Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T04:21:21.017Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 June 2014

Simon Hillson
Affiliation:
University College London
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aiello, L. C., Montgomery, C. and Dean, C. (1991). The natural history of deciduous tooth attrition in hominoids. Journal of Human Evolution, 21, 397–412.CrossRefGoogle Scholar
Aiello, L. C. and Wells, J. C. K. (2002). Energetics and the evolution of the genusHomo. Annual Review of Anthropology, 31, 323–38.CrossRefGoogle Scholar
Aine, L., Maki, M., Collin, P. and Keyrilainen, O. (1990). Dental enamel defects in celiac-disease. Journal of Oral Pathology & Medicine, 19, 241–5.CrossRefGoogle ScholarPubMed
Allebeck, P. and Bergh, C. (1992). Height, body mass index and mortality: do social factors explain the association?Public Health, 106, 375–82.CrossRefGoogle Scholar
AlQahtani, S. J., Hector, M. P. and Liversidge, H. M. (2010). Brief communication: the London atlas of human tooth development and eruption. American Journal of Physical Anthropology, 142, 481–90.CrossRefGoogle ScholarPubMed
Altman, D. G. and Chitty, L. S. (1994). Charts of fetal size: 1. Methodology. BJOG: An International Journal of Obstetrics & Gynaecology, 101, 29–34.CrossRefGoogle ScholarPubMed
Altman, D. G. and Chitty, L. S. (1997). New charts for ultrasound dating of pregnancy. Ultrasound in Obstetrics and Gynecology, 10, 174–91.CrossRefGoogle ScholarPubMed
Altmann, J. and Alberts, S. C. (2005). Growth rates in a wild primate population: ecological influences and maternal effects. Behavioral Ecology and Sociobiology, 57, 490–501.CrossRefGoogle Scholar
Anderson, D. L., Thompson, G. W. and Popovitch, F. (1976). Age of attainment of mineralisation stages of the permanent dentition. Journal of Forensic Sciences, 21, 191–200.CrossRefGoogle Scholar
Andresen, V. (1898). Die Querstreifung des Dentins. Deutsche Monatsschrift für Zahnheilkunde, 16, 386–9.Google Scholar
Andrews, P. (1996). Palaeoecology and hominoid palaeoenvironments. Biological Reviews, 71, 257–300.CrossRefGoogle Scholar
Anemone, R. L. (2002). Dental development and life history in hominid evolution. In Human Evolution Through Developmental Change, eds. Minugh-Purvis, N. and McNamara, K. J.. Baltimore & London: Johns Hopkins University Press, pp. 249–80.Google Scholar
Antoine, D. M., Hillson, S. and Dean, M. C. (2009). The developmental clock of dental enamel: a test for the periodicity of prism cross-striations in modern humans and an evaluation of the most likely sources of error in histological studies of this kind. Journal of Anatomy, 214, 45–55.CrossRefGoogle ScholarPubMed
Appleton, J. (1991). The effect of lead acetate on dentine formation in the rat. Archives of Oral Biology, 36, 377–82.CrossRefGoogle ScholarPubMed
Arey, L. B. (1974). Developmental Anatomy, revised 7th edn. Philadelphia, London: W. B. Saunders.Google Scholar
Arsuaga, J. L., Martínez, I., Gracia, A. and Lorenzo, C. (1997). The Sima de los Huesos crania (Sierra de Atapuerca, Spain). A comparative study. Journal of Human Evolution, 33, 219–81.CrossRefGoogle Scholar
Asper, H. (1916). Über die “Braune Retzius’sche Parallelstreifung” im Schmelz der Menschlichen Zähne. Schweizerische Vierteljahrsschrift für Zahnheilkunde, 26, 275–314.Google Scholar
Atsalis, S. and Margulis, S. W. (2006). Sexual and hormonal cycles in geriatric Gorilla gorilla. International Journal of Primatology, 27, 1663–87.CrossRefGoogle Scholar
Bäckman, B. (1989). Amelogenesis imperfecta. An Epidemiologic, Genetic, Morphologic and Clinical Study. Umeå: Departments of Pedodontics and Oral Pathology. University of Umeå.Google Scholar
Balter, M. (2009). New work may complicate history of Neandertals and H. sapiens. Science, 326, 224.CrossRefGoogle Scholar
Balter, V., Blichert-Toft, J., Braga, J., Telouk, P., Thackeray, F. and Albarède, F. (2008). U-Pb dating of fossil enamel from the Swartkrans Pleistocene hominid site, South Africa. Earth and Planetary Science Letters, 267, 236–46.CrossRefGoogle Scholar
Barrickman, N. L., Bastian, M. L., Isler, K. and van Schaik, C. P. (2008). Life history costs and benefits of encephalization: a comparative test using data from long-term studies of primates in the wild. Journal of Human Evolution, 54, 568–90.CrossRefGoogle ScholarPubMed
Begun, D. R. (2007). Fossil record of Miocene hominoids. In Primate Evolution and Human Origins. Vol. 2 of Handbook of Palaeoanthropology, ed. Henke, W. and Tattersall, I.. Berlin: Springer, pp. 921–77.Google Scholar
Begun, D. R. (2010). Miocene hominids and the origins of the African apes and humans. Annual Review of Anthropology, 39, 67–84.CrossRefGoogle Scholar
Bentley, G. R., Goldberg, T. and Jasienska, G. (1993). The fertility of agricultural and non-agricultural traditional societies. Population Studies, 47, 269–81.CrossRefGoogle Scholar
Berger, T. D. and Trinkaus, E. (1995). Patterns of trauma among the Neandertals. Journal of Archaeological Science, 22, 841–52.CrossRefGoogle Scholar
Bermúdez de Castro, J. M., Martinón-Torres, M., Carbonell, E. et al. (2004). The Atapuerca sites and their contribution to the knowledge of human evolution in Europe. Evolutionary Anthropology: Issues, News, and Reviews, 13, 25–41.CrossRefGoogle Scholar
Bermúdez de Castro, J. M., Martinón-Torres, M., Prado, L. et al. (2010). New immature hominin fossil from European Lower Pleistocene shows the earliest evidence of a modern human dental development pattern. Proceedings of the National Academy of Sciences, 107, 11739–44.CrossRefGoogle Scholar
Berten, J. (1895). Hypoplasie des Schmelzes (Congenitale Schmelzdefecte; Erosionen). Deutsche Monatsschrift für Zahnheilkunde, 13, 425–39.Google Scholar
Beynon, A. D. and Dean, M. C. (1987). Crown-formation time of a fossil hominid premolar tooth. Archives of Oral Biology, 32, 773–80.CrossRefGoogle ScholarPubMed
Beynon, A. D., Dean, M. C., Leakey, M. G., Reid, D. J. and Walker, A. (1998). Comparative dental development and microstructure of Proconsul teeth from Rusinga Island, Kenya. Journal of Human Evolution, 35, 163–209.CrossRefGoogle ScholarPubMed
Beynon, A. D., Dean, M. C. and Reid, D. J. (1991a). Histological study on the chronology of the developing dentition in gorilla and orangutan. American Journal of Physical Anthropology, 86, 189–203.CrossRefGoogle Scholar
Beynon, A. D., Dean, M. C. and Reid, D. J. (1991b). On thick and thin enamel in Hominoids. American Journal of Physical Anthropology, 86, 295–309.CrossRefGoogle Scholar
Bhat, M. N. and Nelson, K. B. (1989). Developmental enamel defects in primary teeth in children with cerebral palsy, mental retardation, or hearing defects: a review. Advances in Dental Research, 3, 132–42.CrossRefGoogle ScholarPubMed
Bhutani, V. K. (1997). Extrauterine adaptations in the newborn. Seminars in Perinatology, 2, 1–12.Google Scholar
Biggerstaff, R. H. (1967). Time trimmers for the Taungs child, or how old is Australopithecus africanus?American Anthropologist, 69, 217–20.CrossRefGoogle Scholar
Bischoff, J. L., Williams, R. W., Rosenbauer, R. J. et al. (2007). High-resolution U-series dates from the Sima de los Huesos hominids yields kyrs: implications for the evolution of the early Neanderthal lineage. Journal of Archaeological Science, 34, 763–70.CrossRefGoogle Scholar
Black, G. V. and McKay, F. S. (1916). Mottled teeth: endemic developmental imperfection of teeth heretofore unknown in literature of dentistry. Dental Cosmos, 58, 129–56.Google Scholar
Blakey, M. L. and Armelagos, G. J. (1985). Deciduous enamel defects in prehistoric Americans from Dickson Mounds: prenatal and postnatal stress. American Journal of Physical Anthropology, 66, 371–80.CrossRefGoogle ScholarPubMed
Blankenship, J. A., Mincer, H. H., Anderson, K. M., Woods, M. A. and Burton, E. L. (2007). Third molar development in the estimation of chronologic age in American blacks as compared with whites. Journal of Forensic Sciences, 52, 428–33.CrossRefGoogle ScholarPubMed
Boas, F. (1935). The tempo of growth of fraternities. Proceedings of the National Academy of Sciences of the United States of America, 21, 413–18.CrossRefGoogle ScholarPubMed
Bocaege, E., Humphrey, L. T. and Hillson, S. (2010). Technical note: a new three-dimensional technique for high resolution quantitative recording of perikymata. American Journal of Physical Anthropology, 141, 498–503.Google ScholarPubMed
Boesch, C. and Boesch-Achermann, H. (2000). The Chimpanzees of the Taï Forest: Behavioural Ecology and Evolution. Oxford University Press.Google Scholar
Bogin, B. (1999). Patterns of Human Growth. 2nd edn. Cambridge Studies in Biological Anthropology, 23. Cambridge University Press.Google ScholarPubMed
Bogin, B. (2003). The human pattern of growth and development in a paleontological perspective. In Patterns of Growth and Development in the Genus Homo, ed. Thompson, J. L., Krovitz, G. E. and Nelson, A. J.. Cambridge University Press, pp. 15–44.Google Scholar
Bogin, B. (2006). Modern human life history: the evolution of human childhood and fertility. In The Evolution of Human Life History, ed. Hawkes, K. and Paine, R. R.. Santa Fe: School of American Research Press, pp. 197–230.Google Scholar
Boorse, C. (1977). Health as a theoretical concept. Philosophy of Science, 44, 542–73.CrossRefGoogle Scholar
Boyde, A. (1970). The surface of the enamel in human hypoplastic teeth. Archives of Oral Biology, 15, 897–8.CrossRefGoogle ScholarPubMed
Boyde, A. (1989). Enamel. In Teeth, ed. Berkovitz, B. K. B., Boyde, A., Frank, R. M. et al. New York, Berlin & Heidelberg: Springer Verlag, pp. 309–473.CrossRefGoogle Scholar
Boyde, A. (1990). Developmental interpretations of dental microstructure. In Primate Life History and Evolution, ed. DeRousseau, C. J.. New York: Wiley-Liss, pp. 229–67.Google Scholar
Brain, C. K. (1981). The Hunters or the Hunted?University of Chicago Press.Google Scholar
Brescia, N. J. (1961). Applied Dental Anatomy. St Louis: C.V. Mosby.Google Scholar
Brody, S. (1945). Bioenergetics and Growth: With Special Reference to the Efficiency Complex in Domestic Animals. New York: Reinhold.Google Scholar
Bromage, T. G. (1991). Enamel incremental periodicity in the pig-tailed macaque: a polychrome fluorescent labeling study of dental hard tissues. American Journal of Physical Anthropology, 86, 205–14.CrossRefGoogle Scholar
Bromage, T. G. and Dean, M. C. (1985). Re-evaluation of the age at death of immature fossil hominids. Nature, 317, 525–7.CrossRefGoogle ScholarPubMed
Bryant, T. (1884). A Manual for the Practice of Surgery, 4th edn. London: J & A Churchill.Google Scholar
Buffon, G. L. L. de (1777). Histoire naturelle, générale et particulière. Supplement IV. Servant de suite à l’histoire naturelle de l’homme. Paris: Imprimerie Royale.Google Scholar
Bunon, R. (1743). Essay sur les maladies des dents, ou l’on propose les moyens de leur procurer une bonne conformation dès la plus tendre enfance, & d’en assurer la conservation pendant tout le cours de la vie. Paris: Briasson.Google Scholar
Bunon, R. (1746). Expériences et demonstrations faites à l’hôpital de la Salpêtriere, et à S. Côme en présence de l’Académie Royale de Chirurgie. Paris:Briasson.Google Scholar
Butler, P. M. (1967). The prenatal development of the human first upper permanent molar. Archives of Oral Biology, 12, 551–63.CrossRefGoogle ScholarPubMed
Campbell, T. D. (1925). Dentition and Palate of the Australian Aboriginal. Publications under the Keith Sheridan Foundation. Adelaide: University of Adelaide.Google Scholar
Cannon, W. B. (1915). Bodily Changes in Pain, Hunger, Fear, and Rage; an Account of Recent Researches into the Function of Emotional Excitement, 1st edn. New York & London: D. Appleton.CrossRefGoogle Scholar
Cannon, W. B. (1932). The Wisdom of the Body, 1st edn. New York: W.W. Norton.Google Scholar
Charnov, E. L. and Berrigan, D. (1993). Why do female primates have such long lifespans and so few babies? Or life in the slow lane. Evolutionary Anthropology: Issues, News, and Reviews, 1, 191–4.CrossRefGoogle Scholar
Chitty, L. S. and Altman, D. G. (2002). Charts of fetal size: limb bones. BJOG: An International Journal of Obstetrics & Gynaecology, 109, 919–29.CrossRefGoogle ScholarPubMed
Chitty, L. S., Altman, D. G., Henderson, A. and Campbell, S. (1994a). Charts of fetal size: 2. Head measurements. BJOG: An International Journal of Obstetrics & Gynaecology, 101, 35–43.CrossRefGoogle ScholarPubMed
Chitty, L. S., Altman, D. G., Henderson, A. and Campbell, S. (1994b). Charts of fetal size: 3. Abdominal measurements. BJOG: An International Journal of Obstetrics & Gynaecology, 101, 125–31.CrossRefGoogle ScholarPubMed
Chitty, L. S., Altman, D. G., Henderson, A. and Campbell, S. (1994c). Charts of fetal size: 4. Femur length. BJOG: An International Journal of Obstetrics & Gynaecology, 101, 132–5.CrossRefGoogle ScholarPubMed
Chitty, L. S., Campbell, S. and Altman, D. G. (1993). Measurement of the fetal mandible: feasibility and construction of a centile chart. Prenatal Diagnosis, 13, 749–56.CrossRefGoogle ScholarPubMed
Christensen, G. J. and Kraus, B. S. (1965). Initial calcification of the human permanent first molar. Journal of Dental Research, 44, 1338–42.CrossRefGoogle Scholar
Clement, A. F., Hillson, S. W. and Aiello, L. C. (2011). Tooth wear, Neanderthal facial morphology and the anterior dental loading hypothesis. Journal of Human Evolution, 62, 367–76.CrossRefGoogle Scholar
Cohen, A. A. (2004). Female post-reproductive lifespan: a general mammalian trait. Biological Reviews, 79, 733–50.CrossRefGoogle ScholarPubMed
Colyer, J. F. (1936). Variations and Diseases of the Teeth of Animals. London: John Bale & Danielsson.Google Scholar
Colyer, J. F. (1947). Dental disease in animals. British Dental Journal, 82, 2–10, 31–5.Google ScholarPubMed
Combs, G. F. (1992). The Vitamins. Fundamental Aspects in Nutrition and Health. San Diego: Academic Press.Google Scholar
Commission on Oral Health (1982). An epidemiological index of developmental defects of dental enamel (DDE Index). International Dental Journal, 32, 159–67.Google Scholar
Conroy, G. C. and Mahoney, C. J. (1991). Mixed longitudinal study of dental emergence in the chimpanzee, Pan troglodytes (primates, pongidae). American Journal of Physical Anthropology, 86, 243–54.CrossRefGoogle Scholar
Cox, M. (1996). Life and Death in Spitalfields: 1700–1850. York: Council for British Archaeology.Google Scholar
Cucina, A., Vargiu, R., Mancinelli, D. et al. (2006). The necropolis of Vallerano (Rome, 2nd to 3rd century AD): an anthropological perspective on the ancient Romans in the Suburbium. International Journal of Osteoarchaeology, 16, 104–17.CrossRefGoogle Scholar
Cunha, E., Rozzi, F. R., De Castro, J. M. B., Martinón-Torres, M., Wasterlain, S. N. and Sarmiento, S. (2004). Enamel hypoplasias and physiological stress in the Sima de los Huesos Middle Pleistocene hominins. American Journal of Physical Anthropology, 125, 220–31.CrossRefGoogle Scholar
Czermák, J. (1850). Beiträge zur mikroskopischen Anatomie der menschlichen Zähn. Zeitschrift für wissenschaftliche Zoologie, 2, 295–322.Google Scholar
Dahlberg, A. A. and Menegaz-Bock, R. M. (1958). Emergence of the permanent teeth in Pima Indian children. Journal of Dental Research, 37, 1123–40.CrossRefGoogle ScholarPubMed
Dart, R. A. (1925). Australopithecus africanus: the man-ape of South Africa. Nature, 115, 195–9.CrossRefGoogle Scholar
Deacon, T. W. (1992). Primate brains and senses. In The Cambridge Encyclopedia of Human Evolution, ed. Jones, S., Martin, R. and Pilbeam, D., Cambridge University Press, pp. 109–14.Google Scholar
Dean, M. C. (1993). Daily rates of dentine formation in macaque tooth roots. International Journal of Osteoarchaeology, 3, 199–207.CrossRefGoogle Scholar
Dean, M. C. (1995). The nature and periodicity of incremental lines in primate dentine and their relationship to periradicular bands in OH 16 (Homo habilis). In Structure, Function and Evolution of Teeth. Dental Morphology Meeting, Florence, September 1992, ed. Moggi-Cecchi, J.. Florence: International Institute for the Study of Man, pp. 239–65.Google Scholar
Dean, M. C. (1998a). A comparative study of cross striation spacings in cuspal enamel and of four methods of estimating the time taken to grow molar cuspal enamel in Pan, Pongo and Homo. Journal of Human Evolution, 35, 449–62.CrossRefGoogle Scholar
Dean, M. C. (1998b). Comparative observations on the spacing of short-period (von Ebner’s) lines in dentine. Archives of Oral Biology, 43, 1009–21.CrossRefGoogle ScholarPubMed
Dean, M. C. (1999). Hominoid tooth growth: using incremental lines in dentine as markers of growth in modern human and fossil primate teeth. In Human Growth in the Past: Studies from Bones and Teeth, ed. Hoppa, R. and FitzGerald, C. M.. Cambridge University Press, pp. 111–27.Google Scholar
Dean, M. C. (2007). A radiographic and histological study of modern human lower first permanent molar root growth during the supraosseous eruptive phase. Journal of Human Evolution, 53, 635–46.CrossRefGoogle ScholarPubMed
Dean, M. C. (2009). Extension rates and growth in tooth height of modern human and fossil hominin canines and molars. In Frontiers of Oral Biology: Interdisciplinary Dental Morphology, ed. Koppe, T., Meyer, G. and Alt, G. R.. Basel: Karger, pp. 68–73.Google Scholar
Dean, M. C. (2010). Retrieving chronological age from dental remains of early fossil hominins to reconstruct human growth in the past. Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 3397–410.CrossRefGoogle ScholarPubMed
Dean, M. C. (2012). A histological method that can be used to estimate the time taken to form the crown of a permanent tooth. In Forensic Microscopy for Skeletal Tissues, Methods and Protocols, ed. Bell, L. S.. New York: Humana Press, pp. 89–100.CrossRefGoogle Scholar
Dean, M. C., Beynon, A., Reid, D. J. and Whittaker, D. (1993a). A longitudinal study of tooth growth in a single individual based on long and short period incremental markings in dentine and enamel. International Journal of Osteoarchaeology, 3, 249–64.CrossRefGoogle Scholar
Dean, M. C., Beynon, A. D., Thackeray, J. F. and Macho, G. A. (1993b). Histological reconstruction of dental development and age at death of a juvenile Paranthropus robustus specimen, SK 63, from Swartkrans, South Africa. American Journal of Physical Anthropology, 91, 401–20.Google ScholarPubMed
Dean, M. C., Leakey, M. G., Reid, D. J. et al. (2001). Growth processes in teeth distinguish modern humans from Homo erectus and earlier hominins. Nature, 414, 628–31.CrossRefGoogle ScholarPubMed
Dean, M. C. and Lucas, V. S. (2009). Dental and skeletal growth in early fossil hominins. Annals of Human Biology, 36, 545–61.CrossRefGoogle ScholarPubMed
Dean, M. C. and Reid, D. J. (2001). Perikymata spacing and distribution on hominid anterior teeth. American Journal of Physical Anthropology, 116, 209–15.CrossRefGoogle ScholarPubMed
Dean, M. C. and Scandrett, A. E. (1995). Rates of dentine mineralization in permanent human teeth. International Journal of Osteoarchaeology, 5, 349–58.CrossRefGoogle Scholar
Dean, M. C. and Scandrett, A. E. (1996). The relation between long-period incremental markings in dentine and daily cross-striations in enamel in human teeth. Archives of Oral Biology, 41, 233–41.CrossRefGoogle ScholarPubMed
Dean, M. C. and Schrenk, F. (2003). Enamel thickness and development in a third permanent molar of Gigantopithecus blacki. Journal of Human Evolution, 45, 381–8.CrossRefGoogle Scholar
Dean, M. C. and Smith, B. H. (2009). Growth and development of the Nariokotome youth, KNM-WT 15000. In The First Humans: Origin and Early Evolution of the Genus Homo, ed. Grine, F. E. and Fleagle, J. G.. London: Springer, pp. 101–20.CrossRefGoogle Scholar
Dean, M. C. and Vesey, P. (2008). Preliminary observations on increasing root length during the eruptive phase of tooth development in modern humans and great apes. Journal of Human Evolution, 54, 258–71.CrossRefGoogle ScholarPubMed
Dean, M. C. and Wood, B. A. (1981). Developing pongid dentition and its use for ageing crania in comparative cross-sectional growth studies. Folia Primatologia, 36, 111–27.CrossRefGoogle ScholarPubMed
Deaner, R. O., Barton, R. A. and van Schaik, C. (2003). Primate brains and life histories: renewing the connection. In Primate Life Histories and Socioecology, ed. Kappeler, P. M. and Pereira, M. E.. University of Chicago Press, pp. 233–65.Google Scholar
Demirjian, A. and Goldstein, H. (1976). New systems for dental maturity based on seven and four teeth. Annals of Human Biology, 3, 411–21.CrossRefGoogle ScholarPubMed
Demirjian, A., Goldstein, H. and Tanner, J. M. (1973). A new system of dental age assessment. Human Biology, 45, 211–27.Google ScholarPubMed
Demirjian, A. and Levesque, G. Y. (1980). Sexual differences in dental development and prediction of emergence. Journal of Dental Research, 59, 1110–22.CrossRefGoogle ScholarPubMed
Deutsch, D., Tam, O. and Stack, M. V. (1985). Postnatal changes in size, morphology and weight of developing postnatal deciduous anterior teeth. Growth, 49, 202–17.Google ScholarPubMed
Dirks, W., Reid, D. J., Jolly, C. J., Phillips-Conroy, J. E. and Brett, F. L. (2002). Out of the mouths of baboons: stress, life history, and dental development in the Awash National Park Hybrid Zone, Ethiopia. American Journal of Physical Anthropology, 118, 239–52.CrossRefGoogle ScholarPubMed
Domínguez-Rodrigo, M., Rayne Pickering, T., Semaw, S. and Rogers, M. J. (2005). Cutmarked bones from Pliocene archaeological sites at Gona, Afar, Ethiopia: implications for the function of the world’s oldest stone tools. Journal of Human Evolution, 48, 109–21.CrossRefGoogle ScholarPubMed
Edmund, A. G. (1960). Tooth replacement phenomena in the lower vertebrates. Royal Ontario Museum Life Sciences Division Contributions, 52, 1–190.Google Scholar
Eli, I., Sarnat, H. and Talmi, E. (1989). Effect of the birth process on the neonatal line in primary tooth enamel. Pediatric Dentistry, 11, 220–3.Google ScholarPubMed
Eliot, M. M., Souther, S. P., Anderson, B. G. and Arnim, S. S. (1934). A study of the teeth of a group of school children previously examined for rickets. American Journal of Diseases of Children, 48, 713–29.Google Scholar
Elliott, J. C. and Dover, S. D. (1982). X-ray microtomography. Journal of Microscopy, 126, 211–13.CrossRefGoogle ScholarPubMed
Emery Thompson, M., Jones, J. H., Pusey, A. E. et al. (2007). Aging and fertility patterns in wild chimpanzees provide insights into the evolution of menopause. Current Biology, 17, 2150–6.CrossRefGoogle ScholarPubMed
Engle, W. A. (2004). Age terminology during the perinatal period. Pediatrics, 114, 1362–4.Google ScholarPubMed
Engle, W. A. (2006). A recommendation for the definition of “late preterm” (near-term) and the birth weight-gestational age classification system. Seminars in Perinatology, 30, 2–7.CrossRefGoogle ScholarPubMed
Ensor, B. E. and Irish, J. D. (1995). Hypoplastic area method for analysing dental enamel hypoplasia. American Journal of Physical Anthropology, 98, 507–18.CrossRefGoogle Scholar
Ensor, B. E. and Irish, J. D. (1997). Reply to Blakey and Armelagos with additional remarks on the hypoplastic area method. American Journal of Physical Anthropology, 102, 296–9.3.0.CO;2-W>CrossRefGoogle Scholar
Enwonwu, C. O. (1973). Influence of socio-economic conditions on dental development in Nigerian children. Archives of Oral Biology, 18, 95–107.CrossRefGoogle ScholarPubMed
Erben, R. G. (2003). Bone-labeling techniques. In Handbook of Histology Methods for Bone and Cartilage, ed. An, Y. H. and Martin, K. L.. Totowa, NJ: Humana Press, pp. 99–117.Google Scholar
Eveleth, P. B. and Tanner, J. M. (1990). Worldwide Variation in Human Growth, 2nd edn. Cambridge University Press.Google Scholar
Fauchard, P. (1728). Le chirurgien dentiste, ou traité des dents. Ou l’on enseigne les moyens de les entretenir propres & saines, de les embellir, d’en réparer la perte & de remedier à leurs maladies, à celles des geneives & aux accidens qui peuvent survenir aux autres parties voisines des dents. Avec des observations & des reflexions sur plusieurs cas singuliers, 1st edn. Paris: Jean Mariette.Google Scholar
Fejerskov, O., Larsen, M. J., Richards, A. and Baelum, V. (1994). Dental tissues effects of fluoride. Advances in Dental Research, 8, 15–31.CrossRefGoogle Scholar
Finney, D. J. (1971). Probit Analysis, 3rd edn. Cambridge University Press.Google Scholar
Finney, D. J. (1978). Statistical Method in Biological Assay. New York: Macmillan.Google Scholar
FitzGerald, C. and Rose, J. (2000). Reading between the lines: dental development and subadult age assessment using the microstructural growth markers of teeth. In Biological Anthropology of the Human Skeleton, ed. Katzenberg, M. A. and Saunders, S. R.. New York: Wiley, pp. 163–86.Google Scholar
FitzGerald, C., Saunders, S., Bondioli, L. and Macchiarelli, R. (2006). Health of infants in an Imperial Roman skeletal sample: perspective from dental microstructure. American Journal of Physical Anthropology, 130, 179–89.CrossRefGoogle Scholar
FitzGerald, C. M. (1998). Do enamel microstructures have regular time dependency? Conclusions from the literature and a large-scale study. Journal of Human Evolution, 35, 371–86.CrossRefGoogle Scholar
FitzGerald, C. M. and Saunders, S. R. (2005). Test of histological methods of determining chronology of accentuated striae in deciduous teeth. American Journal of Physical Anthropology, 127, 277–90.CrossRefGoogle ScholarPubMed
Floyd, B. and Littleton, J. (2006). Linear enamel hypoplasia and growth in an Australian Aboriginal community: not so small, but not so healthy either. Annals of Human Biology, 33, 424–43.CrossRefGoogle Scholar
Folayan, M., Owotade, F., Adejuyigbe, E., Sen, S., Lawal, B. and Ndukwe, K. (2007). The timing of eruption of the primary dentition in Nigerian children. American Journal of Physical Anthropology, 134, 443–8.CrossRefGoogle ScholarPubMed
Fooden, J. and Izor, R. J. (1983). Growth curves, dental emergence norms, and supplementary morphological observations in known-age captive orangutans. American Journal of Primatology, 5, 285–301.CrossRefGoogle Scholar
Fournier, J. A. (1881). Syphilis and Marriage, translated edn. New York: D. Appleton.Google Scholar
Fournier, J. A. (1884). Syphilitic Teeth. Dental Cosmos, 26, 12–25, 141–55.Google Scholar
Fournier, J. A. (1907). The Treatment and Prophylaxis of Syphilis, English translation edn. New York: Rebman.Google Scholar
Garn, S. M., Lewis, A. B. and Blizzard, R. M. (1965). Endocrine factors in dental development. Journal of Dental Research, 44, 243–8.CrossRefGoogle ScholarPubMed
Garn, S. M., Lewis, A. B. and Kerewsky, S. (1965). Genetic, nutritional, and maturational correlates of dental development. Journal of Dental Research, 44, 228–42.CrossRefGoogle ScholarPubMed
Garn, S. M., Lewis, A. B., Koski, K. and Polachek, D. L. (1958). The sex difference in tooth calcification. Journal of Dental Research, 37, 561–7.CrossRefGoogle ScholarPubMed
Gates, R. E. (1966). Computation of the median age of eruption of permanent teeth using probit analysis and an electronic computer. Journal of Dental Research, 45, 1024–8.CrossRefGoogle ScholarPubMed
Gingerich, P. D., Smith, B. H. and Rosenberg, K. (1982). Allometric scaling in the dentition of primates and prediction of body weight from tooth size in fossils. American Journal of Physical Anthropology, 58, 81–100.CrossRefGoogle ScholarPubMed
Gleiser, I. and Hunt, E. E. (1955). The permanent mandibular first molar: its calcification, eruption and decay. American Journal of Physical Anthropology, 13, 253–84.CrossRefGoogle ScholarPubMed
Godfrey, L. R., Samonds, K. E., Jungers, W. L. and Sutherland, M. R. (2003). Dental development and primate life histories. In Primate Life Histories and Socioecology, ed. Kappeler, P. M. and Pereira, M. E.. University of Chicago Press, pp. 177–203.Google Scholar
Goldstein, D. S. and Kopin, I. J. (2007). Evolution of concepts of stress. Stress: the International Journal on the Biology of Stress, 10, 109–20.CrossRefGoogle ScholarPubMed
Goodall, J. (1986). The Chimpanzees of Gombe: Patterns of Behavior. Cambridge, MA: Belknap Press of Harvard University Press.Google Scholar
Goodman, A. H. and Armelagos, G. J. (1985). Disease and death at Dr Dickson’s Mounds. Natural History, 9(85), 12–19.Google Scholar
Goodman, A. H. and Armelagos, G. J. (1988). Childhood stress and decreased longevity in a prehistoric population. American Anthropologist, 90, 936–44.CrossRefGoogle Scholar
Goodman, A. H., Armelagos, G. J. and Rose, J. C. (1980). Enamel hypoplasias as indicators of stress in three prehistoric populations from Illinois. Human Biology, 52, 515–28.Google ScholarPubMed
Goodman, A. H., Armelagos, G. J. and Rose, J. C. (1984a). The chronological distribution of enamel hypoplasias from prehistoric Dickson Mounds populations. American Journal of Physical Anthropology, 65, 259–66.CrossRefGoogle ScholarPubMed
Goodman, A. H., Lallo, J., Armelagos, G. J. and Rose, J. C. (1984b). Health changes at Dickson Mounds, Illinois (A.D. 950–1300). In Palaeopathology at the Origins of Agriculture, ed. Cohen, M. N. and Armelagos, G. J.. New York: Academic Press, pp. 271–306.Google Scholar
Goodman, A. H., Martinez, C. and Chavez, A. (1991). Nutritional supplementation and the development of linear enamel hypoplasias in children from Tezonteopan, Mexico. American Journal of Clinical Nutrition, 53, 773–81.CrossRefGoogle ScholarPubMed
Goodman, A. H. and Rose, J. C. (1990). Assessment of systemic physiological perturbations from dental enamel hypoplasias and associated histological structures. YearBook of Physical Anthropology, 33, 59–110.CrossRefGoogle Scholar
Goodman, A. H. and Song, R.-J. (1999). Sources of variation in estimated ages at formation of linear enamel hypoplasias. In Human Growth in the Past: Studies from Bones and Teeth, ed. Hoppa, R. and FitzGerald, C. M.. Cambridge University Press, pp. 210–40.Google Scholar
Goodman, A. H., Thomas, R. B., Swedlund, A. C. and Armelagos, G. J. (1988). Biocultural perspectives of stress in prehistoric, historical and contemporary population research. Yearbook of Physical Anthropology, 31, 169–202.CrossRefGoogle Scholar
Gradstein, F. M., Ogg, J. G. and Smith, A. G. (2005). A Geologic Time Scale 2004. Cambridge University Press.CrossRefGoogle Scholar
Grether, W. F. and Yerkes, R. M. (1940). Weight norms and relations for chimpanzee. American Journal of Physical Anthropology, 27, 182–97.CrossRefGoogle Scholar
Grün, R., Stringer, C., McDermott, F. et al. (2005). U-series and ESR analyses of bones and teeth relating to the human burials from Skhul. Journal of Human Evolution, 49, 316–34.CrossRefGoogle ScholarPubMed
Guatelli-Steinberg, D. (2001). What can developmental defects of enamel reveal about physiological stress in non-human primates?Evolutionary Anthropology, 10, 138–51.CrossRefGoogle Scholar
Guatelli-Steinberg, D. (2004). Analysis and significance of linear enamel hypoplasia in Plio Pleistocene hominins. American Journal of Physical Anthropology, 123, 199–215.CrossRefGoogle ScholarPubMed
Guatelli-Steinberg, D. (2009). Recent studies of dental development in Neandertals: implications for Neandertal life histories. Evolutionary Anthropology, 18, 9–20.CrossRefGoogle Scholar
Guatelli-Steinberg, D., Ferrell, R. J. and Spence, J. (2012). Linear enamel hypoplasia as an indicator of physiological stress in great apes: reviewing the evidence in light of enamel growth variation. American Journal of Physical Anthropology, 148, 191–204.CrossRefGoogle ScholarPubMed
Guatelli-Steinberg, D., Larsen, C. S. and Hutchinson, D. L. (2004). Prevalence and the duration of linear enamel hypoplasia: a comparative study of Neandertals and Inuit foragers. Journal of Human Evolution, 47, 65–84.CrossRefGoogle ScholarPubMed
Guatelli-Steinberg, D. and Reid, D. J. (2008). What molars contribute to an emerging understanding of lateral enamel formation in Neandertals vs. modern humans. Journal of Human Evolution, 54, 236–50.CrossRefGoogle Scholar
Guatelli-Steinberg, D., Reid, D. J. and Bishop, T. A. (2007). Did the lateral enamel of Neandertal anterior teeth grow differently from that of modern humans?Journal of Human Evolution, 52, 72–84.CrossRefGoogle ScholarPubMed
Guatelli-Steinberg, D., Reid, D. J., Bishop, T. A. and Larsen, C. S. (2005). Anterior tooth growth periods in Neandertals were comparable to those of modern humans. Proceedings of the National Academy of Sciences USA, 102, 14197–202.CrossRefGoogle ScholarPubMed
Guatelli-Steinberg, D., Reid, D. J., Bishop, T. A. and Larsen, C. S. (2007a). Imbricational enamel formation in Neandertals and recent modern humans. In Dental Perspectives on Human Evolution: State of the Art Research in Dental Paleoanthropology, ed. Bailey, S. E. and Hublin, J. J.. Dordrecht: Springer, pp. 211–30.CrossRefGoogle Scholar
Guatelli-Steinberg, D., Reid, D. J., Bishop, T. A. and Larsen, C. S. (2007b). Not so fast: a reply to Ramirez Rozzi and Sardi (2007). Journal of Human Evolution, 53, 114–18.CrossRefGoogle Scholar
Guatelli-Steinberg, D. and Skinner, M. (2000). Prevalence and etiology of linear enamel hypoplasia in monkeys and apes from Asia and Africa. Folia Primatologica, 71, 115–32.CrossRefGoogle ScholarPubMed
Gurven, M. and Kaplan, H. (2007). Longevity among hunter gatherers: a cross cultural examination. Population and Development Review, 33, 321–65.CrossRefGoogle Scholar
Gustafson, A. G. (1955). The similarity between contralateral pairs of teeth. Odontologisk Tidskrift, 63, 245–8.Google ScholarPubMed
Gustafson, G. and Gustafson, A. G. (1967). Microanatomy and histochemistry of enamel. In Structural and Chemical Organization of Teeth, ed. Miles, A. E. W.. London: Academic Press, pp. 135–62.Google Scholar
Gysi, A. (1931). Metabolism in adult enamel. Dental Digest, 37, 661–8.Google Scholar
Haavikko, K. (1970). The formation and the alveolar and clinical eruption of the permanent teeth. Proceedings of the Finnish Dental Society, 66, 101–70.Google Scholar
Hamada, Y. and Udono, T. (2002). Longitudinal analysis of length growth in the chimpanzee (Pan troglodytes). American Journal of Physical Anthropology, 118, 268–84.CrossRefGoogle Scholar
Hamada, Y., Udono, T., Teramoto, M. and Hayasaka, I. (2004). Body, head and facial growth: comparison between macaques (Macaca fuscata) and chimpanzee (Pan troglodytes) based on somatometry. Annals of Anatomy, 186, 451–61.CrossRefGoogle ScholarPubMed
Hamilton, M. A., Russo, R. C. and Thurston, R. V. (1977). Trimmed Spearman-Karber method for estimating median lethal concentrations in toxicity bioassays. Environmental Science & Technology, 11, 714–19.CrossRefGoogle Scholar
Hannibal, D. L. and Guatelli-Steinberg, D. (2005). Linear enamel hypoplasia in the great apes: analysis by genus and locality. American Journal of Physical Anthropology, 127, 13–25.CrossRefGoogle ScholarPubMed
Harcourt, J. K., Johnson, N. W. and Storey, E. (1962). In vivo incorporation of tetracycline in the teeth of man. Archives of Oral Biology, 7, 431–7.CrossRefGoogle Scholar
Harris, E. F. (2007). Mineralization of the mandibular third molar: a study of American blacks and whites. American Journal of Physical Anthropology, 132, 98–109.CrossRefGoogle ScholarPubMed
Harris, E. F. and Buck, A. L. (2002). Tooth mineralization: a technical note on the Moorrees-Fanning-Hunt standards. Dental Anthropology, 16, 15–21.Google Scholar
Harrison, T. (2010). Apes among the tangled branches of human origins. Science, 327, 532.CrossRefGoogle ScholarPubMed
Harvati, K., Singh, N. and Lòpez, E. N. (2011). A three-dimensional look at the Neanderthal mandible. In Continuity and Discontinuity in the Peopling of Europe, ed. Condemi, S. and Weniger, G.-C.. Dordrecht: Springer, pp. 179–92.CrossRefGoogle Scholar
Harvey, P. H. and Clutton-Brock, T. H. (1985). Life history variation in primates. Evolution, 39, 559–81.CrossRefGoogle ScholarPubMed
Hassanali, J. (1985). The third permanent molar eruption in Kenyan Africans and Asians. Annals of Human Biology, 12, 517–23.CrossRefGoogle ScholarPubMed
Hassanali, J. and Odhiambo, J. W. (1981). Ages of eruption of the permanent teeth in Kenyan African and Asian children. Annals of Human Biology, 8, 425–34.CrossRefGoogle ScholarPubMed
Hawkes, K., O’Connell, J. F. and Blurton Jones, N. G. (2003). Human life histories: primate trade-offs, grandmothering sociology, and the fossil record. In Primate Life Histories and Socioecology, ed. Kappeler, P. M. and Pereira, M. E.. University of Chicago Press, pp. 204–27.Google Scholar
Hill, K., Boesch, C., Goodall, J., Pusey, A., Williams, J. and Wrangham, R. (2001). Mortality rates among wild chimpanzees. Journal of Human Evolution, 40, 437–50.CrossRefGoogle ScholarPubMed
Hillson, S. W. (1979). Diet and dental disease. World Archaeology, 11, 147–62.CrossRefGoogle ScholarPubMed
Hillson, S. W. (1992a). Dental enamel growth, perikymata and hypoplasia in ancient tooth crowns. Journal of the Royal Society of Medicine, 85, 460–6.Google ScholarPubMed
Hillson, S. W. (1992b). Impression and replica methods for studying hypoplasia and perikymata on human tooth crown surfaces from archaeological sites. International Journal of Osteoarchaeology, 2, 65–78.CrossRefGoogle Scholar
Hillson, S. W. (1992c). Studies of growth in dental tissues. In Culture, Ecology & Dental Anthropology, ed. Lukacs, J. R.. Delhi: Kamla-Raj Enterprises, pp. 7–23.Google Scholar
Hillson, S. W. (1996). Dental Anthropology. Cambridge University Press.CrossRefGoogle Scholar
Hillson, S. W. (2000). Dental pathology. In Biological Anthropology of the Human Skeleton, ed. Katzenberg, M. A. and Saunders, S. R.. New York: Wiley, pp. 249–86.Google Scholar
Hillson, S. W. (2005). Teeth. 2nd edn. Cambridge Manuals in Archaeology. Cambridge University Press.Google Scholar
Hillson, S. W. and Antoine, D. M. (2011). The mechanisms that produce the defects of enamel hypoplasia. American Journal of Physical Anthropology, Supplement: Program of the 80th Annual Meeting of the American Association of Physical Anthropologists, 163.Google Scholar
Hillson, S. W., Antoine, D. M. and Dean, M. C. (1999). A detailed developmental study of the defects of dental enamel in a group of post-Medieval children from London. In Dental Morphology ‘98, ed. Mayhall, J. T. and Heikinnen, T.. Oulu University Press, pp. 102–11.Google Scholar
Hillson, S. W. and Bond, S. (1997). Relationship of enamel hypoplasia to the pattern of tooth crown growth: a discussion. American Journal of Physical Anthropology, 104, 89–104.3.0.CO;2-8>CrossRefGoogle ScholarPubMed
Hillson, S. W., Grigson, C. and Bond, S. (1998). The dental defects of congenital syphilis. American Journal of Physical Anthropology, 107, 25–40.3.0.CO;2-C>CrossRefGoogle ScholarPubMed
Hillson, S. W. and Jones, B. K. (1989). Instruments for measuring surface profiles: an application in the study of ancient human tooth crown surfaces. Journal of Archaeological Science, 16, 95–105.CrossRefGoogle Scholar
Hirota, F. (1982). Prism arrangement in human cusp enamel deduced by X-ray diffraction. Archives of Oral Biology, 27, 931–7.CrossRefGoogle ScholarPubMed
Hodges, D. C. and Wilkinson, R. G. (1990). Effect of tooth size on the ageing and chronological distribution of enamel hypoplastic defects. American Journal of Human Biology, 2, 553–60.CrossRefGoogle ScholarPubMed
Hoffman, M. A. (1984). Egypt Before the Pharaohs. London: ARK Paperbacks.Google Scholar
Holliday, T. W. (1997). Body proportions in Late Pleistocene Europe and modern human origins. Journal of Human Evolution, 32, 423–47.CrossRefGoogle ScholarPubMed
Holt, S. A., Reid, D. J. and Guatelli-Steinberg, D. (2012). Brief communication: Premolar enamel formation: completion of figures for aging LEH defects in permanent dentition. Dental Anthropology, 25, 4–7.Google Scholar
Hsu, S. C. and Levine, M. A. (2004). Perinatal calcium metabolism: physiology and pathophysiology. Seminars in Neonatology, 9, 23–36.CrossRefGoogle ScholarPubMed
Hu, H., Shih, R., Rothenberg, S. and Schwartz, B. S. (2007). The epidemiology of lead toxicity in adults: measuring dose and consideration of other methodologic issues. Environmental Health Perspectives, 115, 455–62.CrossRefGoogle ScholarPubMed
Humphrey, L. T. (2010). Weaning behaviour in human evolution. Seminars in Cell & Developmental Biology, 21, 453–61.CrossRefGoogle ScholarPubMed
Hurme, V. O. (1948). Standards of variation in the eruption of the first six permanent teeth. Child Development, 19, 213–31.CrossRefGoogle Scholar
Hurme, V. O. (1960). Estimation of monkey age by dental formula. Annals of the New York Academy of Sciences, 85, 795–9.CrossRefGoogle ScholarPubMed
Hurme, V. O. and van Wagenen, G. (1953). Basic data on the emergence of deciduous teeth in the monkey (Macaca mulatta). Proceedings of the American Philosophical Society, 97, 291–315.Google Scholar
Hurme, V. O. and Van Wagenen, G. (1956). Emergence of permanent first molars in the monkey (Macaca mulatta). Association with other growth phenomena. The Yale Journal of Biology and Medicine, 28, 538–67.Google ScholarPubMed
Hurme, V. O. and van Wagenen, G. (1961). Basic data on the emergence of permanent teeth in the rhesus monkey “(Macaca mulatta)”. Proceedings of the American Philosophical Society, 105, 105–40.Google Scholar
Hutchinson, D. L. and Larsen, C. S. (1988). Determination of stress episode duration from linear enamel hypoplasias: a case study from St Catherine’s Island, Georgia. Human Biology, 60, 93–110.Google Scholar
Hutchinson, D. L. and Larsen, C. S. (2001). Enamel hypoplasia and stress in la Florida. In Bioarchaeology of Spanish Florida. The Impact of Colonialism, ed. Larsen, C. S.. Gainsville: University Press of Florida, pp. 181–206.Google Scholar
Hutchinson, D. L., Larsen, C. S. and Choi, I. (1997). Stressed to the max? Physiological perturbation in the Krapina Neandertals. Current Anthropology, 38, 904–14.CrossRefGoogle Scholar
Hutchinson, J. (1857). On the influence of hereditary syphilis on the teeth. Transactions of the Odontological Society of Great Britain, 2, 95–106.Google Scholar
Hutchinson, J. (1858). Report on the effects of infantile syphilis in marring the development of teeth. Transactions of the Pathological Society of London, 9, 449–56.Google Scholar
Hutchinson, J. (1887). Syphilis. London: Cassell.Google ScholarPubMed
Ice, G. H. and James, G. D. (2007). Measuring Stress in Humans. A Practical Guide for the Field. Cambridge Studies in Biological and Evolutionary Anthropology. Cambridge University Press.Google Scholar
Infante, P. F. and Gillespie, G. M. (1974). An epidemiologic study of linear enamel hypoplasia of deciduous anterior teeth in Guatemalan children. Archives of Oral Biology, 19, 1055–61.CrossRefGoogle Scholar
Iuliano Burns, S., Mirwald, R. L. and Bailey, D. A. (2001). Timing and magnitude of peak height velocity and peak tissue velocities for early, average, and late maturing boys and girls. American Journal of Human Biology, 13, 1–8.3.0.CO;2-S>CrossRefGoogle ScholarPubMed
Jernvall, J. and Thesleff, I. (2012). Tooth shape formation and tooth renewal: evolving with the same signals. Development, 139, 3487–97.CrossRefGoogle ScholarPubMed
Johnsen, D., Krejci, C., Hack, M. and Fanaroff, A. (1984). Distribution of enamel defects and the association with respiratory distress in very low birthweight infants. Journal of Dental Research, 63, 59–64.CrossRefGoogle ScholarPubMed
Jones, S. J. and Boyde, A. (1984). Ultrastructure of dentin and dentinogenesis. In Dentin and Dentinogenesis, ed. Linde, A.. Boca Raton: CRC Press, pp. 81–134.Google Scholar
Jørgensen, K. D. (1956). The deciduous dentition. A descriptive and comparative anatomical study. Acta Odontologica Scandinavica, 14 (Supplement 20), 1–202.Google Scholar
Judge, D. S. and Carey, J. R. (2000). Postreproductive life predicted by primate patterns. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 55, B201–9.CrossRefGoogle ScholarPubMed
Kahumbu, P. and Eley, R. M. (1991). Teeth emergence in wild olive baboons in Kenya and formulation of a dental schedule for aging wild baboon populations. American Journal of Primatology, 23, 1–9.CrossRefGoogle Scholar
Kaltsas, G. A. and Chrousos, G. P. (2007). The neuroendocrinology of stress. In The Handbook of Psychophysiology, ed. Cacioppo, J., Tassinary, L. G. and Berntson, G. G.. Cambridge University Press, pp. 303–18.Google Scholar
Kappeler, P. M., Pereira, M. E. and van Schaik, C. P. (2003). Primate life histories and socioecology. In Primate Life Histories and Socioecology, ed. Kappeler, P. M. and Pereira, M. E.. University of Chicago Press, pp. 1–20.Google Scholar
Karnosh, L. J. (1926). Histopathology of syphilitic hypoplasia of the teeth. Archives of Dermatology & Syphilology, 13, 25–42.CrossRefGoogle Scholar
Kawasaki, K. and Fearnhead, R. W. (1975). On the relationship between tetracycline and the incremental lines in dentine. Journal of Anatomy, 119, 49–59.Google ScholarPubMed
Kawasaki, K., Tanaka, S. and Isikawa, T. (1979). On the daily incremental lines in human dentine. Archives of Oral Biology, 24, 939–43.CrossRefGoogle ScholarPubMed
Keiter, M. D. (1981). Hand-rearing and development of a lowland gorilla at Woodland Park Zoo, Seattle. International Zoo Yearbook, 21, 229–35.CrossRefGoogle Scholar
Kelley, J. (1997). Paleobiological and phylogenetic significance of life history in Miocene hominoids. In Function, Phylogeny and Fossils: Miocene Hominoid Evolution and Adaptations, ed. Begun, D. R., Ward, C. V. and Rose, M. D.. New York: Plenum Press, pp. 173–208.CrossRefGoogle Scholar
Kelley, J. (2002). Life history evolution in Miocene and extant apes. In Human Evolution Through Developmental Change, ed. Minugh-Purvis, N. and McNamara, K. J.. Baltimore: Johns Hopkins University Press, pp. 223–48.Google Scholar
Kelley, J. (2004). Life history and cognitive evolution in the apes. In The Evolution of Thought: Evolutionary Origins of Great Ape Intelligence, ed. Russon, A. E. and Begun, D. R.. Cambridge University Press, pp. 280–97.CrossRefGoogle Scholar
Kelley, J., Dean, M. C. and Reid, D. J. (2001). Molar growth in the late Miocene hominoid Drypopithecus laietanus. In Dental Morphology 1998, Proceedings of the 11th International Symposium on Dental Morphology, Oulu, Finland, ed. Mayhall, J. T. and Heikinnen, T.. Oulu University Press, pp. 123–34.Google Scholar
Kelley, J., Dean, M. C. and Ross, S. (2009). Root growth during molar eruption in extant great apes. In Frontiers of Oral Biology: Interdisciplinary Dental Morphology, ed. Koppe, T., Meyer, G. and Alt, G. R.. Basel: Karger, pp. 128–33.Google Scholar
Kelley, J. and Schwartz, G. T. (2010). Dental development and life history in living African and Asian apes. Proceedings of the National Academy of Sciences, 107, 1035–40.CrossRefGoogle ScholarPubMed
Kelley, J. and Smith, T. M. (2003). Age at first molar emergence in early Miocene Afropithecus turkanensis and life-history evolution in the Hominoidea. Journal of Human Evolution, 44, 307–29.CrossRefGoogle ScholarPubMed
Key, C. A. (2000). The evolution of human life history. World Archaeology, 31, 329–50.CrossRefGoogle ScholarPubMed
Kibii, J. M. (2007). Taxonomy, taphonomy and palaeoenvironment of hominid and non-hominid primates from the Jacovec Cavern, Sterkfontein. The South African Archaeological Bulletin, 62, 90–7.Google Scholar
King, T., Hillson, S. and Humphrey, L. T. (2002). A detailed study of enamel hypoplasia in a post-Medieval adolescent of known age and sex. Archives of Oral Biology, 47, 29–39.CrossRefGoogle Scholar
King, T., Humphrey, L. T. and Hillson, S. W. (2005). Linear enamel hypoplasias as indicators of systemic physiological stress: evidence from two known age-at-death and sex populations from postmedieval London. American Journal of Physical Anthropology, 128, 547–59.CrossRefGoogle ScholarPubMed
Klein, H. (1945). Etiology of enamel hypoplasia in rickets as determined by studies on rats and swine. Journal of the American Dental Association, 18, 866–84.CrossRefGoogle Scholar
Klein, R. G. (1999). The Human Career. Human Biological and Cultural Origins. University of Chicago Press.Google Scholar
Kraemer, H. C., Horvat, J. R., Doering, C. and McGinnis, P. R. (1982). Male chimpanzee development focusing on adolescence: integration of behavioral with physiological changes. Primates, 23, 393–405.CrossRefGoogle Scholar
Kraus, B. S. and Jordan, R. E. (1965). The Human Dentition before Birth. Philadelphia: Lea & Febiger.Google Scholar
Kremenak, N. W. and Squier, C. A. (1997). Pioneers in oral biology: the migrations of Gottlieb, Kronfeld, Orban, Weinmann, and Sicher from Vienna to America. Critical Reviews in Oral Biology & Medicine, 8, 108–28.CrossRefGoogle Scholar
Kreshover, S. J. (1944). The pathogenesis of enamel hypoplasia: an experimental study. Journal of Dental Research, 23, 231–8.CrossRefGoogle Scholar
Kreshover, S. J. (1960a). Metabolic disturbances in tooth formation. Annals of the New York Academy of Sciences, 85, 161–7.CrossRefGoogle ScholarPubMed
Kreshover, S. J. (1960b). Prenatal factors in oral pathologic conditions. Oral Surgery, Oral Medicine, Oral Pathology, 13, 569–77.CrossRefGoogle ScholarPubMed
Kreshover, S. J. and Clough, O. W. (1953). Prenatal influences on tooth development II. Artificially induced fever in rats. Journal of Dental Research, 32, 565–72.CrossRefGoogle ScholarPubMed
Kreshover, S. J., Clough, O. W. and Hancock, J. A. (1954). Vaccinia infection in pregnant rabbits and its effect on maternal and fetal dental tissues. Journal of the American Dental Association, 49, 549–62.CrossRefGoogle ScholarPubMed
Krogman, W. M. (1970). Bertram Shirley Kraus. 1913–1970. A biographical sketch. American Journal of Physical Anthropology, 33, 3–7.Google ScholarPubMed
Kronfeld, R. (1935). Development and calcification of the human deciduous dentition. The Bur, 15, 18–25.Google Scholar
Kronfeld, R. and Schour, I. (1939). Neonatal dental hypoplasia. Journal of the American Dental Association, 26, 18–32.CrossRefGoogle Scholar
Kunitomo, K. (1928). Age determination by body length and weight in Japanese fetuses (in Japanese). Nippon Gakuzyutu Kyôkai, 4, 670–4.Google Scholar
Kuykendall, K. (2001). On radiographic and histological methods for assessing dental development in chimpanzees: comments on Beynon et al. (1998) and Reid et al. (1998). Journal of Human Evolution, 40, 67–76.CrossRefGoogle Scholar
Kuykendall, K. L. (1996). Dental development in chimpanzees (Pan troglodytes): the timing of tooth calcification stages. American Journal of Physical Anthropology, 99, 135–58.3.0.CO;2-#>CrossRefGoogle ScholarPubMed
Kuykendall, K. L. and Conroy, G. C. (1996). Permanent tooth calcification in chimpanzees (Pan troglodytes): patterns and polymorphisms. American Journal of Physical Anthropology, 99, 159–74.3.0.CO;2-W>CrossRefGoogle ScholarPubMed
Kuykendall, K. L., Mahoney, C. J. and Conroy, G. C. (1992). Probit and survival analysis of tooth emergence ages in a mixed longitudinal sample of chimpanzees (Pan troglodytes). American Journal of Physical Anthropology, 89, 379–99.CrossRefGoogle Scholar
Lacruz, R. S. (2007). Enamel microstructure of the hominid KB 5223 from Kromdraai, South Africa. American Journal of Physical Anthropology, 132, 175–82.CrossRefGoogle ScholarPubMed
Lacruz, R. S. and Bromage, T. G. (2006). Appositional enamel growth in molars of South African fossil hominids. Journal of Anatomy, 209, 13–20.CrossRefGoogle ScholarPubMed
Lacruz, R. S., Dean, M. C., Ramirez-Rozzi, F. and Bromage, T. G. (2008). Megadontia, striae periodicity and patterns of enamel secretion in Plio-Pleistocene fossil hominins. Journal of Anatomy, 213, 148–58.CrossRefGoogle ScholarPubMed
Lacruz, R. S. and Ramirez-Rozzi, F. V. (2010). Molar crown development in Australopithecus afarensis. Journal of Human Evolution, 58, 201–6.CrossRefGoogle ScholarPubMed
Lacruz, R. S., Rozzi, F. R. and Bromage, T. G. (2005). Dental enamel hypoplasia, age at death, and weaning in the Taung child. South African Journal of Science, 101, 567–9.Google Scholar
Lacruz, R. S., Rozzi, F. R. and Bromage, T. G. (2006). Variation in enamel development of South African fossil hominids. Journal of Human Evolution, 51, 580–90.CrossRefGoogle ScholarPubMed
Larsen, C. S. (1995). Biological changes in human populations with agriculture. Annual Review of Anthropology, 24, 185–213.CrossRefGoogle Scholar
Larsen, C. S. (1997). Bioarchaeology. Cambridge Studies in Biological Anthropology. Cambridge University Press.CrossRefGoogle Scholar
Lavelle, C. L. B. (1975). A note on the variation in the timing of deciduous tooth eruption. Journal of Dentistry, 3, 267–70.CrossRefGoogle ScholarPubMed
Lawn, J. E., Cousens, S. and Zupan, J. (2005). 4 million neonatal deaths: when? where? why?The Lancet, 365, 891–900.CrossRefGoogle ScholarPubMed
Leigh, S. R. (1996). Evolution of human growth spurts. American Journal of Physical Anthropology, 101, 455–74.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
Leigh, S. R. (2001). Evolution of human growth. Evolutionary Anthropology: Issues, News, and Reviews, 10, 223–36.CrossRefGoogle Scholar
Leigh, S. R. (2004). Brain growth, life history, and cognition in primate and human evolution. American Journal of Primatology, 62, 139–64.CrossRefGoogle ScholarPubMed
Lewis, A. B. and Garn, S. M. (1960). The relationship between tooth formation and other maturational factors. Angle Orthodontist, 30, 70–7.Google Scholar
Lieberman, D. E., Pilbeam, D. R. and Wrangham, R. W. (2008). The transition from Australopithecus to Homo. In Transitions in Prehistory: Essays in Honor of Ofer Bar-Yosef, ed. Shea, J. J. and Lieberman, D. E.. Oxford: Oxbow Press, pp. 1–22.Google Scholar
Lindemann, G. (1958). Forekomsten af emaljehypoplasi hos børn, som har lidt af mave – tramsygdomme. Odontologisk Tidskrift, 66, 101–26.Google Scholar
Littleton, J. (2005). Invisible impacts but long term consequences: hypoplasia and contact in central Australia. American Journal of Physical Anthropology, 126, 295–304.CrossRefGoogle ScholarPubMed
Littleton, J. and Townsend, G. C. (2005). Linear enamel hypoplasia and historical change in a central Australian community. Australian Dental Journal, 50, 101–7.CrossRefGoogle Scholar
Liversidge, H. M. (1994). Accuracy of age estimation from developing teeth of a population of known age (0 to 5.4 years). International Journal of Osteoarchaeology, 4, 37–46.CrossRefGoogle Scholar
Liversidge, H. M. (2000). Crown formation times of human permanent anterior teeth. Archives of Oral Biology, 45, 713–21.CrossRefGoogle ScholarPubMed
Liversidge, H. M. (2003). Variation in modern human dental development. In Patterns of Growth and Development in the Genus Homo, ed. Thompson, J. L., Krovitz, G. E. and Nelson, A. J.. Cambridge University Press, pp. 73–113.Google Scholar
Liversidge, H. M. (2008). Timing of human mandibular third molar formation. Annals of Human Biology, 35, 294–321.CrossRefGoogle ScholarPubMed
Liversidge, H. M. (2010). Interpreting group differences using Demirjian’s dental maturity method. Forensic Science International, 201, 95–101.CrossRefGoogle ScholarPubMed
Liversidge, H. M., Herdeg, B. and Rösing, F.W. (1998). Dental age estimation of non-adults. A review of methods and principles. In: Alt, K.W., Rösing, F.W. and Teschler-Nicola, M. (eds) Dental Anthropology. Fundamentals, Limits and Prospects. Vienna: Springer, pp. 419–42.Google Scholar
Liversidge, H. M., Chaillet, N., Mornstad, H. et al. (2006). Timing of Demirjian’s tooth formation stages. Annals of Human Biology, 33, 454–70.CrossRefGoogle ScholarPubMed
Liversidge, H. M., Dean, M. C. and Molleson, T. I. (1993). Increasing human tooth length between birth and 5.4 years. American Journal of Physical Anthropology, 90, 307–13.CrossRefGoogle ScholarPubMed
Liversidge, H. M. and Molleson, T. I. (1999). Developing permanent tooth length as an estimate of age. Journal of Forensic Sciences, 44, 917–20.CrossRefGoogle ScholarPubMed
Liversidge, H. M. and Molleson, T. I. (2004). Variation in crown and root formation and eruption of human deciduous teeth. American Journal of Physical Anthropology, 123, 172–80.CrossRefGoogle ScholarPubMed
Liversidge, H. M. and Speechly, T. (2001). Growth of permanent mandibular teeth of British children aged 4 to 9 years. Annals of Human Biology, 28, 256–62.CrossRefGoogle ScholarPubMed
Logan, W. H. G. and Kronfeld, R. (1933). Development of the human jaws and surrounding structures from birth to the age of fifteen years. Journal of the American Dental Association, 20, 379–427.CrossRefGoogle Scholar
Loughna, P., Chitty, L. S., Evans, T. and Chudleigh, T. (2009). Fetal size and dating: charts recommended for clinical obstetric practice. Ultrasound, 17, 160–6.CrossRefGoogle Scholar
Lukacs, J. R. (1991). Localized enamel hypoplasia of human deciduous canine teeth: prevalence and pattern of expression in rural Pakistan. Human Biology, 63, 513–22.Google ScholarPubMed
Lukacs, J. R. (1999). Enamel hypoplasia in deciduous teeth of great apes: do differences in defect prevalence imply differential levels of physiological stress?American Journal of Physical Anthropology, 110, 351–63.3.0.CO;2-2>CrossRefGoogle ScholarPubMed
Lunt, R. C. and Law, D. B. (1974). A review of the chronology of calcification of deciduous teeth. Journal of the American Dental Association, 89, 599–606.CrossRefGoogle ScholarPubMed
Macchiarelli, R., Bondioli, L., Debénath, A. et al. (2006). How Neanderthal molar teeth grew. Nature, 444, 748–51.CrossRefGoogle ScholarPubMed
Macho, G. A., Reid, C., Leakey, M. G., Jablonski, N. G. and Beynon, A. D. (1996). Climatic effects on dental development of Theropithecus oswaldi from Koobi Fora and Olorgesailie. Journal of Human Evolution, 30, 57–70.CrossRefGoogle Scholar
Magnusson, T. E. (1982). Emergence of primary teeth and onset of dental stages in Icelandic children. Community Dentistry and Oral Epidemiology, 10, 91–7.CrossRefGoogle ScholarPubMed
Mahoney, P. (2008). Intraspecific variation in M1 enamel development in modern humans: implications for human evolution. Journal of Human Evolution, 55, 131–47.CrossRefGoogle ScholarPubMed
Mahoney, P., Smith, T. M., Schwartz, G. T., Dean, C. and Kelley, J. (2007). Molar crown formation in the Late Miocene Asian hominoids, Sivapithecus parvada and Sivapithecus indicus. Journal of Human Evolution, 53, 61–8.CrossRefGoogle ScholarPubMed
Mann, A. E. (1975). Some Paleodemographic Aspects of the South African Australopithecines. University of Pennsylvania Publications in Anthropology No. 1. Philadelphia: University of Pennsylvania.Google Scholar
Marshall, W. A. and Tanner, J. M. (1970). Variations in the pattern of pubertal changes in boys. Archives of Disease in Childhood, 45, 13–23.CrossRefGoogle ScholarPubMed
Martin, R. D. (1981). Relative brain size and basal metabolic rate in terrestrial vertebrates. Nature, 293, 57–60.CrossRefGoogle ScholarPubMed
Martin, R. D. (2007). The evolution of human reproduction: a primatological perspective. American Journal of Physical Anthropology, 134, 59–84.CrossRefGoogle Scholar
Martinón-Torres, M., Bermúdez de Castro, J. M., Gómez-Robles, A. et al. (2007). Dental evidence on the hominin dispersals during the Pleistocene. Proceedings of the National Academy of Sciences USA, 104, 13279–82.CrossRefGoogle ScholarPubMed
Massler, M. and Schour, I. (1944). Atlas of the Mouth and Adjacent Parts in Health and Disease, 1st edn. Chicago: American Dental Association.Google Scholar
Massler, M., Schour, I. and Poncher, H. (1941). Developmental pattern of the child as reflected in the calcification pattern of the teeth. American Journal of Diseases of Children, 62, 33–67.Google Scholar
Matsuoka, Y., Vigouroux, Y., Goodman, M. M. and Sanchez, G. (2002). A single domestication for maize shown by multilocus microsatellite genotyping. Proceedings of the National Academy of Sciences of the United States of America, 99, 6080–4.CrossRefGoogle ScholarPubMed
Matsuzawa, T., Sakura, O., Kimura, T., Hamada, Y. and Sugiyama, Y. (1990). Case report on the death of a wild chimpanzee (Pan troglodytes verus). Primates, 31, 635–41.CrossRefGoogle Scholar
Mellanby, E. (1919). An experimental investigation on rickets. Two lectures delivered at the Royal College of Surgeons of England. The Lancet, 193, 407–12.Google Scholar
Mellanby, E. (1934). Nutrition and Disease. The Interaction of Clinical and Experimental Work. Edinburgh & London: Oliver & Boyd.Google Scholar
Mellanby, M. (1918). An experimental study of the influence of diet on teeth formation. The Lancet, 192, 766–70.CrossRefGoogle Scholar
Mellanby, M. (1929). Diet and Teeth: an Experimental Study. Part I. Dental Structure in Dogs. Medical Research Council, Special Report Series, No. 140. London: His Majesty’s Stationery Office.Google Scholar
Mellars, P. (2004). Neanderthals and the modern human colonization of Europe. Nature, 432, 461–5.CrossRefGoogle ScholarPubMed
Miani, A. and Miani, C. (1971). Circadian advancement rhythm of the calcification front in dog dentin. Minerva Stomatologica, 20, 169–78.Google ScholarPubMed
Miles, A. E. W. and Grigson, C. (1990). Colyer’s Variations and Diseases of the Teeth of Animals, revised edn. Cambridge University Press.CrossRefGoogle Scholar
Mincer, H. H., Harris, E. F. and Berryman, H. E. (1993). The A.B.F.O. study of third molar development and its use as an estimator of chronological age. Journal of Forensic Sciences, 38, 379–90.CrossRefGoogle ScholarPubMed
Moggi-Cecchi, J. (2000). Enamel hypoplasia in South African early hominids: a reappraisal. American Journal of Physical Anthropology, Supplement 30, 230–1.Google Scholar
Molleson, T. I., Cox, M., Waldron, H. A. and Whittaker, D. K. (1993). The Spitalfields Project. Volume 2 – the Anthropology. The Middling Sort. CBA Research Report 86. York: Council for British Archaeology.Google Scholar
Molnar, S. and Molnar, I. M. (1985). The incidence of enamel hypoplasia among the Krapina Neandertals. American Anthropologist, 87, 536–49.CrossRefGoogle Scholar
Molnar, S., Przybeck, T. R., Gantt, D. G., Elizondo, R. S. and Wilkerson, J. E. (1981). Dentin apposition rates as markers of primate growth. American Journal of Physical Anthropology, 55, 443–50.CrossRefGoogle Scholar
Moon, H. (1877). On irregular and defective tooth development. Transactions of the Odontological Society of Great Britain, 9, 223–43.Google Scholar
Moorrees, C. F. A., Fanning, E. A. and Hunt, E. E. (1963a). Age variation of formation stages for ten permanent teeth. Journal of Dental Research, 42, 1490–502.CrossRefGoogle ScholarPubMed
Moorrees, C. F. A., Fanning, E. A. and Hunt, E. E. (1963b). Formation and resorption of three deciduous teeth in children. American Journal of Physical Anthropology, 21, 205–13.CrossRefGoogle ScholarPubMed
Mounier, A., Marchal, F. and Condemi, S. (2009). Is Homo heidelbergensis a distinct species? New insight on the Mauer mandible. Journal of Human Evolution, 56, 219–46.CrossRefGoogle ScholarPubMed
Mumby, H. and Vinicius, L. (2008). Primate growth in the slow lane: a study of inter-species variation in the growth constant A. Evolutionary Biology, 35, 287–95.CrossRefGoogle Scholar
Nadarajah, K., Marlowe, T. J. and Notter, D. R. (1984). Growth patterns of Angus, Charolais, Charolais x Angus and Holstein x Angus cows from birth to maturity. Journal of Animal Science, 59, 957–66.CrossRefGoogle ScholarPubMed
Nahar, B., Hamadani, J. D., Ahmed, T. et al. (2008). Effects of psychosocial stimulation on growth and development of severely malnourished children in a nutrition unit in Bangladesh. European Journal of Clinical Nutrition, 63, 725–31.CrossRefGoogle Scholar
Neiburger, E. J. (1990). Enamel hypoplasias: poor indicators of dietary stress. American Journal of Physical Anthropology, 82, 231–2.CrossRefGoogle ScholarPubMed
Newell, E. A., Guatelli Steinberg, D., Field, M., Cooke, C. and Feeney, R. N. M. (2006). Life history, enamel formation, and linear enamel hypoplasia in the Ceboidea. American Journal of Physical Anthropology, 131, 252–60.CrossRefGoogle ScholarPubMed
Newell-Morris, L. and Sirianni, J. E. (1982). Parameters of bone growth in the fetal and infant macaque (Macaca nemestrina) humerus as documented by trichromatic bone labels. In Factors and Mechanisms Influencing Bone Growth, ed. Dixon, A. D. and Sarnat, B. G.. New York: Alan R. Liss, pp. 243–58.Google Scholar
Newell-Morris, L., Tarrant, L. H., Sirianni, J. E. and Munger, R. G. (1980). Trichromatic fluorescent vital labeling of bone in the fetal macaque. Cellular and Molecular Life Sciences, 36, 623–4.CrossRefGoogle Scholar
Nishida, T., Hamai, M., Hasegawa, T. et al. (2003). Demography, female life history, and reproductive profiles among the chimpanzees of Mahale. American Journal of Primatology, 59, 99–121.CrossRefGoogle ScholarPubMed
Nissen, H. W. and Riesen, A. H. (1946). The deciduous dentition of chimpanzee. Growth, 9, 265–74.Google Scholar
Nissen, H. W. and Riesen, A. H. (1964). The eruption of the permanent dentition of chimpanzee. American Journal of Physical Anthropology, 22, 285–94.CrossRefGoogle ScholarPubMed
Nomata, N. (1964). Chronological study on the crown formation of the human deciduous dentition. Bulletin of the Tokyo Medical & Dental University, 11, 55–76.Google Scholar
Ogilvie, M. D., Curran, B. K. and Trinkaus, E. (1989). Incidence and patterning of dental enamel hypoplasia among the Neandertals. American Journal of Physical Anthropology, 79, 25–41.CrossRefGoogle ScholarPubMed
Ogilvie, M. D. and Trinkaus, E. (1990). Reply to Neiburger. American Journal of Physical Anthropology, 82, 232–3.CrossRefGoogle Scholar
Ohtsuka, M. and Shinoda, H. (1995). Ontogeny of circadian dentinogenesis in the rat incisor. Archives of Oral Biology, 40, 481–5.CrossRefGoogle ScholarPubMed
Okada, M. and Mimura, T. (1938). Zur Physiologie und Pharmakologie der Hartgewebe. I. Mitteilung: eine Vitalfärbungsmethode mit Bleisalzen und ihre Anwendung bei den Untersuchunger über die rhythmische Streifenbildung der harten Zahngewebe. Japanese Journal of Medical Sciences Part 4 Pharmacology, 11, 166–70.Google Scholar
Okada, M. and Mimura, T. (1940). Zur Physiologie und Pharmakologie der Hartgewebe. III. Mitteilung: über die Genese der rhythmischen Streifenbildung der harten Zahngewebe. Japanese Journal of Medical Sciences Part 4 Pharmacology, 13, 92–5.Google Scholar
Okada, M. and Mimura, T. (1941). Zur Physiologie und Pharmakologie der Hartegewebe. VII. Mitteilung: über den zeitlichen Verlauf der Schwangerschaft und Entbindung geseher von der Streifenfigur im Dentin des mütterlisches Kaninchens, sowie über eine Blei-Vitalfärbung des fötalen Dentins. Japanese Journal of Medical Sciences Part 4 Pharmacology, 14, 6–10.Google Scholar
Okada, M. and Mimura, T. (1942). Zur Physiologie und Pharmakologie der Hartgeweve. VIII. Mitteilung: über den zeitlichen Verlauf der Mobilisierung des subkutanen Bleidepots, betrachtet von der Streifenfigur im Kaninchendentin. Japanese Journal of Medical Sciences Part 4 Pharmacology, 15, 8–11.Google Scholar
Okada, M., Mimura, T. and Fuse, S. (1940). Zur Physiologie und Pharmakologie der Hartegewebe. VI. Mitteilung: eine methode der pharmakologischen Untersuchung durch die Anwendung von Streifenfiguren in Kaninchendentin und eine Beobachtung über die Wirkung einiger Pharmaka durch dieselbe Methode. Japanese Journal of Medical Sciences Part 4 Pharmacology, 13, 99–101.Google Scholar
Ooë, T. (1979). Development of human first and second permanent molar, with special reference to the distal portion of the dental lamina. Anatomy & Embryology, 155, 221–40.CrossRefGoogle ScholarPubMed
Ooë, T. (1981). Human Tooth and Dental Arch Development. Tokyo: Ishiyaku.Google Scholar
Osborn, J. W. and Ten Cate, A. R. (1983). Advanced Dental Histology, 4th edn. Dental Practitioner Handbook, Whole No. 6. Bristol: John Wright.Google Scholar
Owen, R. (1845). Odontography or a Treatise on the Comparative Anatomy of the Teeth: their Physiological Relations, Mode of Development and Microscopic Structure in the Vertebrate Animals. London: Hyppolyte Baillière.Google Scholar
Parascandola, J. and Ihde, A. J. (1977). Edward Mellanby and the antirachitic factor. Bulletin of the History of Medicine, 51, 507–15.Google Scholar
Partridge, T. C. (2005). Dating of the Sterkfontein hominids: progress and possibilities. Transactions of the Royal Society of South Africa, 60, 107–9.CrossRefGoogle Scholar
Pastore, L., Carroccio, A., Compilato, D., Panzarella, V., Serpico, R. and Muzio, L. L. (2008). Oral manifestations of celiac disease. Journal of Clinical Gastroenterology, 42, 224–32.Google ScholarPubMed
Patten, B. M. (1968). Human Embryology, 3rd edn. New York: McGraw-Hill.Google Scholar
Patten, B. M. (1976). Patten’s Human Embryology: Elements of Clinical Development, revised edn. New York, London: McGraw-Hill.Google Scholar
Pavelka, M. S. M. and Fedigan, L. M. (1991). Menopause: a comparative life history perspective. American Journal of Physical Anthropology, 34, 13–38.CrossRefGoogle Scholar
Payton, C. G. (1932). The growth in length of the long bones in the madder-fed pig. Journal of Anatomy, 66, 414–25.Google Scholar
Pearson, O. M., Cordero, R. and Busby, A. (2006). How different were Neanderthals’ habitual activities? A comparative analysis with diverse groups of recent humans. In Neanderthals Revisited: New Approaches and Perspectives, ed. Harvati, K. and Harrison, T.. Dordrecht: Springer, pp. 135–56.CrossRefGoogle Scholar
Peck, A. M. and Vågerö, D. H. (1989). Adult body height, self perceived health and mortality in the Swedish population. Journal of Epidemiology and Community Health, 43, 380–4.CrossRefGoogle ScholarPubMed
Pedersen, P. O. and Scott, D. B. (1951). Replica studies of the surfaces of teeth from Alaskan Eskimo, West Greenland Natives, and American Whites. Acta Odontologica Scandinavica, 9, 261–92.CrossRefGoogle Scholar
Peppe, D. J., McNulty, K. P., Cote, S. M., Harcourt-Smith, W. E. H., Dunsworth, H. M. and Van Couvering, J. A. (2009). Stratigraphic interpretation of the Kulu Formation (Early Miocene, Rusinga Island, Kenya) and its implications for primate evolution. Journal of Human Evolution, 56, 447–61.CrossRefGoogle ScholarPubMed
Pereira, M. E. and Leigh, S. R. (2003). Modes of primate development. In Primate Life Histories and Socioecology, ed. Kappeler, P. M. and Pereira, M. E.. University of Chicago Press, pp. 149–76.Google Scholar
Pettitt, P. B. (2000). Neanderthal lifecycles: development and social phases in the lives of the last archaics. World Archaeology, 31, 351–66.CrossRefGoogle ScholarPubMed
Pflüger, H. (1924). Eine für Lues congenita charakteristiche Formveränderung (Knospenform) an dem ersten Molaren. Münchener Medizinsiche Wochenschrift, 71, 605–7.Google Scholar
Phillips-Conroy, J. E. and Jolly, C. J. (1988). Dental eruption schedules of wild and captive baboons. American Journal of Primatology, 15, 17–29.CrossRefGoogle Scholar
Piaget, J. and Inhelder, B. (1969). The Psychology of the Child. London: Routledge & Kegan Paul.Google Scholar
Pickerill, H. P. (1912). The Prevention of Dental Caries and Oral Sepsis. Being the Cartwright Prize Essay of the Royal College of Surgeons of England for 1906–1910, with some Additions. London: Ballière, Tindall & Cox.Google Scholar
Pickerill, H. P. (1913). The structure of the enamel. Dental Cosmos, 55, 959–88.Google Scholar
Pickering, T. R., Clarke, R. J. and Moggi Cecchi, J. (2004a). Role of carnivores in the accumulation of the Sterkfontein Member 4 hominid assemblage: a taphonomic reassessment of the complete hominid fossil sample (1936–1999). American Journal of Physical Anthropology, 125, 1–15.CrossRefGoogle Scholar
Pickering, T. R., Dominguez-Rodrigo, M., Egeland, C. P. and Brain, C. K. (2004b). Beyond leopards: tooth marks and the contribution of multiple carnivore taxa to the accumulation of the Swartkrans Member 3 fossil assemblage. Journal of Human Evolution, 46, 595–604.CrossRefGoogle ScholarPubMed
Pindborg, J. J. (1982). Aetiology of developmental enamel defects not related to fluorosis. International Dental Journal, 32, 123–34.Google Scholar
Pounds, J. G., Long, G. J. and Rosen, J. F. (1991). Cellular and molecular toxicity of lead in bone. Environmental Health Perspectives, 91, 17–32.CrossRefGoogle ScholarPubMed
Preiswerk, G. (1895). Beiträge zur Kentniss der Schmelzstructur bei Säugetieren mit besonderer Berücksichtigung der Ungulaten. Doctoral dissertation of the University of Basel. Basel: Verlags-Druckerei.
Promislow, D. E. L. and Harvey, P. H. (1990). Living fast and dying young: a comparative analysis of life history variation among mammals. Journal of Zoology, 220, 417–37.CrossRefGoogle Scholar
Purvis, A., Webster, A. J., Agapow, P. M., Jones, K. E. and Isaac, N. J. B. (2003). Primate life histories and phylogeny. In Primate Life Histories and Socioecology, ed. Kappeler, P. M. and Pereira, M. E.. University of Chicago Press, pp. 25–40.Google Scholar
Purvis, R. J., MacKay, G. S., Cockburn, F. et al. (1973). Enamel hypoplasia of the teeth associated with neonatal tetany: a manifestation of maternal vitamin D deficiency. Lancet, 2, 811–14.CrossRefGoogle ScholarPubMed
Putkonen, T. (1962). Dental changes in congenital syphilis. Relationship to other syphilitic stigmata. Acta Dermato-Venerologica, 42, 44–62.Google ScholarPubMed
Radovcic, J., Smith, F. H., Trinkaus, E. and Wolpoff, M. H. (1988). The Krapina Hominids. An Illustrated Catalog of Skeletal Collection. Zagreb: Croatian Natural History Museum.Google Scholar
Rae, T. C., Koppe, T. and Stringer, C. B. (2010). The Neanderthal face is not cold adapted. Journal of Human Evolution, 60, 234–9.CrossRefGoogle Scholar
Ramirez-Rozzi, F. V. (1995). Time of crown formation in Plio-Pleistocene hominid teeth. In Structure, Function and Evolution of Teeth. Dental Morphology Meeting, Florence, September 1992, ed. Moggi-Cecchi, J.. Florence: International Institute for the Study of Man, pp. 217–38.Google Scholar
Ramirez-Rozzi, F. V. and Bermudez de Castro, J. M. (2009). Surprisingly rapid growth in Neanderthals. Nature, 428, 936–40.CrossRefGoogle Scholar
Ramirez-Rozzi, F. V. and Sardi, M. (2007). Crown-formation time in Neandertal anterior teeth revisited. Journal of Human Evolution, 53, 108–13.CrossRefGoogle ScholarPubMed
Ranere, A. J., Piperno, D. R., Holst, I., Dickau, R. and Iriarte, J. (2009). The cultural and chronological context of early Holocene maize and squash domestication in the Central Balsas River Valley, Mexico. Proceedings of the National Academy of Sciences, 106, 5014–8.CrossRefGoogle ScholarPubMed
Rawstron, S. A., Bromberg, K. and Hammerschlag, M. R. (1993a). STD in children: syphilis and gonorrhoea. Genitourinary Medicine, 69, 66–75.Google ScholarPubMed
Rawstron, S. A., Jenkins, S., Blanchard, S., Ping-Wu, L. and Bromberg, K. (1993b). Maternal and congenital syphilis in Brooklyn, NY. American Journal of Diseases of Children, 147, 727–31.CrossRefGoogle ScholarPubMed
Reeves, J. and Adams, M. (1993). The Spitalfields Project. Volume 1 – the Archaeology. Across the Styx. CBA Research Report 85. York: Council for British Archaeology.Google Scholar
Reid, D. J., Beynon, A. D. and Ramirez-Rozzi, F. V. (1998a). Histological reconstruction of dental development in four individuals from a Medieval site in Picardie, France. Journal of Human Evolution, 35, 463–77.CrossRefGoogle ScholarPubMed
Reid, D. J. and Dean, M. C. (2000). The timing of linear hypoplasias on human anterior teeth. American Journal of Physical Anthropology, 113, 135–40.3.0.CO;2-A>CrossRefGoogle ScholarPubMed
Reid, D. J. and Dean, M. C. (2006). Variation in modern human enamel formation times. Journal of Human Evolution, 50, 329–46.CrossRefGoogle ScholarPubMed
Reid, D. J. and Ferrell, R. J. (2006). The relationship between number of striae of Retzius and their periodicity in imbricational enamel formation. Journal of Human Evolution, 50, 195–202.CrossRefGoogle ScholarPubMed
Reid, D. J., Schwartz, G. T., Dean, M. C. and Chandrasekera, M. S. (1998b). A histological reconstruction of dental development in the common chimpanzee, Pan troglodytes. Journal of Human Evolution, 35, 427–48.CrossRefGoogle ScholarPubMed
Retzius, A. (1837). Bemerkungen über den inneren Bau der Zähne, mit besonderer Rücksicht auf den im Zahnknochen vorkommenden Röhrenbau. Arkiv für Anatomie, Physiologie und Wissenschaftliche Medicin, 1837, 486–566.Google Scholar
Risnes, S. (1985a). A scanning electron microscope study of the three-dimensional extent of Retzius lines in human dental enamel. Scandinavian Journal of Dental Research, 93, 145–52.Google ScholarPubMed
Risnes, S. (1985b). Circumferential continuity of perikymata in human dental enamel investigated by scanning electron microscopy. Scandinavian Journal of Dental Research, 93, 185–91.Google ScholarPubMed
Risnes, S. (1986). Enamel apposition rate and the prism periodicity in human teeth. Scandinavian Journal of Dental Research, 94, 394–404.Google ScholarPubMed
Risnes, S. (1990). Structural characteristics of staircase-type Retzius lines in human dental enamel analyzed by scanning electron-microscopy. Anatomical Record, 226, 135–46.CrossRefGoogle ScholarPubMed
Risnes, S. (1998). Growth tracks in dental enamel. Journal of Human Evolution, 35, 331–50.CrossRefGoogle ScholarPubMed
Ritzman, T. B., Baker, B. J. and Schwartz, G. T. (2008). A fine line: a comparison of methods for estimating ages of linear enamel hypoplasia formation. American Journal of Physical Anthropology, 135, 348–61.CrossRefGoogle ScholarPubMed
Robbins, A. M., Robbins, M. M., Gerald Steklis, N. and Steklis, H. D. (2006). Age related patterns of reproductive success among female mountain gorillas. American Journal of Physical Anthropology, 131, 511–21.CrossRefGoogle ScholarPubMed
Robine, J. M. and Allard, M. (1998). The oldest human. Science, 279, 1831.CrossRefGoogle ScholarPubMed
Robinson, J. T. (1952). Some hominid features of the ape-man dentition. Journal of the Dental Association of South Africa, 7, 1–12.Google Scholar
Robinson, J. T. (1956). The Dentition of the Australopithecinae. Transvaal Museum Memoir No 9. Pretoria: Transvaal Museum.Google Scholar
Robson, S. L., van Schaik, C. and Hawkes, K. (2006). The derived features of human life history. In The Evolution of Human Life History, ed. Hawkes, K. and Paine, R. R.. Santa Fe: School of American Research Press, pp. 17–44.Google Scholar
Robson, S. L. and Wood, B. (2008). Hominin life history: reconstruction and evolution. Journal of Anatomy, 212, 394–425.CrossRefGoogle ScholarPubMed
Rolian, C., Lieberman, D. E. and Hallgrímsson, B. (2010). The coevolution of human hands and feet. Evolution, 64, 1558–68.CrossRefGoogle ScholarPubMed
Romero, L. M., Dickens, M. J. and Cyr, N. E. (2009). The reactive scope model – a new model integrating homeostasis, allostasis, and stress. Hormones and Behavior, 55, 375–89.CrossRefGoogle Scholar
Rose, J. C. (1977). Defective enamel histology of prehistoric teeth from Illinois. American Journal of Physical Anthropology, 46, 439–46.CrossRefGoogle ScholarPubMed
Rose, J. C. (1979). Morphological variations of human enamel prisms within abnormal striae of Retzius. Human Biology, 51, 139–51.Google ScholarPubMed
Rose, J. C., Armelagos, G. J. and Lallo, J. W. (1978). Histological enamel indicator of childhood stress in prehistoric skeletal samples. American Journal of Physical Anthropology, 49, 511–16.CrossRefGoogle ScholarPubMed
Rosenberg, G. D. and Simmons, D. J. (1980). Rhythmic dentinogenesis in the rabbit incisor: circadian, ultradian, and infradian periods. Calcified Tissue International, 32, 29–44.CrossRefGoogle ScholarPubMed
Rossi, P. F., Bondioli, L., Geusa, G. and Macchiarelli, R. (1999). Osteodental Biology of the People of Portus Romae (Necropolis of Isola Sacra, 2nd–3rd Cent. AD). I. Digital Archives of Human Paleobiology. 1. Rome: Soprintendenza Speciale al Museo Nazionale Preistorico Etnografico ‘L. Pigorini’. Available as a CD-ROM.Google Scholar
Ruff, C. B. (2003). Long bone articular and diaphyseal structure in old world monkeys and apes. II: estimation of body mass. American Journal of Physical Anthropology, 120, 16–37.CrossRefGoogle ScholarPubMed
Russon, A. E. (2004). Great ape cognitive systems. In The Evolution of Thought: Evolutionary Origins of Great Ape Intelligence, ed. Russon, A. E. and Begun, D. R.. Cambridge University Press, pp. 76–100.CrossRefGoogle Scholar
Russon, A. E. and Begun, D. R. (2004). Evolutionary origins of great ape intelligence. In The Evolution of Thought: Evolutionary Origins of Great Ape Intelligence, ed. Russon, A. E. and Begun, D. R.. Cambridge University Press, pp. 353–68.CrossRefGoogle Scholar
Sarnat, B. G. and Schour, I. (1941). Enamel hypoplasia (chronologic enamel aplasia) in relation to systemic disease: a chronologic, morphologic and etiologic classification. Journal of the American Dental Association, 28, 1989–2000.CrossRefGoogle Scholar
Sarnat, B. G. and Schour, I. (1942). Enamel hypoplasia (chronologic enamel aplasia) in relation to systemic disease: a chronologic, morphologic and etiologic classification. Journal of the American Dental Association, 29, 397–418.CrossRefGoogle Scholar
Scammon, R. E. (1930). The measurement of the body in childhood. In The Measurement of Man, ed. Harris, J. A., Jackson, C. M., Patterson, D. G. and Scammon, R. E.. Minneapolis: University of Minnesota, pp. 171–215.Google Scholar
Scheuer, L. (1998). Age and death and cause of death of the people buried at St Bride’s Church, Fleet Street. In Grave Concerns: Death and Burial in England 1700–1850, ed. Cox, M.. York: Council for British Archaeology.Google Scholar
Scheuer, L. and Black, S. (2004). The Juvenile Skeleton. London: Academic Press.Google Scholar
Scheuer, L. and MacLaughlin-Black, S. (1994). Age estimation from the pars basilaris of the fetal and juvenile occipital bone. International Journal of Osteoarchaeology, 4, 377–82.CrossRefGoogle Scholar
Schmidt, W. J. and Keil, A. (1971). Polarizing Microscopy of Dental Tissues. Theory, Methods and Results from the Structural Analysis of Normal and Diseased Hard Dental Tissues and Tissues Associated with Them in Man and Other Vertebrates. Oxford: Pergamon Press.Google Scholar
Schneider, B. J. (1968). Lead acetate as a vital marker for the analysis of bone growth. American Journal of Physical Anthropology, 29, 197–200.CrossRefGoogle ScholarPubMed
Schoeninger, M. J. (2009). Stable isotope evidence for the adoption of maize agriculture. Current Anthropology, 50, 633–40.CrossRefGoogle ScholarPubMed
Schour, I. (1936). Neonatal line in enamel and dentin of human deciduous teeth and first permanent molar. Journal of the American Dental Association, 23, 1946–55.CrossRefGoogle Scholar
Schour, I. and Hoffman, M. M. (1939). Studies in tooth development, II. The rate of apposition of enamel and dentin in man and other animals. Journal of Dental Research, 18, 161–75.CrossRefGoogle Scholar
Schour, I., Hoffman, M. M., Sarnat, B. G. and Engel, M. B. (1941). Vital staining of growing bones and teeth with Alizarine Red S. Journal of Dental Research, 20, 411–18.CrossRefGoogle Scholar
Schour, I. and Kronfeld, R. (1938). Tooth ring analysis: IV. Neonatal dental hypoplasia. Analysis of the teeth of an infant with injury of the brain at birth. Archives of Pathology, 26, 471–90.Google Scholar
Schour, I. and Massler, M. (1940a). Studies in tooth development: the growth pattern of human teeth. Part I. Journal of the American Dental Association, 27, 1778–93.CrossRefGoogle Scholar
Schour, I. and Massler, M. (1940b). Studies in tooth development: the growth pattern of human teeth. Part II. Journal of the American Dental Association, 27, 1918–31.CrossRefGoogle Scholar
Schour, I. and Massler, M. (1941). The development of the human dentition. Journal of the American Dental Association, 28, 1153–60.Google Scholar
Schour, I. and Poncher, H. G. (1937). Rate of apposition of human enamel and dentin as measured by the effects of acute fluorosis. American Journal of Diseases of Children, 54, 757–76.Google Scholar
Schultz, A. H. (1935). Eruption and decay of the permanent teeth in primates. American Journal of Physical Anthropology, 19, 489–581.CrossRefGoogle Scholar
Schultz, A. H. (1960). Age changes in primates and their modification in man. In Human Growth, ed. Tanner, J. M.. Oxford: Pergamon Press, pp. 1–20.Google Scholar
Schultz, P. D. and McHenry, H. M. (1975). Age distribution of enamel hypoplasia in prehistoric California Indians. Journal of Dental Research, 54, 913.CrossRefGoogle Scholar
Schuman, E. L. and Sognnaes, R. F. (1956). Developmental microscopic defects in the teeth of sub-human primates. American Journal of Physical Anthropology, 14, 193–214.CrossRefGoogle Scholar
Schwartz, G. T. and Dean, M. C. (2001). The ontogeny of canine dimorphism in extant hominoids. American Journal of Physical Anthropology, 115, 269–83.CrossRefGoogle ScholarPubMed
Schwartz, G. T., Liu, W. and Zheng, L. (2003). Preliminary investigation of dental microstructure in the Yuanmou hominoid (Lufengpithecus hudienensis), Yunnan Province, China. Journal of Human Evolution, 44, 189–202.CrossRefGoogle ScholarPubMed
Schwartz, G. T., Reid, D. J. and Dean, C. (2001). Developmental aspects of sexual dimorphism in hominoid canines. International Journal of Primatology, 22, 837–60.CrossRefGoogle Scholar
Schwartz, G. T., Reid, D. J., Dean, M. C. and Zihlman, A. L. (2006). A faithful record of stressful life events recorded in the dental developmental record of a juvenile gorilla. International Journal of Primatology, 27, 1201–19.CrossRefGoogle Scholar
Schwartz, J. H. and Tattersall, I. (2002). Terminology and Craniodental Morphology of Genus Homo (Europe). Vol. 1 of The Human Fossil Record. New York: Wiley-Liss.Google Scholar
Schwartz, J. H. and Tattersall, I. (2003). Terminology and Craniodental Morphology of Genus Homo (Africa and Asia). Vol. 2 of The Human Fossil Record. New York: Wiley-Liss.Google Scholar
Selye, H. (1976). Forty years of stress research: principal remaining problems and misconceptions. Canadian Medical Association Journal, 115, 53–6.Google ScholarPubMed
Semaw, S. (2000). The world’s oldest stone artefacts from Gona, Ethiopia: their implications for understanding stone technology and patterns of human evolution between 2.6–1.5 million years ago. Journal of Archaeological Science, 27, 1197–214.CrossRefGoogle Scholar
Seow, W. K., Brown, J. P., Tudehope, D. A. and O’Callaghan, M. (1984). Dental defects in the deciduous dentition of premature infants with low birth weight and neonatal rickets. Pediatric Dentistry, 6, 88–92.Google ScholarPubMed
Sheiham, A. (2005). Oral health, general health and quality of life. Bulletin of the World Health Organization, 83, 644.Google ScholarPubMed
Shellis, R. P. (1984). Variations in growth of the enamel crown in human teeth and a possible relationship between growth and enamel structure. Archives of Oral Biology, 29, 697–705.CrossRefGoogle Scholar
Shellis, R. P. (1998). Utilization of periodic markings in enamel to obtain information on tooth growth. Journal of Human Evolution, 35, 387–400.CrossRefGoogle ScholarPubMed
Siebert, J. R. and Swindler, D. R. (1991). Perinatal dental development in the chimpanzee (Pan troglodytes). American Journal of Physical Anthropology, 86, 287–94.CrossRefGoogle Scholar
Simpson, M. S. (1981). Effects of demineralizing tetracycline-stained human dentine. Calcified Tissue International, 33, 101–4.CrossRefGoogle ScholarPubMed
Simpson, S. W. (1999). Reconstructing patterns of growth disruption from enamel microstructure. In Human Growth in the Past: Studies from Bones and Teeth, ed. Hoppa, R. and FitzGerald, C. M.. Cambridge University Press, pp. 241–63.Google Scholar
Simpson, S. W. (2001). Patterns of growth disruption in La Florida: evidence from enamel microstructure. In Bioarchaeology of Spanish Florida, ed. Larsen, C. S.. Gainesville: University Press of Florida, pp. 146–80.Google Scholar
Skinner, M. (1996). Developmental stress in immature hominines from Late Pleistocene Eurasia: evidence from enamel hypoplasia. Journal of Archaeological Science, 23, 833–52.CrossRefGoogle Scholar
Skinner, M. (1997). Dental wear in immature Late Pleistocene European hominines. Journal of Archaeological Science, 24, 677–700.CrossRefGoogle Scholar
Skinner, M. and Dupras, T. (1993). Variation in birth timing and location of the neonatal line in human enamel. Journal of Forensic Sciences, 38, 1383–90.CrossRefGoogle ScholarPubMed
Skinner, M. F. (1986). Enamel hypoplasia in sympatric chimpanzee and gorilla. Journal of Human Evolution, 1, 289–312.CrossRefGoogle Scholar
Skinner, M. F. and Hopwood, D. (2004). Hypothesis for the causes and periodicity of repetitive linear enamel hypoplasia in large, wild African (Pan troglodytes and Gorilla gorilla) and Asian (Pongo pygmaeus) apes. American Journal of Physical Anthropology, 123, 216–35.CrossRefGoogle ScholarPubMed
Skinner, M. F. and Hung, J. T. W. (1986). Localized enamel hypoplasia of the primary canine. Journal of Dentistry for Children, 53, 197–200.Google ScholarPubMed
Skinner, M. F. and Hung, J. T. W. (1989). Social and biological correlates of localized enamel hypoplasia of the human deciduous canine tooth. American Journal of Physical Anthropology, 79, 159–75.CrossRefGoogle ScholarPubMed
Skinner, M. F. and Newell, E. A. (2003). Localized hypoplasia of the primary canine in bonobos, orangutans, and gibbons. American Journal of Physical Anthropology, 120, 61–72.CrossRefGoogle ScholarPubMed
Skinner, M. F. and Pruetz, J. D. (2012). Reconstruction of periodicity of repetitive linear enamel hypoplasia from perikymata counts on imbricational enamel among dry-adapted chimpanzees (Pan troglodytes verus) from Fongoli, Senegal. American Journal of Physical Anthropology, 149, 468–82.CrossRefGoogle ScholarPubMed
Skinner, M. M. and Wood, B. (2006). The evolution of modern human life history: a paleontological perspective. In The Evolution of Human Life History, ed. Hawkes, K. and Paine, R. R.. Santa Fe: School of American Research Press, pp. 331–64.Google Scholar
Smith, B. D. (1997). The initial domestication of Cucurbita pepo in the Americas 10,000 years ago. Science, 276, 932–4.CrossRefGoogle Scholar
Smith, B. H. (1986). Dental development in Australopithecus and early Homo. Nature, 323, 327–30.CrossRefGoogle Scholar
Smith, B. H. (1989). Dental development as a measure of life history in primates. Evolution, 43, 683–8.CrossRefGoogle ScholarPubMed
Smith, B. H. (1991a). Age of weaning approximates age of emergence of the first permanent molar in nonhuman primates. American Journal of Physical Anthropology, Supplement 12, 163–4.Google Scholar
Smith, B. H. (1991b). Dental development and the evolution of life history in Hominidae. American Journal of Physical Anthropology, 86, 157–74.CrossRefGoogle Scholar
Smith, B. H. (1991c). Standards of human tooth formation and dental age assessment. In Advances in Dental Anthropology, ed. Kelley, M. A. and Larsen, C. S.. New York: Wiley-Liss, pp. 143–68.Google Scholar
Smith, B. H. (1992). Life history and the evolution of human maturation. Evolutionary Anthropology: Issues, News, and Reviews, 1, 134–42.CrossRefGoogle Scholar
Smith, B. H. (2000). ‘Schultz’s rule’ and the evolution of tooth emergence and replacement patterns in primates and ungulates. In Development, Function and Evolution of Teeth, ed. Teaford, M. F., Smith, M. M. and Ferguson, M. W. J.. Cambridge University Press, pp. 212–27.CrossRefGoogle Scholar
Smith, B. H. and Boesch, C. (2010). Mortality and the magnitude of the “wild effect” in chimpanzee tooth emergence. Journal of Human Evolution, 60, 34–46.CrossRefGoogle ScholarPubMed
Smith, B. H., Crummett, T. L. and Brandt, K. L. (1994). Ages of eruption of primate teeth: a compendium for ageing individuals and comparing life histories. Yearbook of Physical Anthropology, 37, 177–232.CrossRefGoogle Scholar
Smith, B. H. and Garn, S. M. (1987). Polymorphisms in eruption sequence of permanent teeth in American children. American Journal of Physical Anthropology, 74, 289–303.CrossRefGoogle ScholarPubMed
Smith, M. C., Lantz, E. and Smith, H. V. (1932). The cause of mottled enamel. Journal of Dental Research, 12, 149–59.CrossRefGoogle Scholar
Smith, M. M. (2003). Vertebrate dentitions at the origin of jaws: when and how pattern evolved. Evolution & Development, 5, 394–413.CrossRefGoogle ScholarPubMed
Smith, T. M. (2006). Experimental determination of the periodicity of incremental features in enamel. Journal of Anatomy, 208, 99–113.CrossRefGoogle ScholarPubMed
Smith, T. M. (2008). Incremental dental development: methods and applications in hominoid evolutionary studies. Journal of Human Evolution, 54, 205–24.CrossRefGoogle ScholarPubMed
Smith, T. M., Martin, L. B. and Leakey, M. G. (2003). Enamel thickness, microstructure and development inAfropithecus turkanensis. Journal of Human Evolution, 44, 283–306.CrossRefGoogle ScholarPubMed
Smith, T. M. and Reid, D. J. (2009). Temporal nature of periradicular bands (“Striae Periradicales”) on mammalian tooth roots. In Comparative Dental Morphology, ed. Koppe, K., Meyer, G. and Alt, K. W.. Basel: Karger, pp. 85–92.Google Scholar
Smith, T. M., Reid, D. J., Dean, M. C. et al. (2007a). New perspectives on chimpanzee and human molar crown development. In Dental Perspectives on Human Evolution. State-of-the-Art Research in Dental Palaeoanthropology, ed. Bailey, S. E. and Hublin, J. J.. Dordrecht: Springer, pp. 177–92.CrossRefGoogle Scholar
Smith, T. M., Reid, D. J., Dean, M. C., Olejniczak, A. J. and Martin, L. B. (2007b). Molar development in common chimpanzees (Pan troglodytes). Journal of Human Evolution, 52, 201–16.CrossRefGoogle Scholar
Smith, T. M., Smith, B. H., Reid, D. J. et al. (2010a). Dental development of the Taï Forest chimpanzees revisited. Journal of Human Evolution, 58, 363–73.CrossRefGoogle ScholarPubMed
Smith, T. M. and Tafforeau, P. (2008). New visions of dental tissue research: tooth development, chemistry, and structure. Evolutionary Anthropology, 17, 213–26.CrossRefGoogle Scholar
Smith, T. M., Tafforeau, P., Reid, D. J., Grün, R., Eggins, S. and Boutaklout, M. (2007c). Earliest evidence of modern human life history in North Africa early Homo sapiens. Proceedings of the National Academy of Sciences USA, 104, 6128–33.CrossRefGoogle ScholarPubMed
Smith, T. M., Tafforeau, P., Reid, D. J. et al. (2010b). Dental evidence for ontogenetic differences between modern humans and Neanderthals. Proceedings of the National Academy of Sciences, 107, 20923–8.CrossRefGoogle ScholarPubMed
Smith, T. M., Toussaint, M., Reid, D. J., Olejniczak, A. J. and Hublin, J. J. (2007d). Rapid dental development in a Middle Paleolithic Belgian Neanderthal. Proceedings of the National Academy of Sciences USA, 104, 20220–5.CrossRefGoogle Scholar
Song, Y. M., Smith, G. D. and Sung, J. (2003). Adult height and cause-specific mortality: a large prospective study of South Korean men. American Journal of Epidemiology, 158, 479–81.CrossRefGoogle ScholarPubMed
Spocter, M. A. and Manger, P. R. (2007). The use of cranial variables for the estimation of body mass in fossil hominins. American Journal of Physical Anthropology, 134, 92–105.CrossRefGoogle ScholarPubMed
Starling, A. P. and Stock, J. T. (2007). Dental indicators of health and stress in early Egyptian and Nubian agriculturalists: a difficult transition and gradual recovery. American Journal of Physical Anthropology, 134, 520–8.CrossRefGoogle ScholarPubMed
Stimmler, L., Snodgrass, G. J. A. I. and Jaffe, E. (1973). Dental defects associated with neonatal symptomatic hypocalcemia. Archives of Disease in Childhood, 48, 217–20.CrossRefGoogle Scholar
Streeter, G. L. (1920). Weight, Sitting Height, Head Size, Foot Length, and Menstrual Age of the Human Embryo. Washington:Carnegie Institution of Washington.Google Scholar
Suckling, G., Brown, R. and Herbison, G. (1985). The prevalence of developmental defects of enamel in 696 nine-year-old New Zealand children participating in a health development study. Community Dental Health, 2, 303–13.Google Scholar
Suckling, G. W., Herbison, G. P. and Brown, R. H. (1987). Etiological factors influencing the prevalence of developmental defects of dental enamel in nine-year-old New Zealand children participating in a health and development study. Journal of Dental Research, 66, 1466–9.CrossRefGoogle Scholar
Sunderland, E. P., Smith, C. J. and Sunderland, R. (1987). A histological study of the chronology of initial mineralization in the human deciduous dentition. Archives of Oral Biology, 32, 167–74.CrossRefGoogle ScholarPubMed
Swärdstedt, T. (1966). Odontological Aspects of a Medieval Population in the Province of Jämtland/Mid Sweden. Doctoral Thesis, University of Lund. Stockholm: Tiden Barnagen.Google Scholar
Sweeney, E. A., Cabrera, J., Urritia, J. and Mata, L. (1969). Factors associated with linear hypoplasia of human deciduous incisors. Journal of Dental Research, 48, 1275–9.CrossRefGoogle ScholarPubMed
Sweeney, E. A. and Guzman, M. (1966). Oral conditions in children from three highland villages in Guatemala. Archives of Oral Biology, 11, 687–98.CrossRefGoogle ScholarPubMed
Sweeney, E. A., Saffir, A. J. and DeLeon, R. (1971). Linear hypoplasia of deciduous incisor teeth in malnourished children. American Journal of Clinical Nutrition, 24, 29–31.CrossRefGoogle ScholarPubMed
Swindler, D. R. (2002). Primate Dentition. An Introduction to the Teeth of Non-human Primates. Cambridge University Press.CrossRefGoogle Scholar
Swindler, D. R. and McCoy, H. A. (1965). Primate odontogenesis. Journal of Dental Research, 44, 283–95.CrossRefGoogle ScholarPubMed
Swindler, D. R. and Meekins, D. (1991). Dental development of the permanent mandibular teeth in the baboon, Papio cynocephalus. American Journal of Human Biology, 3, 571–80.CrossRefGoogle ScholarPubMed
Swindler, D. R., Olshan, A. F. and Sirianni, J. E. (1982). Sex differences in permanent mandibular tooth development in Macaca nemestrina. Human Biology; an International Record of Research, 54, 45–52.Google ScholarPubMed
Swindler, D. R., Orlosky, F. J. and Hendrickx, A. G. (1968). Calcification of the deciduous molars in baboons (Papio anubis) and other primates. Journal of Dental Research, 47, 167–70.CrossRefGoogle ScholarPubMed
Tafforeau, P., Boistel, R., Boller, E. et al. (2006). Applications of X-ray synchrotron microtomography for non-destructive 3D studies of paleontological specimens. Applied Physics A Materials Science & Processing, 83, 195–202.CrossRefGoogle Scholar
Tafforeau, P. and Smith, T. M. (2008). Nondestructive imaging of hominoid dental microstructure using phase contrast X-ray synchrotron microtomography. Journal of Human Evolution, 54, 272–8.CrossRefGoogle ScholarPubMed
Taji, S., Hughes, T., Rogers, J. and Townsend, G. (2000). Localised enamel hypoplasia of human deciduous canines: genotype or environment?Australian Dental Journal, 45, 83–90.CrossRefGoogle ScholarPubMed
Talmi, E., Sarnat, B. G. and Eli, I. (1986). The effect of the birth process on the width of the neonatal line (abstract). Journal of Dental Research, 65, 576.Google Scholar
Tanner, J. M. (1962). Growth at Adolescence, 2nd edn. Oxford: Blackwell Scientific.Google Scholar
Tanner, J. M. (1981). A History of the Study of Human Growth. Cambridge University Press.Google Scholar
Tanner, J. M. (1989). Fetus into Man. Physical Growth from Conception to Maturity, revised edn. Cambridge, MA: Harvard University Press.Google Scholar
Tanner, J. M. and Cameron, N. (1980). Investigation of the mid-growth spurt in height, weight and limb circumferences in single-year velocity data from the London 1966–67 growth survey. Annals of Human Biology, 7, 565–77.CrossRefGoogle ScholarPubMed
Tanner, J. M. and Whitehouse, R. H. (1976). Clinical longitudinal standards for height, weight, height velocity, weight velocity, and stages of puberty. Archives of Disease in Childhood, 51, 170–9.CrossRefGoogle ScholarPubMed
Tanner, J. M., Whitehouse, R. H. and Takaishi, M. (1966). Standards from birth to maturity for height, weight, height velocity, and weight velocity: British children, 1965. I. Archives of Disease in Childhood, 41, 454–71.CrossRefGoogle Scholar
Tanner, J. M., Wilson, M. E. and Rudman, C. G. (1990). Pubertal growth spurt in the female rhesus monkey: relation to menarche and skeletal maturation. American Journal of Human Biology, 2, 101–6.CrossRefGoogle ScholarPubMed
Tappen, N. C. and Simmons, D. J. (1975). Correspondence of silver nitrate staining patterns in decalcified bone with the microradiographic image. The Anatomical Record, 182, 267–73.CrossRefGoogle ScholarPubMed
Tattersall, I. (2007). Neanderthals, Homo sapiens, and the question of species in paleoanthropology. Journal of Anthropological Sciences, 85, 139–46.Google Scholar
Taylor Parker, S. (2002). Evolutionary relationships between molar eruption and cognitive development in anthropoid primates. In Human Evolution through Developmental Change, ed. Minugh-Purvis, N. and McNamara, K. J.. Baltimore & London:Johns Hopkins University Press, pp. 303–16.Google Scholar
Ten Cate, A. R. (1998). Oral Histology: Development, Structure and Function, 5th edn. St Louis: C V Mosby.Google Scholar
Thackeray, J. F., Kirschvink, J. L. and Raub, T. D. (2002). Palaeomagnetic analyses of calcified deposits from the Plio-Pleistocene hominid site of Kromdraai, South Africa. South African Journal of Science, 98, 537–9.Google Scholar
Thompson, M. E. and Wrangham, R. W. (2008). Diet and reproductive function in wild female chimpanzees (Pan troglodytes schweinfurthii) at Kibale National Park, Uganda. American Journal of Physical Anthropology, 135, 171–81.CrossRefGoogle ScholarPubMed
Tonge, C. H. and McCance, R. A. (1973). Normal development of the jaws and teeth in pigs, and the delay and malocclusion produced by calorie deficiencies. Journal of Anatomy, 115, 1–22.Google ScholarPubMed
Trigger, B. G., Kemp, B. J., O’Connor, D. and Lloyd, A. B. (1983). Ancient Egypt. A Social History. Cambridge University Press.CrossRefGoogle Scholar
Trinkaus, E. (1995). Neanderthal mortality patterns. Journal of Archaeological Science, 22, 121–42.CrossRefGoogle Scholar
Trinkaus, E., Churchill, S. E., Ruff, C. B. and Vandermeersch, B. (1999). Long bone shaft robusticity and body proportions of the Saint-Césaire 1 Châtelperronian Neanderthal. Journal of Archaeological Science, 26, 753–73.CrossRefGoogle Scholar
Ubelaker, D. H. (1978). Human Skeletal Remains: Excavation, Analysis, Interpretation. Chicago: Aldine.Google Scholar
van Gerven, D., Beck, R. and Hummert, J. (1990). Patterns of enamel hypoplasia in two Medieval populations from Nubia’s Batn al Hajar. American Journal of Physical Anthropology, 82, 413–20.CrossRefGoogle Scholar
van Gerven, D. P., Sheridan, S. G. and Adams, W. Y. (1995). The health and nutrition of a medieval Nubian population: the impact of political and economic change. American Anthropologist, 97, 468–80.CrossRefGoogle Scholar
van Schaik, C., Barrickman, N. L., Bastian, M. L., Krakauer, E. B. and van Noordwijk, M. A. (2006). Primate life histories and the role of brains. In The Evolution of Human Life History, ed. Hawkes, K. and Paine, R. R.. Santa Fe: School of American Research Press, pp. 127–54.Google Scholar
van Wagenen, G. and Catchpole, H. R. (1956). Physical growth of the rhesus monkey (Macaca mulatta). American Journal of Physical Anthropology, 14, 245–73.CrossRefGoogle Scholar
van Wagenen, G., Catchpole, H. R., Negri, J. and Butzko, D. (1965). Growth of the fetus and placenta of the monkey (Macaca mulatta). American Journal of Physical Anthropology, 23, 23–33.CrossRefGoogle Scholar
von Ebner, V. (1902). Die Histologie der Zähne mit Einschluß der Histogenes. In Handbuch der Zahnheilkunde, ed. Scheff, J.. Vienna: A. Holder, pp. 243–302.Google Scholar
Waaler, H. T. (1984). Height, weight and mortality: the Norwegian experience. Acta Medica Scandinavica, 215, 1–56.CrossRefGoogle Scholar
Walker, M. L. and Herndon, J. G. (2008). Menopause in nonhuman primates?Biology of Reproduction, 79, 398–406.CrossRefGoogle ScholarPubMed
Walker, R., Hill, K., Burger, O. and Hurtado, A. M. (2006). Life in the slow lane revisited: ontogenetic separation between chimpanzees and humans. American Journal of Physical Anthropology, 129, 577–83.CrossRefGoogle ScholarPubMed
Ward, C. V., Flinn, M. and Begun, D. R. (2004). Body size and intelligence in hominoid evolution. In The Evolution of Thought: Evolutionary Origins of Great Ape Intelligence, ed. Russon, A. E. and Begun, D. R.. Cambridge University Press, pp. 335–49.CrossRefGoogle Scholar
Waugh, M. A. (1974). Alfred Fournier, 1832–1914. His influence on venereology. British Journal of Venereology, 50, 232–6.Google Scholar
Weber, D. F. and Eisenmann, D. (1971). Microscopy of the neonatal line in developing human enamel. American Journal of Anatomy, 132, 375–92.CrossRefGoogle ScholarPubMed
Weinmann, J., Svoboda, J. and Woods, R. (1945). Hereditary disturbances of enamel formation and calcification. Journal of the American Dental Association, 32, 397–418.CrossRefGoogle Scholar
White, T. D. (1978). Early hominid enamel hypoplasia. American Journal of Physical Anthropology, 49, 79–84.CrossRefGoogle ScholarPubMed
Wich, S. A., Utami-Atmoko, S. S., Setia, T. M. et al. (2004). Life history of wild Sumatran orangutans (Pongo abelii). Journal of Human Evolution, 47, 385–98.CrossRefGoogle Scholar
Williams, J. L. (1897). A contribution to the study of pathology of enamel. Dental Cosmos, 39, 169–96, 269–301, 353–74.Google Scholar
Willoughby, D. P. (1978). All About Gorillas. New Jersey: A.S. Barnes.Google Scholar
Wilson, D. F. and Shroff, F. R. (1970). The nature of the striae of Retzius as seen with the optical microscope. Australian Dental Journal, 15, 3–24.CrossRefGoogle ScholarPubMed
Winkler, L. A. (1995). A comparison of radiographic and anatomical evidence of tooth development in infant apes. Folia Primatologica, 65, 1–13.CrossRefGoogle ScholarPubMed
Winkler, L. A., Schwartz, J. H. and Swindler, D. R. (1991). Aspects of dental development in the orangutan prior to eruption of the permanent dentition. American Journal of Physical Anthropology, 86, 255–71.CrossRefGoogle Scholar
Winkler, L. A., Schwartz, J. H. and Swindler, D. R. (1996). Development of the orangutan permanent dentition: assessing patterns and variation in tooth development. American Journal of Physical Anthropology, 99, 205–20.3.0.CO;2-R>CrossRefGoogle ScholarPubMed
Winkler, L. A. and Swindler, D. R. (1990). A comparison of dental development in two neonatal orangutans. American Journal of Physical Anthropology, 81, 318.Google Scholar
Witzel, C., Kierdorf, U., Schultz, M. and Kierdorf, H. (2008). Insights from the inside: histological analysis of abnormal enamel microstructure associated with hypoplastic enamel defects in human teeth. American Journal of Physical Anthropology, 136, 400–14.CrossRefGoogle ScholarPubMed
Wood, B. and Lonergan, N. (2008). The hominin fossil record: taxa, grades and clades. Journal of Anatomy, 212, 354–76.CrossRefGoogle ScholarPubMed
World Health Organization (2010). World Health Statistics 2010. Geneva: WHO Press.Google Scholar
Worth, J. E. (2001). The ethnohistorical context of bioarchaeology in Spanish Florida. In Bioarchaeology of Spanish Florida. The Impact of Colonialism, ed. Larsen, C. S.. Gainsville: University Press of Florida, pp. 1–21.Google Scholar
Yen, P. K. J., Shaw, J. H. and Hong, Y. C. (1971). Effects of some staining agents on dentin apposition in young rabbits. Journal of Dental Research, 50, 1666–70.CrossRefGoogle ScholarPubMed
Yilmaz, S., Newman, H. N. and Poole, D. F. G. (1977). Diurnal periodicity of von Ebner growth lines in pig dentine. Archives of Oral Biology, 22, 511–13.CrossRefGoogle ScholarPubMed
Ziegler, A. C. (1971). A theory of the evolution of therian dental formulas and replacement patterns. Quarterly Review of Biology, 46, 226–49.CrossRefGoogle Scholar
Zihlman, A., Bolter, D. and Boesch, C. (2004). Wild chimpanzee dentition and its implications for assessing life history in immature hominin fossils. Proceedings of the National Academy of Sciences of the United States of America, 101, 10541–3.CrossRefGoogle ScholarPubMed
Zihlman, A. L., Bolter, D. R. and Boesch, C. (2007). Skeletal and dental growth and development in chimpanzees of the Taï National Park, Côte d’Ivoire. Journal of Zoology, 273, 63–73.CrossRefGoogle Scholar
Zsigmondy, O. (1893). On congenital defects of the enamel. Dental Cosmos, 35, 709–17.Google Scholar
Zuckerman, S. (1928). Age changes in the chimpanzee, with special reference to growth of brain, eruption of teeth, and estimation of age; with a note on the Taungs ape. Proceedings of the Zoological Society of London, 98, 1–42.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Simon Hillson, University College London
  • Book: Tooth Development in Human Evolution and Bioarchaeology
  • Online publication: 05 June 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9780511894916.012
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Simon Hillson, University College London
  • Book: Tooth Development in Human Evolution and Bioarchaeology
  • Online publication: 05 June 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9780511894916.012
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Simon Hillson, University College London
  • Book: Tooth Development in Human Evolution and Bioarchaeology
  • Online publication: 05 June 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9780511894916.012
Available formats
×