Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-24T19:07:06.114Z Has data issue: false hasContentIssue false

4 - Insight, imagination and invention: Tool understanding in a non-tool-using corvid

from Part II - Comparative cognition

Published online by Cambridge University Press:  05 March 2013

Nathan J. Emery
Affiliation:
Queen Mary University of London
Crickette M. Sanz
Affiliation:
Washington University, St Louis
Josep Call
Affiliation:
Max-Planck-Institut für Evolutionäre Anthropologie, Germany
Christophe Boesch
Affiliation:
Max-Planck-Institut für Evolutionäre Anthropologie, Germany
Get access

Summary

Introduction

The ability of animals to use tools has tended to represent a hallmark of intelligent behavior; i.e., those species that use tools are thought to be smarter than those species that do not. However, many species have been described as tool users, including species that we do not traditionally endow with complex cognition (Beck, 1980). For example, sea otters float with flat rocks on their chests onto which they break shellfish; green herons lower bait or lures (feathers, flowers or insects) onto the surface of the water to attract fish, which they then catch. Tool manufacture, rather than tool use per se, may be a finer-grade distinction in terms of intellectual capacity.

Evidence supporting a relationship between tool use and intelligence can be seen in analyses of species of birds and mammals who demonstrate true tool use (i.e., use of objects detached from the environment as tools, such as probes or hammers), have relatively larger brains than species which either do not use tools, or which only demonstrate proto-tool use (i.e., use of objects in situ to facilitate the function of an action, such as dropping shells onto a rock to break them; Lefebvre et al., 2002; Reader & Laland, 2002). It not clear whether these are meaningful relationships due to issues with the data used (see below) or the result of some other factor, such as the diet of tool users being better than non-tool users, which has the resultant effect of causing increases in brain size.

Type
Chapter
Information
Tool Use in Animals
Cognition and Ecology
, pp. 67 - 88
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beck, B. (1980). Animal Tool Behavior: The Use and Manufacture of Tools by Animals. New York: Garland.Google Scholar
Birch, H. G. (1945). The relation of previous experience to insightful problem-solving. Journal of Comparative Psychology, 38, 367–383.CrossRefGoogle ScholarPubMed
Bird, C. D. & Emery, N. J. (2009a). Insightful problem solving and creative tool modification by captive nontool-using rooks. Proceedings of the National Academy of Sciences USA, 106, 10370–10375.CrossRefGoogle ScholarPubMed
Bird, C. D. & Emery, N. J. (2009b). Rooks use stones to raise the water level to reach a floating worm. Current Biology, 19, 1410–1414.CrossRefGoogle ScholarPubMed
Bird, C. D. & Emery, N. J. (2010). Rooks perceive support relations similar to six-month old babies. Proceedings of the Royal Society of London B, 277, 147–151.CrossRefGoogle ScholarPubMed
Cheke, L. G., Bird, C. D. & Clayton, N. S. (2011). Tool use and instrumental learning in the Eurasian jay (Garrulus glandarius). Animal Cognition, 14, 441–455.CrossRefGoogle Scholar
Chittka, L. & Niven, J. (2009). Are bigger brains better?Current Biology, 19, R995–R1008.CrossRefGoogle ScholarPubMed
Clayton, N. S. (2007). Animal cognition: crows spontaneously solve a metatool task. Current Biology, 17, R894–R895.CrossRefGoogle ScholarPubMed
de Wit, S. & Dickinson, A. (2009). Associative theories of goal-directed behaviour: a case for animal–human translational models. Psychological Research, 73, 463–476.CrossRefGoogle ScholarPubMed
Deaner, R. O., Isler, K., Burkart, J. M. & van Schaik, C. P. (2007). Overall brain size, and not encephalization quotient, best predicts cognitive ability across non-human primates. Brain, Behavior and Evolution, 70, 115–124.CrossRefGoogle Scholar
Dunbar, R. I. M. (1992). Neocortex size as a constraint on group size in primates. Journal of Human Evolution, 20, 469–493.CrossRefGoogle Scholar
Emery, N. J. (2006). Cognitive ornithology: the evolution of avian intelligence. Philosophical Transactions of the Royal Society of London B, 361, 23–43.CrossRefGoogle ScholarPubMed
Emery, N. J. & Clayton, N. S. (2004). The mentality of crows: convergent evolution of intelligence in corvids and apes. Science, 306, 1903–1907.CrossRefGoogle ScholarPubMed
Emery, N. J. & Clayton, N. S. (2008). Imaginative scrub-jays, causal rooks and a liberal application of Occam’s aftershave. Behavioural and Brain Sciences, 31, 134–135.CrossRefGoogle Scholar
Emery, N. J. & Clayton, N. S. (2009). Tool use and physical cognition in birds and mammals. Current Opinion in Neurobiology, 19, 27–33.CrossRefGoogle ScholarPubMed
Epstein, R., Kirschnit, C. E., Lanza, R. P. & Rubin, L. C. (1984). “Insight” in the pigeon: antecedents and determinants of an intelligent performance. Nature, 308, 61–62.CrossRefGoogle ScholarPubMed
Gibson, K. R. (1986). Cognition, brain size and the extraction of embedded food resources. In Else, J. G. & Lee, P. C. (eds.) Primate Ontogeny, Cognition and Social Behaviour (pp. 93–105). Cambridge: Cambridge University Press.Google Scholar
Hauser, M. D. (1997). Artifactual kinds and functional design features: what a primate understands without language. Cognition, 64, 285–308.CrossRefGoogle ScholarPubMed
Hauser, M. D., Kralik, J. & Botto-Mahan, C. (1999). Problem solving and functional design features: experiments in cotton-top tamarins. Animal Behaviour, 57, 565–582.CrossRefGoogle ScholarPubMed
Healy, S. D. & Rowe, C. (2007). A critique of comparative studies of brain size. Proceedings of the Royal Society of London B, 274, 453–464.CrossRefGoogle ScholarPubMed
Healy, S., Walsh, P. T. & Hansell, M. (2008). Nest building by birds. Current Biology, 18, R271–R273.CrossRefGoogle ScholarPubMed
Heinrich, B. (1995). An experimental investigation of insight in common ravens (Corvus corax). Auk, 112, 994–1003.CrossRefGoogle Scholar
Heinrich, B. & Bugnyar, T. (2005). Testing problem-solving in ravens: string-pulling to reach food. Ethology, 111, 962–976.CrossRefGoogle Scholar
Helme, A. E., Clayton, N. S. & Emery, N. J. (2006). What do rooks (Corvus frugilegus) understand about physical contact?Journal of Comparative Psychology, 120, 288–293.CrossRefGoogle ScholarPubMed
Holzhaider, J. C., Hunt, G. R., Cambell, V. M. & Gray, R. D. (2008). Do wild New Caledonian crows (Corvus moneduloides) attend to the functional properties of their tools?Animal Cognition, 11, 243–254.CrossRefGoogle ScholarPubMed
Hunt, G. R. (1996). Manufacture and use of hook-tools by New Caledonian crows. Nature, 379, 249–251.CrossRefGoogle Scholar
Hunt, G. R. & Gray, R. D. (2004). The crafting of hook tools by wild New Caledonian crows. Proceedings of the Royal Society of London: Biology Letters, 271, 88–90.CrossRefGoogle ScholarPubMed
Kacelnik, A. (2009). Tools for thought or thought for tools?Proceedings of the National Academy of Sciences USA, 106, 10071–10072.CrossRefGoogle ScholarPubMed
Kloc, J. (2009). Invoking the magic of the mind. Seed Magazine. .Google Scholar
Kohler, W. (1927). The Mentality of Apes. New York: Vintage Books.Google Scholar
Lefebvre, L., Nicolakakis, N. & Boire, D. (2002). Tools and brains in birds. Behaviour, 139, 939–973.CrossRefGoogle Scholar
Liedtke, J., Werdenich, D., Gajdon, G. K., Huber, L. & Wanker, R. (2011). Big brains are not enough: performance of three parrot species in the trap-tube paradigm. Animal Cognition, 14, 143–149.CrossRefGoogle Scholar
Limongelli, L., Visalberghi, E. & Boyzen, S. T. (1995). The comprehension of cause–effect relations in a tool-using task by chimpanzees (Pan troglodytes). Journal of Comparative Psychology, 109, 18–26.CrossRefGoogle Scholar
Lind, J., Ghirlanda, S. & Enquist, M. (2009). Insight and learning. Proceedings of the National Academy of Sciences USA, 106, E76.CrossRefGoogle Scholar
Martin-Ordas, G., Call, J. & Colmenares, F. (2008). Tubes, tables and traps: great apes solve two functional equivalent trap tasks but show no evidence of transfer across tasks. Animal Cognition, 11, 423–430.CrossRefGoogle ScholarPubMed
Matsuzawa, T. (1991). Nesting cups and meta-tools in chimpanzees. Behavioural and Brain Sciences, 14, 570–571.CrossRefGoogle Scholar
Mendes, N., Hanus, D. & Call, J. (2007). Raising the level: orangutans use water as a tool. Biology Letters, 3, 453–455.CrossRefGoogle Scholar
Mulcahy, N. J. & Call, J. (2006). How great apes perform on a modified trap-tube task. Animal Cognition, 9, 193–199.CrossRefGoogle ScholarPubMed
Pepperberg, I. M. (2004). “Insightful” string-pulling in grey parrots (Psittacus erithacus) is affected by vocal competence. Animal Cognition, 7, 263–266.CrossRefGoogle ScholarPubMed
Potts, R. (2004). Paleoenvironmental basis of cognitive evolution in great apes. American Journal of Primatology, 62, 209–228.CrossRefGoogle ScholarPubMed
Povinelli, D. J. (2000). Folk Physics for Apes. New York: Oxford University Press.Google Scholar
Reader, S. M. & Laland, K. N. (2002). Social intelligence, innovation and enhanced brain size in primates. Proceedings of the National Academy of Sciences USA, 99, 4436–4441.CrossRefGoogle ScholarPubMed
Santos, L. R., Miller, C. T. & Hauser, M. D. (2003). Representing tools: how two non-human primate species distinguish between the functionally relevant and irrelevant features of a tool. Animal Cognition, 6, 269–281.CrossRefGoogle Scholar
Santos, L. R., Pearson, H. M., Spaepen, G. M., Tsao, F. & Hauser, M. D. (2006). Probing the limits of tool competence: experiments with two non-tool-using species (Cercopithecus aethiops and Saguinus oedipus). Animal Cognition, 9, 94–109.CrossRefGoogle Scholar
Seed, A. M., Tebbich, S., Emery, N. J. & Clayton, N. S. (2006). Investigating physical cognition in rooks. Current Biology, 16, 697–701.CrossRefGoogle ScholarPubMed
Seed, A. M., Clayton, N. S. & Emery, N. J. (2008). Cooperative problem solving in rooks (Corvus frugilegus). Proceedings of the Royal Society of London B, 275, 1421–1429.CrossRefGoogle Scholar
Seed, A. M., Call, J., Emery, N. J. & Clayton, N. S. (2009). Chimpanzees solve the trap problem when the confound of tool-use is removed. Journal of Experimental Psychology: Animal Behavior Processes, 35, 23–34.Google ScholarPubMed
Shallice, T. (1982). Specific impairments of planning. Philosophical Transactions of the Royal Society of London B, 298, 199–209.CrossRefGoogle ScholarPubMed
Shanahan, M. P. & Baars, B. J. (2005). Applying global workspace theory to the frame problem. Cognition, 98, 157–176.CrossRefGoogle ScholarPubMed
Shettleworth, S. J. (2010). Clever animals and killjoy explanations in comparative psychology. Trends in Cognitive Sciences, 14, 477–481.CrossRefGoogle ScholarPubMed
Silva, F. J. & Silva, K. M. (2006). Humans’ folk physics is not enough to explain variations in their tool-using behaviour. Psychonomic Bulletin and Review, 13, 689–693.CrossRefGoogle ScholarPubMed
Silva, F. J., Silva, K. M., Cover, K. R., Leslie, A. L. & Rubalcaba, M. A. (2008). Humans’ folk physics is sensitive to physical connection and contact between a tool and reward. Behavioural Processes, 77, 327–333.CrossRefGoogle ScholarPubMed
Amant, R. & Horton, T. E. (2008). Revisiting the definition of animal tool use. Animal Behaviour, 75, 1199–1208.CrossRefGoogle Scholar
Stephan, H., Frahm, H. & Baron, G. (1981). New and revised data on volumes of brain structures in insectivores and primates. Folia Primatologia, 35, 1–29.CrossRefGoogle ScholarPubMed
Sterelny, K. (2003). Thought in a Hostile World. New York: Blackwell.Google Scholar
Taylor, A. H. & Gray, R. D. (2009). Animal cognition: Aesop’s fable flies from fiction to fact. Current Biology, 19, R731–R732.CrossRefGoogle Scholar
Taylor, A. H., Hunt, G. R., Holzhaider, J. C & Gray, R. D. (2007). Spontaneous metatool use in New Caledonian crows. Current Biology, 17, 1504–1507.CrossRefGoogle ScholarPubMed
Taylor, A. H., Hunt, G. R., Medina, F. S. & Gray, R. D. (2009). Do New Caledonian crows solve physical problems through causal reasoning?Proceedings of the Royal Society of London B, 276, 247–254.CrossRefGoogle ScholarPubMed
Taylor, A. H., Elliffe, D., Hunt, G. R. & Gray, R. D. (2010). Complex cognition and behavioural innovation in New Caledonian crows. Proceedings of the Royal Society of London B, 277, 2637–2643.CrossRefGoogle ScholarPubMed
Tebbich, S., Seed, A. M., Emery, N. J. & Clayton, N. S. (2007). Non tool-using rooks (Corvus frugilegus) solve the trap tube task. Animal Cognition, 10, 225–231.CrossRefGoogle Scholar
Thorpe, W. H. (1964). Learning and Instinct in Animals. London: Methuen & Co. Ltd.Google Scholar
van Horik, J., Clayton, N. S. & Emery, N. J. (2011). Convergent evolution of cognition in corvids, apes and other animals. In Vonk, J. & Shackleford, T. (eds.) The Oxford Handbook of Comparative Evolutionary Psychology (pp. 80–101). New York: Oxford University Press.Google Scholar
Visalberghi, E. & Limongelli, L. (1996). Acting and understanding: tool use revisited through the minds of capuchin monkeys. In Russon, A. E., Bard, K. A. & Parker, S. T. (eds.) Reaching Into Thought: The Minds of the Great Apes (pp. 57–79). Cambridge: Cambridge University Press.Google Scholar
von Bayern, A. M. P., Heathcote, R. J. P., Rutz, C. & Kacelnik, A. (2009). The role of experience in problem solving and innovative tool use in crows. Current Biology, 19, 1965–1968.CrossRefGoogle ScholarPubMed
Walsh, P. T., Hansell, M., Borello, W. D. & Healy, S. D. (2010). Repeatability of nest morphology in African weaver birds. Biology Letters, 6, 149–151.CrossRefGoogle ScholarPubMed
Weir, A. A. S., Chappell, J. & Kacelnik, A. (2002). Shaping of hooks in New Caledonian crows. Science, 297, 981.CrossRefGoogle ScholarPubMed
Werdenich, D. & Huber, L. (2006). A case of quick problem-solving in birds: string pulling in keas, Nestor notabilis. Animal Behaviour, 71, 855–863.CrossRefGoogle Scholar
Wimpenny, J. H., Weir, A. A. S., Clayton, L., Rutz, C. & Kacelnik, A. (2009). Cognitive processes associated with sequential tool use in New Caledonian crows. PLoS ONE, 4, e6471.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×