Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-17T16:10:49.479Z Has data issue: false hasContentIssue false

4 - Desorption at low laser energy densities

Published online by Cambridge University Press:  04 December 2009

Costas P. Grigoropoulos
Affiliation:
University of California, Berkeley
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Transport in Laser Microfabrication
Fundamentals and Applications
, pp. 87 - 108
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bennett, T. D., Grigoropoulos, C. P., and Krajnovich, D. J., 1995, “Near-Threshold Laser Sputtering of Gold,” J. Appl. Phys., 77, 849–864.CrossRefGoogle Scholar
Bennett, T. D., Krajnovich, D. J., and Grigoropoulos, C. P., 1996, “Separating Thermal, Electronic, and Topography Effects in Pulsed Laser Melting and Sputtering of Gold,” Phys. Rev. Lett., 76, 1659–1562.CrossRefGoogle Scholar
Carey, V. P., 1999, Statistical Thermodynamics and Microscale Thermophysics, Cambridge, Cambridge University Press.CrossRefGoogle Scholar
Cotter, R. J., 1992, “Time-of-Flight Mass Spectrometry for the Structural Analysis of Biological Molecules,” Anal. Chem., 64, 1027A–1039A.CrossRefGoogle ScholarPubMed
Dreyfus, R. W., 1991, “Cu0, C+, and Cu2 from Excimer-Ablated Copper,” J. Appl. Phys., 69, 1721–1729.CrossRefGoogle Scholar
Dubreuil, B., and Gibert, T., 1994, “Soft Laser Sputtering of InP(100) Surface,” J. Appl. Phys., 76, 7545–7551.CrossRefGoogle Scholar
Gibert, T., Dubreil, B., Barthe, M. F., and Debrun, J. L., 1993, “Investigation of Laser Sputtering of Iron at Low Fluence Using Resonance Ionization Mass Spectrometry,” J. Appl. Phys., 74, 3506–3513.CrossRefGoogle Scholar
Götz, T., Bergt, M., Hoheisel, W., Träger, F., and Stuke, M., 1996a, “Non-thermal Laser-Induced Desorption of Metal Atoms with Bimodal Kinetic Energy Distribution,” Appl. Phys. A, 63, 315–320.CrossRefGoogle Scholar
Götz, T., Bergt, M., Hoheisel, W., Träger, F., and Stuke, M., 1996b, “Laser Ablation of Metals: The Transition from Non-thermal Processes to Thermal Evaporation,” Appl. Surf. Sci., 96–98, 280–286.CrossRefGoogle Scholar
Hoheisel, W., Vollmer, M., and Träger, F., 1993, “Desorption of Metal Atoms with Laser Light: Mechanistic Studies,” Phys. Rev. B, 48, 17463–17476.CrossRefGoogle ScholarPubMed
Kelly, R., and Dreyfus, R. W., 1988, “Reconsidering the Mechanisms of Laser Sputtering with Knudsen-Layer Formation Taken into Account,” Nucl. Instrum. Meth. Phys. Res. B, 32, 341–348.CrossRefGoogle Scholar
Kelly, R., and Rothenberg, J. E., 1985, “Laser Sputtering: Part III. The Mechanism of the Sputtering of Metals at Low Energy Densities,” Nucl. Instrum. Meth. Phys. Res. B, 7/8, 755–763.CrossRefGoogle Scholar
Kim, H.-S., and Helvajian, H., 1994, “Laser-Induced Ion Species Ejection from Thin Silver Films,” in Laser Ablation: Mechanisms and Applications – II. Second International Conference, ed. Miller, J. C. and Geohegan, D. B., New York, American Institute of Physics, pp. 38–43.Google Scholar
Krajnovich, D. J., 1995, “Laser Sputtering of Highly Oriented Pyrolytic Graphite at 248 nm,” J. Chem. Phys., 102, 726–743.CrossRefGoogle Scholar
Lee, I., Calcott, T. A., and Arakawa, E. T., 1993, “Desorption Studies of Metal Atoms Using Laser-Induced Surface-Plasmon Excitation,” Phys. Rev. B, 47, 6661–6666.CrossRefGoogle ScholarPubMed
Mamyrin, B. A., Karataev, V. I., Shmikk, D. V., and Zagulin, V. A., 1973, “The Mass Reflectron, a New Nonmagnetic Time-of-Flight Mass Spectrometer with High Resolution,” Sov. Phys. JETP, 37, 45–48.Google Scholar
Menzel, D., and Gomer, R., 1964, “Desorption from Metal Surfaces by Low-Energy Electrons,” J. Chem. Phys., 41, 3311–3328.CrossRefGoogle Scholar
Pospieszczyk, A., Harith, M. A., and Stritzker, B., 1983, “Pulsed Laser Annealing of GaAs and Si: Combined Reflectivity and Time-of-Flight Measurements,” J. Appl. Phys., 54, 3176–3182.CrossRefGoogle Scholar
Stritzker, B., Pospieszcyck, A., and Tagle, J. A., 1981, “Measurement of Lattice Temperature of Silicon during Pulsed Laser Annealing”, Phys. Rev. Lett., 47, 356–358.CrossRefGoogle Scholar
Wiley, W. C., and McLaren, I. H., 1955, “Time-of-Flight Mass Spectrometer with Improved Resolution,” Rev. Sci. Instrum., 26, 1150–1154.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×