, Fernandez Alvarez, E, Sesta, M, Angelini, L, et al. 2003. Neonatal dopa-responsive extrapyramidal syndrome in twins with recessive GTPCH deficiency. Neurology 60(2):335337.Google Scholar
Neville, BG, Parascandalo, R, Farrugia, R, Felice, A. 2005. Sepiapterin reductase deficiency: a congenital dopa-responsive motor and cognitive disorder. Brain: A Journal of Neurology 128(Pt 10):22912296.Google Scholar
Ng, J, Heales, SJ, Kurian, MA. 2014. Clinical features and pharmacotherapy of childhood monoamine neurotransmitter disorders. Paediatric Drugs 16(4):275291.Google Scholar
Niu, DM. 2011. Disorders of BH4 metabolism and the treatment of patients with 6-pyruvoyl-tetrahydropterin synthase deficiency in Taiwan. Brain & Development 33(10):847855.Google Scholar
Nygaard, TG, Marsden, CD, Duvoisin, RC. 1988. Dopa-responsive dystonia. Advances in Neurology 50:377384.Google Scholar
Ogawa, A, Kanazawa, M, Takayanagi, M, Kitani, Y, Shintaku, H, Kohno, Y. 2008. A case of 6-pyruvoyl-tetrahydropterin synthase deficiency demonstrates a more significant correlation of L-dopa dosage with serum prolactin levels than CSF homovanillic acid levels. Brain & Development 30(1):8285.Google Scholar
Opladen, T, Hoffmann, G, Horster, F, Hinz, AB, Neidhardt, K, Klein, C, et al. 2011. Clinical and biochemical characterization of patients with early infantile onset of autosomal recessive GTP cyclohydrolase I deficiency without hyperphenylalaninemia. Movement Disorders: Official Journal of the Movement Disorder Society 26(1):157161.Google Scholar
Opladen, T, Hoffmann, GF, Blau, N. 2012. An international survey of patients with tetrahydrobiopterin deficiencies presenting with hyperphenylalaninaemia. Journal of Inherited Metabolic Disease 35(6):963973.Google Scholar
Pons, R. 2009. The phenotypic spectrum of paediatric neurotransmitter diseases and infantile parkinsonism. Journal of Inherited Metabolic Disease 32(3):321332.Google Scholar
Pons, R, Ford, B, Chiriboga, CA, Clayton, PT, Hinton, V, Hyland, K, et al. 2004. Aromatic L-amino acid decarboxylase deficiency: clinical features, treatment, and prognosis. Neurology 62(7):10581065.Google Scholar
Pons, R, Syrengelas, D, Youroukos, S, Orfanou, I, Dinopoulos, A, Cormand, B, et al. 2013. Levodopa-induced dyskinesias in tyrosine hydroxylase deficiency. Movement Disorders: Official Journal of the Movement Disorder Society 28(8):10581063.Google Scholar
Ponzone, A, Blau, N, Guardamagna, O, Ferrero, GB, Dianzani, I, Endres, W. 1990. Progression of 6-pyruvoyl-tetrahydropterin synthase deficiency from a peripheral into a central phenotype. Journal of Inherited Metabolic Disease 13(3):298300.Google Scholar
Ponzone, A, Spada, M, Ferraris, S, Dianzani, I, de Sanctis, L. 2004. Dihydropteridine reductase deficiency in man: from biology to treatment. Medicinal Research Reviews 24(2):127150.Google Scholar
Porta, F, Mussa, A, Concolino, D, Spada, M, Ponzone, A. 2009. Dopamine agonists in 6-pyruvoyl tetrahydropterin synthase deficiency. Neurology 73(8):633637.Google Scholar
Porta, F, Spada, M, Garelli, D, Mussa, A, Ponzone, A. 2011. Tetrahydrobiopterin and phenylketonuria. The Journal of Pediatrics 158(5):864.Google Scholar
Porta, F, Mussa, A, Concolino, D, Spada, M, Ponzone, A. 2012. Dopamine agonists in dihydropteridine reductase deficiency. Molecular Genetics and Metabolism 105(4):582584.Google Scholar
Rajput, AH, Fenton, M, Birdi, S, Macaulay, R. 1997. Is levodopa toxic to human substantia nigra? Movement Disorders: Official Journal of the Movement Disorder Society 12(5):634638.Google Scholar
Regula, JU, Thoden, U, Meinck, HM. 2007. Adult-onset dystonia: atypical manifestation of Segawa disease. Movement Disorders: Official Journal of the Movement Disorder Society 22(9):13351337.Google Scholar
Ribases, M, Serrano, M, Fernandez-Alvarez, E, Pahisa, S, Ormazabal, A, Garcia-Cazorla, A, et al. 2007. A homozygous tyrosine hydroxylase gene promoter mutation in a patient with dopa-responsive encephalopathy: clinical, biochemical and genetic analysis. Molecular Genetics and Metabolism 92(3):274277.Google Scholar
Robinson, R, McCarthy, GT, Bandmann, O, Dobbie, M, Surtees, R, Wood, NW. 1999. GTP cyclohydrolase deficiency: intrafamilial variation in clinical phenotype, including levodopa responsiveness. Journal of Neurology, Neurosurgery, and Psychiatry 66(1):8689.Google Scholar
Roze, E, Vidailhet, M, Blau, N, Moller, LB, Doummar, D, de Villemeur, TB, et al. 2006. Long-term follow-up and adult outcome of 6-pyruvoyl-tetrahydropterin synthase deficiency. Movement Disorders: Official Journal of the Movement Disorder Society 21(2):263266.Google Scholar
Sanford, M, Keating, GM. 2009. Sapropterin: a review of its use in the treatment of primary hyperphenylalaninaemia. Drugs 69(4):461476.Google Scholar
Sato, H, Uematsu, M, Endo, W, Nakayama, T, Kobayashi, T, Hino-Fukuyo, N, et al. 2014. Early replacement therapy in a first Japanese case with autosomal recessive guanosine triphosphate cyclohydrolase I deficiency with a novel point mutation. Brain & Development 36(3):268271.Google Scholar
Saunders-Pullman, R, Blau, N, Hyland, K, Zschocke, J, Nygaard, T, Raymond, D, et al. 2004. Phenylalanine loading as a diagnostic test for DRD: interpreting the utility of the test. Molecular Genetics and Metabolism 83(3):207212.Google Scholar
Schiller, A, Wevers, RA, Steenbergen, GC, Blau, N, Jung, HH. 2004. Long-term course of L-dopa-responsive dystonia caused by tyrosine hydroxylase deficiency. Neurology 63(8):15241526.Google Scholar
Schmidt, H, Ullrich, K, Korinthenberg, R, Peters, PE. 1988. Basal ganglion calcification in hyperphenylalaninemia due to deficiency of dihydropteridine reductase. Pediatric Radiology 19(1):5456.Google Scholar
Schuler, A, Blau, N, Ponzone, A. 1995. Monoamine oxidase inhibitors in tetrahydrobiopterin deficiency. European Journal of Pediatrics 154(12):997.Google Scholar
Schuler, A, Kalmanchey, R, Barsi, P, Somogyi, CS, Toros, I, Varadi, I, et al. 2000. Deprenyl in the treatment of patients with tetrahydrobiopterin deficiencies. Journal of Inherited Metabolic Disease 23(4):329332.Google Scholar
Sedel, F, Ribeiro, MJ, Remy, P, Blau, N, Saudubray, JM, Agid, Y. 2006. Dihydropteridine reductase deficiency: levodopa’s long-term effectiveness without dyskinesia. Neurology 67(12): 22432245.Google Scholar
Segawa, M. 2011. Hereditary progressive dystonia with marked diurnal fluctuation. Brain & development 33(3):195201.Google Scholar
Segawa, M, Hosaka, A, Miyagawa, F, Nomura, Y, Imai, H. 1976. Hereditary progressive dystonia with marked diurnal fluctuation. Advances in Neurology 14:215233.Google Scholar
Segawa, M, Nomura, Y, Nishiyama, N. 2003. Autosomal dominant guanosine triphosphate cyclohydrolase I deficiency (Segawa disease). Annals of Neurology 54(Suppl. 6):S32S45.Google Scholar
Sharma, N, Armata, IA, Multhaupt-Buell, TJ, Ozelius, LJ, Xin, W, Sims, KB. 2011. Mutation in 5′ upstream region of GCHI gene causes familial dopa-responsive dystonia. Movement Disorders: Official Journal of the Movement Disorder Society 26(11):21402141.CrossRefGoogle ScholarPubMed
Shintaku, H. 2002. Disorders of tetrahydrobiopterin metabolism and their treatment. Current Drug Metabolism 3(2):123131.Google Scholar
Shintaku, H, Ohwada, M. 2013. Long-term follow-up of tetrahydrobiopterin therapy in patients with tetrahydrobiopterin deficiency in Japan. Brain & Development 35(5):406410.Google Scholar
Spada, M, Parrella, T, Ponzone, R, Ferraris, S, Guardamagna, O, Ponzone, A, et al. 1991. Monitoring treatment in tetrahydrobiopterin deficiency. Pteridines. doi: https://doi.org/10.1515/pteridines.1991.3.12.13.Google Scholar
Stamelou, M, Mencacci, NE, Cordivari, C, Batla, A, Wood, NW, Houlden, H, et al. 2012. Myoclonus-dystonia syndrome due to tyrosine hydroxylase deficiency. Neurology 79(5):435441.Google Scholar
Steinberger, D, Topka, H, Fischer, D, Muller, U. 1999. GCH1 mutation in a patient with adult-onset oromandibular dystonia. Neurology 52(4):877879.Google Scholar
Steinberger, D, Korinthenberg, R, Topka, H, Berghauser, M, Wedde, R, Muller, U, German Dystonia Study Group. 2000. Dopa-responsive dystonia: mutation analysis of GCH1 and analysis of therapeutic doses of L-dopa. Neurology 55(11):17351737.Google Scholar
Steinberger, D, Trubenbach, J, Zirn, B, Leube, B, Wildhardt, G, Muller, U. 2007. Utility of MLPA in deletion analysis of GCH1 in dopa-responsive dystonia. Neurogenetics 8(1):5155.Google Scholar
Sun, ZF, Zhang, YH, Guo, JF, Sun, QY, Mei, JP, Zhou, HL, et al. 2014. Genetic diagnosis of two dopa-responsive dystonia families by exome sequencing. PLoS One 9(9):e106388.Google Scholar
Surtees, R, Hyland, K. 1990. L-3,4-dihydroxyphenylalanine (levodopa) lowers central nervous system S-adenosylmethionine concentrations in humans. Journal of Neurology, Neurosurgery, and Psychiatry 53(7):569572.Google Scholar
Swoboda, KJ, Hyland, K, Goldstein, DS, Kuban, KC, Arnold, LA, Holmes, CS, et al. 1999. Clinical and therapeutic observations in aromatic L-amino acid decarboxylase deficiency. Neurology 53(6):12051211.Google Scholar
Tachi, N, Takahashi, S, Jo, M, Shinoda, M. 2011. A new mutation of GCH1 in triplets family with dopa-responsive dystonia. European Journal of Neurology: The Official Journal of the European Federation of Neurological Societies 18(9):11911193.Google Scholar
Tassin, J, Durr, A, Bonnet, AM, Gil, R, Vidailhet, M, Lucking, CB, et al. 2000. Levodopa-responsive dystonia: GTP cyclohydrolase I or parkin mutations? Brain: A Journal of Neurology 123 (Pt 6):11121121.Google Scholar
Tay, SK, Poh, KS, Hyland, K, Pang, YW, Ong, HT, Low, PS, et al. 2007. Unusually mild phenotype of AADC deficiency in 2 siblings. Molecular Genetics and Metabolism 91(4):374378.Google Scholar
Theuns, J, Crosiers, D, Debaene, L, Nuytemans, K, Meeus, B, Sleegers, K, et al. 2012. Guanosine triphosphate cyclohydrolase 1 promoter deletion causes dopa-responsive dystonia. Movement Disorders: Official Journal of the Movement Disorder Society 27(11):14511456.Google Scholar
Thibert, R, Hyland, K, Chiles, J, Steinberg, S, Eichler, F. 2012. Levodopa response reveals sepiapterin reductase deficiency in a female heterozygote with adrenoleukodystrophy. JIMD Reports 3:7982.Google Scholar
Thony, B, Auerbach, G, Blau, N. 2000. Tetrahydrobiopterin biosynthesis, regeneration and functions. The Biochemical Journal 347(Pt 1):116.Google Scholar
Trender-Gerhard, I, Sweeney, MG, Schwingenschuh, P, Mir, P, Edwards, MJ, Gerhard, A, et al. 2009. Autosomal-dominant GTPCH1-deficient DRD: clinical characteristics and long-term outcome of 34 patients. Journal of Neurology, Neurosurgery, and Psychiatry 80(8):839845.Google Scholar
Uncini, A, De Angelis, MV, Di Fulvio, P, Ragno, M, Annesi, G, Filla, A, et al. 2004. Wide expressivity variation and high but no gender-related penetrance in two dopa-responsive dystonia families with a novel GCH-I mutation. Movement Disorders: Official Journal of the Movement Disorder Society 19(10):11391145.CrossRefGoogle ScholarPubMed
Verbeek, MM, Willemsen, MA, Wevers, RA, Lagerwerf, AJ, Abeling, NG, Blau, N, et al. 2008. Two Greek siblings with sepiapterin reductase deficiency. Molecular Genetics and Metabolism 94(4):403409.Google Scholar
Watanabe, T, Matsubara, S, Baba, Y, Tanaka, H, Suzuki, T, Suzuki, M. 2009. Successful management of pregnancy in a patient with Segawa disease: case report and literature review. The Journal of Obstetrics and Gynaecology Research 35(3):562564.Google Scholar
Willemsen, MA, Verbeek, MM, Kamsteeg, EJ, de Rijk-van Andel, JF, Aeby, A, Blau, N, et al. 2010. Tyrosine hydroxylase deficiency: a treatable disorder of brain catecholamine biosynthesis. Brain: A Journal of Neurology 133(Pt 6):18101822.Google Scholar
Wu, ZY, Lin, Y, Chen, WJ, Zhao, GX, Xie, H, Murong, SX, et al. 2008. Molecular analyses of GCH-1, TH and parkin genes in Chinese dopa-responsive dystonia families. Clinical Genetics 74(6):513521.Google Scholar
Wu-Chou, YH, Yeh, TH, Wang, CY, Lin, JJ, Huang, CC, Chang, HC, et al. 2010. High frequency of multiexonic deletion of the GCH1 gene in a Taiwanese cohort of dopa-response dystonia. American Journal of Medical Genetics Part B, Neuropsychiatric Genetics: The Official Publication of the International Society of Psychiatric Genetics 153B(4):903908.Google Scholar
Ye, J, Yang, Y, Yu, W, Zou, H, Jiang, J, Yang, R, et al. 2013. Demographics, diagnosis and treatment of 256 patients with tetrahydrobiopterin deficiency in mainland China: results of a retrospective, multicentre study. Journal of Inherited Metabolic Disease 36(5):893901.Google Scholar
Yeung, WL, Wong, VC, Chan, KY, Hui, J, Fung, CW, Yau, E, et al. 2011. Expanding phenotype and clinical analysis of tyrosine hydroxylase deficiency. Journal of Child Neurology 26(2):179187.Google Scholar
Yosunkaya, E, Karaca, E, Basaran, S, Seven, M, Yuksel, A. 2010. Marked improvement in Segawa syndrome after L-dopa and selegiline treatment. Pediatric Neurology 42(5):348350.Google Scholar
Zirn, B, Steinberger, D, Troidl, C, Brockmann, K, von der Hagen, M, Feiner, C, et al. 2008. Frequency of GCH1 deletions in dopa-responsive dystonia. Journal of Neurology, Neurosurgery, and Psychiatry 79(2):183186.Google Scholar

References

Baschieri, F, Batla, A, Erro, R, Ganos, C, Cordivari, C, Bhatia, KP. 2014. Paroxysmal exercise-induced dystonia due to GLUT1 mutation can be responsive to levodopa: a case report. Journal of Neurology 261(3):615616.Google Scholar
Brockmann, K, Dumitrescu, AM, Best, TT, Hanefeld, F, Refetoff, S. 2005. X-linked paroxysmal dyskinesia and severe global retardation caused by defective MCT8 gene. Journal of Neurology 252(6):663666.Google Scholar
Bruno, MK, Hallett, M, Gwinn-Hardy, K, Sorensen, B, Considine, E, Tucker, S, et al. 2004. Clinical evaluation of idiopathic paroxysmal kinesigenic dyskinesia: new diagnostic criteria. Neurology 63(12):22802287.Google Scholar
Bruno, MK, Lee, HY, Auburger, GW, Friedman, A, Nielsen, JE, Lang, AE, et al. 2007. Genotype–phenotype correlation of paroxysmal nonkinesigenic dyskinesia. Neurology 68(21):17821789.Google Scholar
Erro, R, Sheerin, UM, Bhatia, KP. 2014a. Paroxysmal dyskinesias revisited: a review of 500 genetically proven cases and a new classification. Movement Disorders: Official Journal of the Movement Disorder Society 29(9):11081116.Google Scholar
Erro, R, Stamelou, M, Ganos, C, Skorvanek, M, Han, V, Batla, A, et al. 2014b. The clinical syndrome of paroxysmal exercise-induced dystonia: diagnostic outcomes and an algorithm. Movement Disorders: Clinical Practice 1(1):5761.Google Scholar
Guimaraes, J, Vale Santos, J. 2000. Paroxysmal dystonia induced by exercise and acetazolamide. European Journal of Neurology: The Official Journal of the European Federation of Neurological Societies 7(2):237240.Google Scholar
Lee, G, Huang, Y, Washington, JM, Briggs, NW, Zuo, Z. 2005. Carbamazepine enhances the activity of glutamate transporter type 3 via phosphatidylinositol 3-kinase. Epilepsy Research 66(1–3):145153.Google Scholar
Leen, WG, Mewasingh, L, Verbeek, MM, Kamsteeg, EJ, van de Warrenburg, BP, Willemsen, MA. 2013. Movement disorders in GLUT1 deficiency syndrome respond to the modified Atkins diet. Movement Disorders: Official Journal of the Movement Disorder Society 28(10):14391442.Google Scholar
Li, HF, Chen, WJ, Ni, W, Wang, KY, Liu, GL, Wang, N, et al. 2013. PRRT2 mutation correlated with phenotype of paroxysmal kinesigenic dyskinesia and drug response. Neurology 80(16):15341535.Google Scholar
Li, M, Niu, F, Zhu, X, Wu, X, Shen, N, Peng, X, et al. 2015. PRRT2 mutant leads to dysfunction of glutamate signaling. International Journal of Molecular Sciences 16(5):91349151.Google Scholar
Mathew, T, Aroor, S, Nadig, R, Sarma, GR. 2012. Lacosamide in paroxysmal kinesigenic dyskinesia. Movement Disorders: Official Journal of the Movement Disorder Society 27(6):801802.Google Scholar
Mencacci, NE, Erro, R, Wiethoff, S, Hersheson, J, Ryten, M, Balint, B, et al. 2015. ADCY5 mutations are another cause of benign hereditary chorea. Neurology 85(1):8088.Google Scholar
Mink, JW. 2015. Treatment of paroxysmal dyskinesias in children. Current Treatment Options in Neurology 17(6):350.Google Scholar
Neville, BG, Ninan, M. 2007. The treatment and management of alternating hemiplegia of childhood. Developmental Medicine and Child Neurology 49(10):777780.Google Scholar
Ramm-Pettersen, A, Nakken, KO, Skogseid, IM, Randby, H, Skei, EB, Bindoff, LA, et al. 2013. Good outcome in patients with early dietary treatment of GLUT-1 deficiency syndrome: results from a retrospective Norwegian study. Developmental Medicine and Child Neurology 55(5):440447.Google Scholar
Shen, Y, Ge, WP, Li, Y, Hirano, A, Lee, HY, Rohlmann, A, et al. 2015. Protein mutated in paroxysmal dyskinesia interacts with the active zone protein RIM and suppresses synaptic vesicle exocytosis. Proceedings of the National Academy of Sciences of the United States of America 112(10):29352941.Google Scholar
Suls, A, Dedeken, P, Goffin, K, Van Esch, H, Dupont, P, Cassiman, D, et al. 2008. Paroxysmal exercise-induced dyskinesia and epilepsy is due to mutations in SLC2A1, encoding the glucose transporter GLUT1. Brain: A Journal of Neurology 131(Pt 7):18311844.Google Scholar
Verge, CF, Konrad, D, Cohen, M, Di Cosmo, C, Dumitrescu, AM, Marcinkowski, T, et al. 2012. Diiodothyropropionic acid (DITPA) in the treatment of MCT8 deficiency. The Journal of Clinical Endocrinology and Metabolism 97(12):45154523.Google Scholar
Yang, Y, Su, Y, Guo, Y, Ding, Y, Xu, S, Jiang, Y, et al. 2012. Oxcarbazepine versus carbamazepine in the treatment of paroxysmal kinesigenic dyskinesia. The International Journal of Neuroscience 122(12):719722.Google Scholar
Yokoyama, CT, Myers, SJ, Fu, J, Mockus, SM, Scheuer, T, Catterall, WA. 2005. Mechanism of SNARE protein binding and regulation of Cav2 channels by phosphorylation of the synaptic protein interaction site. Molecular and Cellular Neurosciences 28(1):117.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×