Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-22T03:04:33.577Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  25 November 2021

Gunnar Carlsson
Affiliation:
Stanford University, California
Mikael Vejdemo-Johansson
Affiliation:
City University of New York
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abergel, A. et al. (2011), “Planck early results. XXIV. Dust in the diffuse interstellar medium and the galactic halo”, Astronomy and Astrophysics, 536.Google Scholar
Adams, H. & Carlsson, G. (2015), “Evasion paths in mobile sensor networks”, International Journal of Robotics Research 34(1), 90104.Google Scholar
Adams, H., Emerson, T., Kirby, M., Neville, R., Peterson, C., Shipman, P. et al. (2017), “Persistence images: a stable vector representation of persistent homology”, Journal of Machine Learning Research 18(1), 218252.Google Scholar
Adler, R. (1981), The Geometry of Random Fields, Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons.Google Scholar
Adler, R. &Taylor, J. (2007), RandomFields and Geometry, Springer Monographs inMathematics, Springer.Google Scholar
Adler, R., Bobrowski, O., Borman, M., Subag, E. & Weinberger, S. (2010), “Persistent homology for random fields and complexes”, in Borrowing Strength: Theory Powering Applications. A Festschrift for Lawrence D. Brown, J. O. Berger, T. T. Cai, and I. M. Johnstone eds., IMS Collections Vol. 6, Institute of Mathematical Science.Google Scholar
Aggarwal, C. (2018), Neural Networks and Deep Learning, Springer.Google Scholar
Artin, M. & Mazur, B. (1986), Étale Homotopy, Springer.Google Scholar
Baez, J. (2010), “This week’s finds in mathematical physics”. http://math.ucr.edu/home/baez/week293.htmlGoogle Scholar
Bank, P. D. (1971), “Protein data bank”, Nature New Biology 233, 223.Google Scholar
Bardeen, J., Bond, J., Kaiser, N. & Szalay, A. (1986), “The statistics of peaks of gaussian random fields”, Astrophysical Journal 304, 1561.Google Scholar
Bauer, U., Kerber, M., Reininghaus, J. & Wagner, H. (2017), “Phat – persistent homology algorithms toolbox”, Journal of Symbolic Computation 78, 7690.Google Scholar
Bennett, C., Hill, R., Hinshaw, G., Nolta, M., Odegard, N., Page, L. et al., (2003), “First-year wilkinson microwave anisotropy probe (wmap)* observations: foreground emission”, Astrophysical Journal Supplement Series 148(1), 97117.Google Scholar
Berwald, J., Gidea, M. & Vejdemo-Johansson, M. (2014), “Automatic recognition and tagging of topologically different regimes in dynamical systems”, Discontinuity, Nonlinearity and Complexity 3(4), 413426.Google Scholar
Biscio, C. & Møller, J. (2016), ‘The accumulated persistence function, a new useful functional summary statistic for topological data analysis, with a view to brain artery trees and spatial point process applications’, arXiv preprint arXiv:1611.00630.Google Scholar
Bishop, R. & Crittenden, R. (1964), Geometry of Manifolds, Academic Press.Google Scholar
Blumberg, A., Gal, I., Mandell, M. & Pancia, M. (2014), “Robust statistics, hypothesis testing, and confidence intervals for persistent homology on metric measure spaces”, Foundations of Computational Mathematics 14(4), 745789.Google Scholar
Bonnet, O. (1848), “Memoire sur la theorie generale des surfaces”, Journal de l’École polytechnique 19, pp. 1146.Google Scholar
Borg, I. & Groenen, P. (1997), Modern Multidimensional Scaling: Theory and Applications, Springer.Google Scholar
Borsuk, K. (1948), “On the imbedding of systems of compacta in simplicial complexes”, Fundamenta Mathematicae 35(1), 217234.Google Scholar
Borsuk, K. (1975), Shape Theory, PWN-Polish Scientific Publishers.Google Scholar
Bottou, L., Cortes, C., Denker, J., Drucker, H., Guyon, I., Jackel, L. et al., (1994), “Comparison of classifier methods: a case study in handwritten digit recognition”, in Pattern Recognition, 1994, Vol. 2, Conference B: Computer Vision & Image Processing Proceedings of the 12th International IAPR Conference, IEEE, pp. 77–82.Google Scholar
Bronstein, A. M., Bronstein, M. M. & Kimmel, R. (2008), Numerical Geometry of Non-Rigid Shapes, Springer Science & Business Media.Google Scholar
Bubenik, P. (2015), “Statistical topological data analysis using persistence landscapes”, Journal of Machine Learning Research 16(1), 77102.Google Scholar
Buneman, P. (1974), “A note on the metric properties of trees”, Journal of Combinatorial Theory B 17, 4850.Google Scholar
Burago, D., Burago, Y. & Ivanov, S. (2001), A Course in Metric Geometry, Vol. 33 of Graduate Studies in Mathematics, American Mathematical Society.Google Scholar
Busaryev, O., Dey, T., Sun, J. & Wang, Y. (2010), “ShortLoop software for computing loops in a shortest homology basis”, Software, https://web.cse.ohio-state.edu/~dey.8/shortloop.html.Google Scholar
Cang, Z. & Wei, G. (2017), ‘Topology based deep convolutional and multi-task neural networks for biomolecular property predictions’, PLoS Computational Biology 13(7).Google Scholar
Cang, Z. & Wei, G. (2018), ‘Integration of element specific persistent homology and machine learning for protein-ligand binding affinity prediction’, International Journal for Numerical Methods in Biomedical Engineering 34(2), e2914.Google Scholar
Cang, Z. & Wei, G. (2020), ‘Persistent cohomology for data with multicomponent heterogeneous information’, SIAM Journal Mathematics of Data Science 2(2), 396418.Google Scholar
Cang, Z., Mu, L. & Wei, G. (2018), ‘Representability of algebraic topology for biomolecules in machine learning based scoring and virtual screening’, PLoS Computational Biology 14(1).Google Scholar
Carlsson, G. & de Silva, V. (2010), “Zigzag persistence”, Foundations of Computational Mathematics 10(4), 367405.Google Scholar
Carlsson, G. & Filippenko, B. (2020), “The space of sections of a smooth function”, arXiv preprint: arXiv:2006.12023.Google Scholar
Carlsson, G. & Gabrielsson, R. (2020), “Topological approaches to deep learning”. In Topological Data Analysis, Proceedings of Abel Symposium 2018, Springer, pp. 119–146.Google Scholar
Carlsson, G. & Kališnik Verovšek, S. (2016), “Symmetric and r-symmetric tropical polynomials and rational functions”, Journal of Pure and Applied Algebra 220, 36103627.Google Scholar
Carlsson, G. & Zomorodian, A. (2009), “The theory of multidimensional persistence”, Discrete and Computational Geometry 42(1), 7193.Google Scholar
Carlsson, G., Zomorodian, A., Collins, A. and Guibas, L. (2005a), “Persistence barcodes for shapes”, in Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, ACM, pp. 124–135.Google Scholar
Carlsson, G., Zomorodian, A., Collins, A. &Guibas, L. (2005b), “Persistence barcodes for shapes”, International Journal of Shape Modeling 11(2), 149187.Google Scholar
Carlsson, G., Ishkhanov, T., de Silva, V. & Zomorodian, A. (2008), “On the local behavior of spaces of natural images”, International Journal of Computer Vision 76(1), 112.Google Scholar
Carlsson, G., de Silva, V. & Morozov, D. (2009), “Zigzag persistent homology and real-valued functions”, in Proceedings of the 25th Annual Symposium on Computational Geometry ACM.Google Scholar
Carrière, M. & Oudot, S. (2018), ‘Structure and stability of the one-dimensional mapper’, Foundations of Computational Mathematics 18(6), 13331396.Google Scholar
Čech, E. (1932), “Höherdimensionale Homotopiegruppen”, Verhandlungen des Internationalen Mathematikerkongress 2, 203.Google Scholar
Chan, J., Carlsson, G. & Rabadan, R. (2013), “The topology of viral evolution”, Proceedings of the National Academy of Sciences 110(46), 1856618571.Google Scholar
Chatterjee, S. (2008), Crystallography and the World of Symmetry, Springer.Google Scholar
Chazal, F., Cohen-Steiner, D., Guibas, L., Memoli, F. & Oudot, S. (2009), “Gromov–Hausdorff stable signatures for shapes using persistence”, in Eurographics Symposium on Geometry Processing 2009, Vol. 28.Google Scholar
Chazal, F., Cohen-Steiner, D. & Merigot, Q. (2011), “Geometric inference for probability measures”, Foundations of Computational Mathematics 11(6), 733751.Google Scholar
Chazal, F., de Silva, V., Glisse, M. & Oudot, S. (2016), The Structure and Stability of Persistence Modules, Springer.Google Scholar
Chung, Y.-M. & Lawson, A. (2019), ‘Persistence curves: a canonical framework for summarizing persistence diagrams’, arXiv preprint arXiv:1904.07768.Google Scholar
Chung, Y.-M., Hu, C.-S., Lawson, A. & Smyth, C. (2019), “TopoResNet: a hybrid deep learning architecture and its application to skin lesion classification”, arXiv preprint arXiv:1905.08607.Google Scholar
CMU Graphics Lab (2012), “CMU graphics lab motion capture database”, http://mocap.cs. cmu.edu/, accessed November 2012.Google Scholar
Cohen-Steiner, D., Edelsbrunner, H. & Harer, J. (2007), “Stability of persistence diagrams”, Discrete and Computational Geometry 37(1), 103120.Google Scholar
Cohen-Steiner, D., Edelsbrunner, H., Harer, J. & Mileyko, Y. (2010), “Lipschitz functions have l p-stable persistence”, Foundations of Computational Mathematics 10(2), 127139.Google Scholar
Collins, A., Zomorodian, A., Carlsson, G. & Guibas, L. (2004), “A barcode shape descriptor for curve point cloud data”, Computers & Graphics 28(6), 881894.Google Scholar
Curry, J. (2013), “Sheaves, cosheaves and applications”, arXiv E-Print 1303.3255.Google Scholar
Dalbec, J. (1999), “Multisymmetric functions”, Beiträge Algebra Geometrie. 40(1), 2751.Google Scholar
de Silva, V. & Carlsson, G. (2004), “Topological estimation using witness complexes”, in M. Alexa & S. Rusinkiewicz, eds. Proceedings of the Eurographics Symposium on Point-Based Graphics.Google Scholar
de Silva, V. & Ghrist, R. (2006), “Coordinate-free coverage in sensor networks with controlled boundaries via homology”, International Journal of Robotics Research 25(12), 12051222.Google Scholar
de Silva, V., Morozov, D. & Vejdemo-Johansson, M. (2011), “Persistent cohomology and circular coordinates”, Discrete and Computational Geometry 45(4), 737759.Google Scholar
de Silva, V., Skraba, P. & Vejdemo-Johansson, M. (2012), “Topological analysis of recurrent systems”, in Proceedings of the Workshop on Algebraic Topology and Machine Learning, NIPSGoogle Scholar
de Silva, V., Munch, E. & Patel, A. (2016), “Categorified reeb graphs”, Discrete and Computational Geometry 854–906.Google Scholar
Derksen, H. &Weyman, J. (2005), ‘Quiver representations’, Notices of the American Mathematical Society 52(2), 200206.Google Scholar
Dey, T. K., Sun, J. & Wang, Y. (2011), “Approximating cycles in a shortest basis of the first homology group from point data”, Inverse Problems 27(12), 124004.Google Scholar
Diaconis, P. & Friedman, J. (1980), “M and n plots”, Technical report, Department of Statistics, Stanford University.Google Scholar
Donaldson, S. (1984), “Gauge theory and topology”, in Proceedings of the International Congress of Mathematicians pp. 641–645.Google Scholar
Donoho, D. (1999), “Wedgelets: nearly minimax estimation of edges”, Annals of Statistics 27, 859897.Google Scholar
Doolittle, W. (1999), “Phylogenetic classification and the universal tree”, Science 284(5423), 21242129.Google Scholar
Drummond, A., Nicholls, F., Rodrigo, A. &Solomon, W. (2002), “Estimating mutation parameters, population history, and genealogy simultaneously from temporally spaced sequence data”, Genetics 161(3), 13071320.Google Scholar
Dummit, D. & Foote, R. (2004), Abstract Algebra, John Wiley and Sons.Google Scholar
Duponchel, L. (2018 (. “Exploring hyperspectral imaging data sets with topological data analysis”, Analytica Chimica Acta 1000, 123131.Google Scholar
Duvroye, L. (1987), A Course in Density Estimation, Birkhäuser.Google Scholar
Duy, T., Hiraoka, Y. & Shirai, T. (2016), “Limit theorems for persistence diagrams”, arXiv preprint arXiv:1612.08371.Google Scholar
Dydak, J. & Segal, J. (1978), Shape Theory: An Introduction, Springer.Google Scholar
Easley, D. & Kleinberg, J. (2011), Networks, Crowds, and Markets, Cambridge University Press.Google Scholar
Edelsbrunner, H., Kirkpatrick, D. & Seidel, R. (1983), “On the shape of a set of points in the plane”, IEEE Transactions on Information Theory 29(4), 551559.Google Scholar
Eilenberg, S. (1944), “Singular homology theory”, Annals of Mathematics 45(2), 407447.Google Scholar
Eisenstein, J. (2018), Introduction to Natural Language Processing, MIT Press.Google Scholar
Erickson, J. & Whittlesey, K. (2005), “Greedy optimal homotopy and homology generators”, in Proceedings of the 16th Annual ACM–SIAM Symposium on Discrete Algorithms, pp. 1038–1046.Google Scholar
Euler, L. (1741), “Solutio problematis ad geometriam situs pertinentis”, 8, 128–140.Google Scholar
Euler, L. (1752a), “Elementa doctrinae solidorum”, Novi Comm. Acad. Sci. Imp. Petropol. (4), 109–140. (Opera Omnia Series 1, vol. 26, pp. 71–93.)Google Scholar
Euler, L. (1752b), “Demonstratio nonnullarum insignium proprietatum quibas solida hedris planis inclusa sunt praedita”, Novi Comm. Acad. Sci. Imp. Petropol. (4) 140–160. (Opera Omnia Series 1, vol. 26, pp. 94–108.)Google Scholar
Everitt, B., Landau, S., Leese, M. & Stahl, D. (2011), Cluster Analysis, John Wiley and Sons.Google Scholar
Faúndez-Abans, M., Ormenoño, M. & de Oliveira-Abans, M. (1996), “Classification of planetary nebulae by cluster analysis and artificial neural networks”, Astronomy and Astrophysics Supplement 116, 395402.Google Scholar
Federer, H. (1969), Geometric Measure Theory, Springer.Google Scholar
Feichtinger, H. & Strohmer, T. (1998), Gabor Analysis and Algorithms: Theory and Applications, Birkhäuser.Google Scholar
Felsenstein, J. (2004), Inferring Phylogenies, Sinauer Associates.Google Scholar
Fréchet, M. (1944), “L’intégrale abstraite d’une fonction abstraite d’une variable abstraite et son application á la moyenne d’un élément aléatoire de natur quelconque”, Reviews of Science 82, 483512.Google Scholar
Fréchet, M. (1948), “Les éléments aléatoires de nature quelconque dans un espace distancié”, Annals Institut Henri Poincaré 82, 215310.Google Scholar
Freitag, E. & Kiehl, R. (1988), Étale Cohomology and the Weil Conjecture, Springer.Google Scholar
Gabriel, P. (1972), “Unzerlegbare Darstellungen I”, Manuscr. Math. (6), 71–103.Google Scholar
Ghrist, R. & Krishnan, S. (2017), ‘Positive Alexander duality for pursuit and evasion’, SIAM Journal on Applied Algebra and Geometry 1(1), 308327.Google Scholar
Goodfellow, I., Bengio, Y. & Courville, A. (2016), Deep Learning, MIT Press.Google Scholar
Gott, J., Dickinson, M. & Melott, A. (1986), “The sponge-like topology of large-scale structure in the universe”, Astrophysical Journal 306, 341357.Google Scholar
Greven, A., Pfaffelhuber, P. & Winter, A. (2009), “Convergence in distribution of random metric measure spaces”, Prob. Theo. Rel. Fields 145(1), 285322.Google Scholar
Grosman, L., Smikt, O. & Smilansky, U. (2008), “On the application of 3-d scanning technology for the documentation and typology of lithic artifacts”, Journal of Archaeological Science 35(12), 3101–3110. www.sciencedirect.com/science/article/pii/S0305440308001398Google Scholar
Gross, P. & Kotiuga, P. (2004), Electromagnetic Theory and Computation – A Topological Approach, I Mathematical Sciences Research Institute Publications Vol. 48, Cambridge University Press.Google Scholar
Gusfield, D. (1997), Algorithms on Strings, Trees, and Sequences, Cambridge University Press.Google Scholar
Hamilton, A., Gott, J. & Weinberg, D. (1986), “The topology of the large-scale structure of the universe”, Astrophysical Journal (309), 112.Google Scholar
Hartigan, J. (1975), Clustering Algorithms, Wiley Series in Probability and Mathematical Statistics, John Wiley and Sons.Google Scholar
Hartshorne, R. (1977), Algebraic Geometry, Springer.Google Scholar
Hastie, T., Tibshirani, R. & Friedman, J. (2009), The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer.Google Scholar
Hatcher, A. (2002), Algebraic Topology, Cambridge University Press.Google Scholar
He, K., Zhang, X., Ren, S. & Sun, J. (2016), “Deep residual learning for image recognition”, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition pp. 770–778.Google Scholar
Hein, J. (2003), Discrete Mathematics, Jones and Bartlett.Google Scholar
Hilton, P. (1988), “A brief, subjective history of homology and homotopy theory in this century”, Mathematics Magazine 60, 282291.Google Scholar
Hiraoka, Y., Nakamura, T., Hirata, A., Escolar, E., Matsue, K. & Nishiura, Y. (2016), “Hierarchical structures of amorphous solids characterized by persistent homology”, in Proceedings of the National Academy of Sciences of the United States of America , Vol. 13, pp. 70357040.Google Scholar
Horst, A. M., Hill, A. P. & Gorman, K. B. (2020), “Palmerpenguins: Palmer Archipelago (Antarctica) penguin data.” R package version 0.1.0. https://allisonhorst.github.io/ palmerpenguins/Google Scholar
Hubel, D. (1988), Eye, Brain, and Vision, Holt, Henry, and Co.Google Scholar
Hubel, D. H. & Wiesel, T. N. (1964), “Effects of monocular deprivation in kittens”, Naunyn-Schmiedebergs Archiv for Experimentelle Pathologie und Pharmakologie 248, 492–497. http://hubel.med.harvard.edu/papers/HubelWiesel1964NaunynSchmiedebergs ArchExpPatholPharmakol.pdf. (Accessed September 10, 2017)Google Scholar
Huchra, J., Jarrett, T., Skrutskie, M., Cutri, R., Schneider, S. & Macri, L. (2005), “The 2mass redshift survey and low galactic latitude large-scale structure”, in Nearby Large-Scale Structures and the Zone of Avoidance, Proceedings of the 2004 Conference in Cape Town, South Africa, Vol. 329 of ASP Conference Series.Google Scholar
Hurewicz, W. (1935), “Beiträge zur Topologie der Deformationen. i. Höherdimensionale Homotopiegruppen”, Proceedings of Koninklijke Academie Wetenschappen, Amsterdam 38, 112119.Google Scholar
Kališnik, S. (2019), “Tropical coordinates on the space of persistence barcodes”, Foundations of Computational Mathematics 19(1), 101129.Google Scholar
Kantz, H. & Schreiber, R. (2004), Nonlinear Time Series Analysis, Cambridge University Press.Google Scholar
Karcher, H. (1977), “Riemannian center of mass and mollifier smoothing”, Communications in Pure and Applied Mathematics 30, 509541.Google Scholar
Kendall, W. (1990), “Probability, convexity, and harmonic maps with small image: I. uniqueness and fine existence”, Proceedings of the London Mathematical Society (Third Series) 61, 371406.Google Scholar
Khryashchev, D., Chu, J., Vejdemo-Johansson, M. & Ji, P. (2020), “A distributed approach to the evasion problem”, Algorithms 13(6), 149.Google Scholar
Kirchgässner, G. & Wolters, J. (2007), Introduction to Modern Time Series Analysis, Springer.Google Scholar
Klee, V. (1980), “On the complexity of d-dimensional voronoi diagrams”, Archiv der Mathematik 34, 7580.Google Scholar
Kogan, J. (2007), Introduction to Clustering Large and High-Dimensional Data, Cambridge University Press.Google Scholar
Kovacev-Nikolic, V., Bubenik, P., Nikolić, D. & Heo, G. (2016), “Using persistent homology and dynamical distances to analyze protein binding”, Statistical Applications in Genetics and Molecular Biology 15(1), 1938.Google Scholar
Lee, A., Pedersen, K. & Mumford, D. (2003), “The nonlinear statistics of high-contrast patches in natural images”, International Journal of Computer Vision 1/2/3(54), 83–103.Google Scholar
Lesnick, M., Rabadan, R. & Rosenbloom, D. (2019), “Quantifying genetic innovation: mathematical foundations for the topological study of reticulate evolution”, SIAM Journal of Applied Algebra and Geometry, 141–184.Google Scholar
Li, L. et al. (2015). “Identification of type 2 diabetes subgroups through topological analysis of patient similarity.” Science Translational Medicine 7Google Scholar
Lipsky, D., Skraba, P. & Vejdemo-Johansson, M. (2011), “A spectral sequence for parallelized persistence”, arXiv preprint arXiv:1112.1245.Google Scholar
Listing, J. (1848), Vorstudien zur Topologie, Vandenhoeck and Ruprecht.Google Scholar
Louie, A., Song, K. H., Hotson, A., Thomas Tate, A. & Schneider, D. S. (2016), “How many parameters does it take to describe disease tolerance?”, PLoS Biology 14(4), e1002435.Google Scholar
Love, E., Filippenko, B., Maroulas, V. & Carlsson, G. (2020), “Topological convolutional neural networks”, in Proceedings of the Neurrips Workshop on Topological Data Analysis and Beyond.Google Scholar
Lum, P., Singh, G., Carlsson, J., Lehman, A., Ishkhanov, T., Vejdemo-Johansson, M. et al. (2013), “Extracting insights from the shape of complex data using topology”, Scientific Reports 3, 1236.Google Scholar
Maclagan, D. & Sturmfels, B. (2015), Introduction to Tropical Geometry, American Mathematical Society.Google Scholar
MacLane, S. (1998), Categories for the Working Mathematician, second edition, Springer-Verlag.Google Scholar
Maleki, A., Shahram, M. & Carlsson, G. (2008), “Near optimal coder for image geometries”, in Proceedings of the IEEE International Conference on Image Processing (ICIP), San Diego, CA.Google Scholar
Manning, C. & Schütze, H. (1999), Foundations of Statistical Natural Language Processing, MIT Press.Google Scholar
Marzinotto, A., Stork, J.A., Dimarogonas, D. V. & Kragic, D. (2014), “Cooperative grasping through topological object representation”, in Proceedings of the 14th IEEE–RAS International Conference on Humanoid Robots pp. 685–692.Google Scholar
Mileyko, Y., Mukherjee, S. & Harer, J. (2011), “Probability measures on the space of persistence diagrams”, Inverse Problems 27, 122.Google Scholar
Milnor, J. (1963), Morse Theory, Princeton University Press.Google Scholar
Milnor, J. & Stasheff, J. (1974), Characteristic Classes, Princeton University Press.Google Scholar
Monro, G. (1987), “The concept of multiset”, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik (33), 171178.Google Scholar
Montgomery, D., Peck, E. & Vining, G. (2006), Introduction to Linear Regression Analysis, John Wiley Sons.Google Scholar
Munkres, J. (1975), Topology: a First Course, Prentice-Hall.Google Scholar
Nelson, B. (2020), “Parameterized topological data analysis”, Ph.D. thesis, Stanford University.Google Scholar
Nguyen, D., Gao, K., Chen, J., Wang, R. & Wei, G. (2020a), “Potentially highly potent drugs for 2019-ncov”, bioRxiv https://doi.org/10.1101/2020.02.05.936013.Google Scholar
Nguyen, D., Gao, K., Wang, M. & Wei, G. (2020b), “Mathdl: mathematical deep learning for d3r grand challenge 4”, Journal of Computer-Aided Molecular Design 34, 131147.Google Scholar
Nicolau, M., Levine, A. &Carlsson, G. (2011), “Topology based data analysis identifies a subgroup of breast cancers with a unique mutational profile and excellent survival”, Proceedings of the National Aacademy of Science 108(17), 72657270.Google Scholar
Niyogi, P., Smale, S. & Weinberger, S. (2008), “Finding the homology of submanifolds with high confidence from random samples”, Discrete and Computational Geometry 39, 419441.Google Scholar
Offroy, M. & Duponchel, L. (2016), ‘Topological data analysis: a promising big data exploration tool in biology, analytical chemistry, and physical chemistry’, Analytica Chimica Acta 910, 111.Google Scholar
Otter, N., Porter, M. A., Tillmann, U., Grindrod, P. & Harrington, H. A. (2017), “A roadmap for the computation of persistent homology”, EPJ Data Science 6(1), 17.Google Scholar
Park, C., Pranav, P., Chingangram, P., van de Weygaert, R., Jones, B., Vegter, G. et al. (2013), “Betti numbers of gaussian fields”, Journal of the Korean Astronomical Society 46, 125131.Google Scholar
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O. et al. (2011), “Scikitlearn: machine learning in Python”, Journal of Machine Learning Research 12, 28252830.Google Scholar
Perea, J. & Carlsson, G. (2014), ‘A Klein bottle-based dictionary for texture representation’, International Journal of Computer Vision 107(1), 7597.Google Scholar
Perea, J. & Harer, J. (2015), ‘Sliding windows and persistence: an application of topological methods to signal analysis’, Foundations of Computational Mathematics 15(3), 799838.Google Scholar
Poincaré, H. (1895), “Analysis situs”, Journal de l’École Polytechnique 1(2), 1123.Google Scholar
Pokorny, F. T., Stork, J. A. & Kragic, D. (2013), “Grasping objects with holes: a topological approach”, in Proceedings of the 2013 IEEE International Conference on Robotics and Automation, pp. 1100–1107.Google Scholar
Rabadan, R. & Blumberg, A. (2019), Topological Data Analysis for Genomics and Evolution, Cambridge University Press.Google Scholar
Reaven, G. & Miller, R. (1979), ‘An attempt to define the nature of chemical diabetes using a multidimensional analysis’, Diabetologia 16(1), 1724.Google Scholar
Reeb, G. (1946), “Sur les points singuliers d’une forme de pfaff completement integrable ou d’une fonction numerique”, Comptes Rendus des Seances de l’Academie des Sciences 222, 847849.Google Scholar
Richardson, E. & Werman, M. (2014), “Efficient classification using the euler characteristic”, Pattern Recognition Letters 49, 99–106. www.sciencedirect.com/science/article/pii/S0167865514002050Google Scholar
Riehl, E. (2017), Category Theory in Context, Courier Dover Publications.Google Scholar
Riemann, B. (1851), “Grundlagen für eine allgemeine Theorie der Functionen einer veränderlichen complexen Grösse”, Ph.D. thesis, Georg-August-Universität Göttingen.Google Scholar
Robins, V. (1999), “Towards computing homology from finite approximations”, Topology Proceedings 24(1), 503532.Google Scholar
Robinson, M. (2014), Topological Signal Processing, Springer.Google Scholar
Rolfsen, D. (1976), Knots and Links, Publish or Perish.Google Scholar
Saggar, M. et al. (2018). “Towards a new approach to reveal dynamical organization of the brain using topological data analysis.” Nature Communications 9.Google Scholar
Scott, D. (2015), Multivariate Density Estimation. Theory, Practice, and Visualization, JohnWiley and Sons.Google Scholar
Segal, G. (1968), “Classifying spaces and spectral sequences”, Publications Mathématiques de l’IHÉS 34, 105112.Google Scholar
Singh, G., Mémoli, F. & Carlsson, G. (2007), “Topological methods for the analysis of high dimensional data sets and 3d object recognition”, in Proceedings of the Conferences on Point Based Graphics 2007.Google Scholar
Skryzalin, J. & Carlsson, G. (2017), “Numeric invariants from multidimensional persistence”, Journal of Applied and Computational Topology 1(1), 89119.Google Scholar
Sneath, P. & Sokal, R. (1973), Numerical Taxonomy: The Principles and Practice of Numerical Classification, W. H. Freeman and Co.Google Scholar
Sousbie, T. (2011), “The persistent cosmic web and its filamentary structure – I. Theory and implementation”, Monthly Notices of the Royal Astronomical Society 414, 350383.Google Scholar
Sousbie, T., Pichon, C. & Kawahara, H. (2011), “The persistent cosmic web and its filamentary structure – II. Illustrations”, Monthly Notices of the Royal Astronomical Society 414, 384403.Google Scholar
Spergel, D. N., Bean, R., Doré, O., Nolta, M. R., Bennett, C. L., Dunkley, J. et al. (2007), “Three year Wilkinson Microwave Anisotropy Microwave Probe (WMAP) observations: implications for cosmology.” Astrophysical Journal Supplement Series 170(2), 377.Google Scholar
Stork, J. A., Pokorny, F. T. & Kragic, D. (2013), “A topology-based object representation for clasping, latching and hooking”, in Proceedings of thea IEEE–RAS International Conference on Humanoid Robots, pp. 138–145.Google Scholar
Symons, M. (1981), “Clustering criteria and multivariate normal mixtures”, Biometrics 37(1) pp. 3543.Google Scholar
Szabo, R. (2000), Equivariant Cohomology and Localization of Path Integrals, Springer.Google Scholar
Takens, F. (1981), “Detecting strange attractors in turbulence”, Lecture Notes in Mathematics 898(1), 366381.Google Scholar
Tellegen, B. (1952), “A general network theorem, with applications”, Philips Research Reports 7, 256269.Google Scholar
Tenenbaum, J., de Silva, V. & Langford, J. (2000), “A global geometric framework for non-linear dimensionality reduction”, Science 290(5500), 23192323.Google Scholar
Torres, B., Oliveira, J., Tate, A., Rath, P., Cumnock, K. & Schneider, D. (2016), “Tracking resilience to infections by mapping disease space”, PLoS Biology 14.Google Scholar
Tralie, C., Saul, N. & Bar-On, R. (2018), “Ripser.py: a lean persistent homology library for python”, Journal of Open Source Software 3(29), 925. https://doi.org/10.21105/joss.00925Google Scholar
Turner, K., Mileyko, Y., Mukherjee, S. & Harer, J. (2014), “Fréchet means for distributions of persistence diagrams”, Discrete and Computational Geometry 52(1), 4470.Google Scholar
van de Weygaert, R., Vegter, G., Edelsbrunner, H., Jones, B., Pranav, P., Park, C. et al. (2011), “Alpha, betti, and the megaparsec universe: on the topology of the cosmic web”, in Transactions on Computational Science XIV, Lecture Notes in Computer Science, Vol. 6970, pp. 60101.Google Scholar
van Hateren, J. & van der Schaaf, A. (1990), “Statistical dependence between orientation filter outputs used in a human vision based image code”, Proceedings SPIE Visual Communication and Image Processing 1360, 909922.Google Scholar
Vandermonde, A. (1771), “Remarques sur les problèmes de situation”, Memoires de l’Acadèmie Royale des Sciences, 566–574.Google Scholar
Vapnik, V. (1998), Statistical Learning Theory, John Wiley and Sons.Google Scholar
Vejdemo-Johansson, M. & Leshchenko, A. (2020), “Certified mapper: repeated testing for acyclicity and obstructions to the nerve lemma”, in Topological Data Analysis, Springer, pp. 491–515.Google Scholar
Vejdemo-Johansson, M., Pokorny, F., Skraba, P. & Kragic, D. (2015), “Cohomological learning of periodic motion”, Applicable Algebra in Engineering, Communication and Computing 26(1–2), 526.Google Scholar
Wahab, M. (2014), Essentials of Crystallography, Narosa Publishing House.Google Scholar
Weininger, D. (1988), “Smiles, a chemical language and information system. 1. Introduction to methodology and encoding rules”, Journal of Chemical Information and Computer Sciences 28, pp. 3136.Google Scholar
Xia, K., Zhao, Z. & Wei, G. (2015), “Multiresolution persistent homology for excessively large biomolecular datasets”, Journal of Chemical Physics 143(13), 134103.Google Scholar
Yanai, H., Takeuchi, K. & Takane, Y. (2011), Projection Matrices, Generalized Inverse Matrices, and Singular Value Decomposition, Springer.Google Scholar
Zomorodian, A. (2010), “The tidy set: a minimal simplicial set for computing homology of clique complexes”, Proceedings of the 2010 Annual Symposium on Computational Geometry ACM, pp. 257–266.Google Scholar
Zomorodian, A. & Carlsson, G. (2005), “Computing persistent homology”, Discrete and Computational Geometry 33(2), 247274.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Gunnar Carlsson, Stanford University, California, Mikael Vejdemo-Johansson, City University of New York
  • Book: Topological Data Analysis with Applications
  • Online publication: 25 November 2021
  • Chapter DOI: https://doi.org/10.1017/9781108975704.011
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Gunnar Carlsson, Stanford University, California, Mikael Vejdemo-Johansson, City University of New York
  • Book: Topological Data Analysis with Applications
  • Online publication: 25 November 2021
  • Chapter DOI: https://doi.org/10.1017/9781108975704.011
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Gunnar Carlsson, Stanford University, California, Mikael Vejdemo-Johansson, City University of New York
  • Book: Topological Data Analysis with Applications
  • Online publication: 25 November 2021
  • Chapter DOI: https://doi.org/10.1017/9781108975704.011
Available formats
×