Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-07-03T08:56:58.027Z Has data issue: false hasContentIssue false

1 - Three lectures on Cox rings

from PART ONE - LECTURE NOTES

Published online by Cambridge University Press:  05 May 2013

J. Hausen
Affiliation:
Universität Tübingen
Alexei N. Skorobogatov
Affiliation:
Imperial College London
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] A., A'Campo-Neuen, J., Hausen: Toric prevarieties and subtorus actions. Geom. Dedicata 87 (2001), no. 1-3, 35–64.Google Scholar
[2] D.F., Anderson: Graded Krull domains. Comm. Algebra 7 (1979), no. 1, 79–106.Google Scholar
[3] M., Artebani, J., Hausen, A., Laface: On Cox rings of K3 surfaces. Compos. Math. 146 (2010), no. 4, 964–998.Google Scholar
[4] I., Arzhantsev, U., Derenthal, J., Hausen, A., Laface: Cox rings. arXiv:1003.4229.
[5] I.V., Arzhantsev, J., Hausen: Geometric Invariant Theory via Cox rings. J. Pure Appl. Algebra 213 (2009), no. 1, 154–172.Google Scholar
[6] M., Audin: The topology of torus actions on symplectic manifolds. Prog. Math., 93. Birkhäuser Verlag, Basel, 1991.
[7] V.V., Batyrev: Quantum cohomology rings of toric manifolds. In: Journées de Géométrie Algébrique d'Orsay, Astérisque 218, 9–34 (1993).Google Scholar
[8] A., Borel: Linear algebraic groups. Second edition. Graduate Texts in Mathematics 126, Springer-Verlag, New York, 1991.
[9] F., Berchtold, J., Hausen: GIT-equivalence beyond the ample cone. Michigan Math. J. 54 (2006), no. 3, 483–515.Google Scholar
[10] F., Berchtold, J., Hausen: Cox rings and combinatorics. Trans. Amer. Math. Soc. 359 (2007), no. 3, 1205–1252.Google Scholar
[11] C., Birkar, P., Cascini, C., Hacon, J., McKernan: Existence of minimal models for varieties of log general type. J. Amer. Math. Soc. 23 (2010), no. 2, 405–468.Google Scholar
[12] J.L., Colliot-Thélène, J.-J., Sansuc: Torseurs sous des groupes de type multiplicatif; applications à l'étude des points rationnels de certaines variétés algébriques. C. R. Acad. Sci. Paris Sér. A-B 282 (1976), no. 18, Aii, A1113-A1116.Google Scholar
[13] D.A., Cox: The homogeneous coordinate ring of a toric variety. J. Alg. Geom. 4 (1995), no. 1, 17–50.Google Scholar
[14] D.A., Cox, J.B., Little, H.K., Schenck: Toric Varieties. Graduate Studies in Mathematics 124, American Mathematical Society (2011).
[15] V.I., Danilov: The geometry of toric varieties. Uspekhi Mat. Nauk 33 (1978), no. 2 (200), 85–134 (Russian); English transl: Russian Math. Surveys 33 (1978), no. 2, 97-154.Google Scholar
[16] U., Derenthal: Singular Del Pezzo surfaces whose universal torsors are hypersurfaces. arXiv:math/0604194, 2006.
[17] I., Dolgachev: Weighted projective varieties. Group actions and vector fields (Vancouver, B.C., 1981), 34–71, Lecture Notes in Math., 956, Springer, Berlin, 1982.
[18] W., Fulton: Introduction to Toric Varieties. Princeton Univ. Press, Princeton, 1993.
[19] J., Hausen: Cox rings and combinatorics II. Mosc. Math. J. 8 (2008), no. 4, 711–757.Google Scholar
[20] J., Hausen, E., Herppich: Factorially graded rings. This volume.
[21] J., Hausen, E., Herppich, H., Süß;: Multigraded factorial rings and Fano varieties with torus action. Documenta Math. 16 (2011) 71–109.Google Scholar
[22] J., Hausen, H., Süß: The Cox ring of an algebraic variety with torus action. Advances Math. 225 (2010), 977–1012.Google Scholar
[23] B., Hassett, Yu., Tschinkel: Universal torsors and Cox rings. In: Arithmetic of higher-dimensional algebraic varieties, Progr. Math., 226, Birkhäuser Boston, Boston, MA, 149–173 (2004).
[24] E., Herppich: Rational K*-surfaces. In preparation.
[25] Y., Hu, S., Keel: Mori dream spaces and GIT. Michigan Math. J. 48 (2000) 331–348.Google Scholar
[26] A.R., Iano-Fletcher: Working with weighted complete intersections. Explicit birational geometry of 3-folds, 101-173, London Math. Soc. Lecture Note Ser., 281, Cambridge Univ. Press, Cambridge, 2000.
[27] M.-N., Ishida: Graded factorial rings of dimension 3 of a restricted type. J. Math. Kyoto Univ. 17 (1977), no. 3, 441–456.Google Scholar
[28] H., Kraft: Geometrische Methoden in der Invariantentheorie. Vieweg Verlag, Braunschweig, 1984.
[29] J., McKernan: Mori dream spaces. Jpn. J. Math. 5 (2010), no. 1, 127–151.Google Scholar
[30] S., Mori: Graded factorial domains. Japan J. Math. 3 (1977), no. 2, 223–238.Google Scholar
[31] D., Mumford, J., Fogarty, F., Kirwan: Geometric invariant theory. Third edition. Ergebnisse der Mathematik und ihrer Grenzgebiete 34. Springer-Verlag, Berlin, 1994.
[32] I.M., Musson: Differential operators on toric varieties. J. Pure Appl. Algebra 95 (1994), no. 3, 303–315.Google Scholar
[33] T., Oda: Convex bodies and algebraic geometry. An introduction to the theory of toric varieties. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), Springer-Verlag, Berlin, 1988.
[34] T., Oda, H.S., Park: Linear Gale transforms and Gelfand-Kapranov-Zelevinskij decompositions. Tohoku Math. J. (2) 43 (1991), no. 3, 375–399.Google Scholar
[35] A.L., Onishchik, E.B., Vinberg: Lie Groups and Algebraic Groups. Springer-Verlag, Berlin Heidelberg, 1990.
[36] J.C., Ottem: On the Cox ring of ℙ2 blown up in points on a line. Math. Scand. 109 (2011), 22–30.Google Scholar
[37] P., Orlik, P., Wagreich: Algebraic surfaces with fc*-action. Acta Math. 138 (1977), no. 1-2, 43–81.Google Scholar
[38] A.N., Skorobogatov: Torsors and rational points. Cambridge Tracts in Math. 144, Cambridge University Press, 2001.
[39] T.A., Springer: Linear algebraic groups. Reprint of the 1998 second edition. Modern Birkhäuser Classics. Birkhäuser Boston, Inc., Boston, MA, 2009.
[40] H., Sumihiro: Equivariant completion. J. Math. Kyoto Univ. 14 (1974), 1–28.Google Scholar
[41] H., Süß: Canonical divisors on T-varieties. Preprint, arXiv:0811.0626.
[42] J., Tevelev: Compactifications of subvarieties of tori. Amer. J. Math. 129 (2007), 1084–1104.Google Scholar
[43] B., Totaro: The cone conjecture for Calabi-Yau pairs in dimension 2. Duke Math. J. 154 (2010), no. 2, 241–263.Google Scholar
[44] J., Wlodarczyk: Embeddings in toric varieties and prevarieties. J. Alg. Geom. 2 (1993), no. 4, 705–726.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×