Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-19T09:42:32.978Z Has data issue: false hasContentIssue false

6 - Statistics of real prices: basic results

Published online by Cambridge University Press:  06 July 2010

Jean-Philippe Bouchaud
Affiliation:
Commissariat à l'Energie Atomique (CEA), Saclay
Marc Potters
Affiliation:
Capital Fund Management
Get access

Summary

Le marché, à son insu, obéit à une loi qui le domine: la loi de la probabilité.

(Louis Bachelier, Théorie de la spéculation.)

Aim of the chapter

The easy access to enormous financial databases, containing thousands of asset time series, sampled at a frequency of minutes or sometimes seconds, allows one to investigate in detail the statistical features of the time evolution of financial assets. The description of any kind of data, be it of physical, biological or financial origin requires, however, an interpretation framework, needed to order and give a meaning to the observations. To describe necessarily means to simplify, and even sometimes betray: the aim of any empirical science is to approach reality progressively, through successive improved approximations.

The goal of the present and subsequent chapters is to present in this spirit the statistical properties of financial time series. We shall propose some plausible mathematical modelling, as faithful as possible (though imperfect) to the observed properties of these time series. The models we discuss are however not the only possible models; the available data is often not sufficiently accurate to distinguish, say, between a truncated Lévy distribution and a Student distribution. The choice between the two is then guided by mathematical convenience. In this respect, it is interesting to note that the word ‘modelling’ has two rather different meanings within the scientific community. The first one, often used in applied mathematics, engineering sciences and financial mathematics, means that one represents reality using appropriate mathematical formulae.

Type
Chapter
Information
Theory of Financial Risk and Derivative Pricing
From Statistical Physics to Risk Management
, pp. 87 - 106
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×