Skip to main content Accessibility help
  • Cited by 2
  • Print publication year: 2009
  • Online publication date: May 2010

1 - Neuropathology and pathophysiology of stroke

from Section I - Etiology, pathophysiology and imaging


The vascular origin of cerebrovascular disease

All cerebrovascular diseases (CVD) have their origin in the vessels supplying or draining the brain. Therefore, knowledge of pathological changes occurring in the vessels and in the blood is essential for understanding the pathophysiology of the various types of CVD and for the planning of efficient therapeutic strategies. Changes in the vessel wall lead to obstruction of blood flow, by interacting with blood constituents they may cause thrombosis and blockade of blood flow in this vessel. In addition to vascular stenosis or occlusion at the site of vascular changes, disruption of blood supply and consecutive infarcts can also be produced by emboli arising from vascular lesions situated proximally to otherwise healthy branches located more distal in the arterial tree or from a source located in the heart. At the site of occlusion, the opportunity exists for thrombus to develop in anterograde fashion throughout the length of the vessel, but this event seems to occur only rarely.

Changes in large arteries supplying the brain, including the aorta, are mainly caused by atherosclerosis. Middle-sized and intracerebral arteries can also be affected by acute or chronic vascular diseases of inflammatory origin due to subacute to chronic infections, e.g. tuberculosis and lues, or due to collagen disorders, e.g. giant cell arteriitis, granulomatous angiitis of the CNS, panarteritis nodosa, and even more rarely systemic lupus erythematosus, Takayasu's arteriitis, Wegener granulomatosis, rheumatoid arteriitis, Sjögren's syndrome, or Sneddon and Behcet's disease.

Related content

Powered by UNSILO
Rajamani, K, Fisher, M, Fisher, M. Atherosclerosis – pathogenesis and pathophysiology. In: Ginsberg, MD, Bogousslavsky, J, eds. Cerebrovascular Disease: Pathophysiology, Diagnosis and Management, Vol. 2. London: Blackwell Science; 1998:308–18.
Willeit, J, Kiechl, S. Biology of arterial atheroma. Cerebrovasc Dis (Basel) 2000;10 Suppl 5:1–8.
Ross, R. Atherosclerosis—an inflammatory disease. N Engl J Med 1999; 340:115–26.
Aikawa, M, Libby, P. The vulnerable atherosclerotic plaque: pathogenesis and therapeutic approach. Cardiovasc Pathol 2004; 13:125–38.
Faxon, DP, Fuster, V, Libby, P, Beckman, JA, Hiatt, WR, Thompson, RW, et al. Atherosclerotic Vascular Disease Conference: Writing Group III: pathophysiology. Circulation 2004; 109:2617–25.
Dzau, VJ, Braun-Dullaeus, RC, Sedding, DG. Vascular proliferation and atherosclerosis: new perspectives and therapeutic strategies. Nature Med 2002; 8:1249–56.
Glagov, S, Weisenberg, E, Zarins, CK, Stankunavicius, R, Kolettis, GJ. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med 1987; 316:1371–5.
Rauch, U, Osende, JI, Fuster, V, Badimon, JJ, Fayad, Z, Chesebro, JH. Thrombus formation on atherosclerotic plaques: pathogenesis and clinical consequences. Ann Intern Med 2001; 134:224–38.
Loscalzo, J. Nitric oxide insufficiency, platelet activation, and arterial thrombosis. Circ Res 2001; 88:756–62.
Fisher, CM. Cerebral miliary aneurysms in hypertension. Am J Pathol 1972; 66:313–30.
Rossrussell, RW. Observations on intracerebral aneurysms. Brain 1963; 86:425–42.
Zülch, K-J. Über die Entstehung und Lokalisation der Hirninfarkte. Zentralbl Neurochir 1961; 21:158–78.
Zülch, K-J. The Cerebral Infarct. Pathology, Pathogenesis, and Computed Tomography. Berlin: Springer-Verlag; 1985.
Mohr, JP, Choi, DW, Grotta, JC, Weir, B, Wolf, PA. Stroke – Pathophysiology, Diagnosis, and Management. 4th ed. Philadelphia: Churchill Livingstone; 2004.
Wolf, PA. Epidemiology of stroke. In: Mohr, JP, Choi, DW, Grotta, JC, Weir, B, Wolf, PA, eds. Stroke – Pathophysiology, Diagnosis, and Management. Philadelphia: Churchill Livingstone; 2004: 13–34.
Stochdorph, O. Der Mythos der letzten Wiese. Zentralbl Allg Pathol Path Anat 1977; 121:554.
Ringelstein, EB, Zunker, P. Low-flow infarction. In: Ginsberg, MD, Bogousslavsky, J, eds. Cerebrovascular Disease: Pathophysiology, Diagnosis, and Management, Vol. 2. London: Blackwell Science; 1998: 1075–89.
Fisher, CM. Lacunes: small, deep cerebral infarcts. Neurology 1965; 15:774–84.
Beghi, E, Bogliun, G, Cavaletti, G, Sanguineti, I, Tagliabue, M, Agostoni, F, et al. Hemorrhagic infarction: risk factors, clinical and tomographic features, and outcome. A case-control study. Acta Neurol Scand 1989; 80:226–31.
Lodder, J, Krijne-Kubat, B, Broekman, J. Cerebral hemorrhagic infarction at autopsy: cardiac embolic cause and the relationship to the cause of death. Stroke 1986; 17:626–9.
Fisher, M, Adams, RD. Observations on brain embolism with special reference to the mechanism of hemorrhagic infarction. J Neuropathol Exp Neurol 1951; 10:92–4.
Mohr, JP, Caplan, LR, Melski, JW, Goldstein, RJ, Duncan, GW, Kistler, JP, et al. The Harvard Cooperative Stroke Registry: A prospective registry. Neurology 1978; 28:754–62.
Sacco, RL, Wolf, PA, Bharucha, NE, Meeks, SL, Kannel, WB, Charette, LJ, et al. Subarachnoid and intracerebral hemorrhage: natural history, prognosis, and precursive factors in the Framingham Study. Neurology 1984; 34:847–54.
Feldman, E. Intracerebral Hemorrhage. Armonk, NY: Futura; 1994.
Schütz, H. Spontane intrazerebrale Hämatome. Pathophysiologie, Klinik und Therapie. Berlin: Springer-Verlag; 1988.
Kase, CS, Mohr, JP, Caplan, LR. Intracerebral Hemorrhage. In: Mohr, JP, Choi, DW, Grotta, JC, Weir, B, Wolf, PA, eds. Stroke – Pathophysiology, Diagnosis, and Management. Philadelphia: Churchill Livingstone; 2004: 327–76.
Fisher, CM. Pathological observations in hypertensive cerebral hemorrhage. J Neuropathol Exp Neurol 1971; 30:536–50.
Brott, T, Broderick, J, Kothari, R, Barsan, W, Tomsick, T, Sauerbeck, L, et al. Early hemorrhage growth in patients with intracerebral hemorrhage. Stroke 1997; 28:1–5.
Gonzalez-Duarte, A, Cantu, C, Ruiz-Sandoval, JL, Barinagarrementeria, F. Recurrent primary cerebral hemorrhage: frequency, mechanisms, and prognosis. Stroke 1998; 29:1802–5.
Bousser, MG, Barnett, HJM. Cerebral venous thrombosis. In: Mohr, JP, Choi, DW, Grotta, JC, Weir, B, Wolf, PA, eds. Stroke – Pathophysiology, Diagnosis, and Management, 4th ed. Philadelphia: Churchill Livingstone; 2004: 301–25.
Auer, RN, Benveniste, H (eds). Hypoxia and Related Conditions. London: Arnold; 1997: 283–98.
Petito, CK (ed). The Neuropathology of Focal Brain Ischemia. Basel: ISN Neuropath Press; 2005: 215–21.
Brown, AW, Brierley, JB. Anoxic-ischaemic cell change in rat brain. Light microscopic and fine-structural observations. J Neurol Sci 1972; 16:59–84.
Kirino, T, Sano, K. Selective vulnerability in the gerbil hippocampus following transient ischemia. Acta Neuropathol 1984; 62:201–8.
Martin, LJ. The apoptosis-necrosis cell death continuum in CNS development, injury and disease: contributions and mechanisms. In: Lo EH, , Marwah, J, eds. Neuroprotection. Scotsdale, AZ: Prominent Press; 2001: 378–412.
Charriaut-Marlangue, C, Benari, Y. A cautionary note on the use of the TUNEL stain to determine apoptosis. NeuroReport 1995; 7:61–4.
Hossmann, K-A. Disturbances of cerebral protein synthesis and ischemic cell death. Prog Brain Res 1993; 96:161–77.
DeGracia, DJ, Rafols, JA, Morley, SJ, Kayali, F. Immunohistochemical mapping of total and phosphorylated eukaryotic initiation factor 4G in rat hippocampus following global brain ischemia and reperfusion. Neuroscience 2006; 139:1235–48.
Hudgins, WR, Garcia, JH. Transorbital approach to the middle cerebral artery of the squirrel monkey: a technique for experimental cerebral infarction applicable to ultrastructural studies. Stroke 1970; 1:107–11.
Tamura, A, Graham, DI, McCulloch, J, Teasdale, GM. Focal cerebral ischaemia in the rat: 1. Description of technique and early neuropathological consequences following middle cerebral artery occlusion. J Cereb Blood Flow Metab 1981; 1:53–60.
Koizumi, J, Yoshida, Y, Nakazawa, T, Ooneda, G. Experimental studies of ischemic brain edema. 1. A new experimental model of cerebral embolism in rats in which recirculation can be introduced in the ischemic area. Jpn J Stroke 1986; 8:1–8.
Rogers, DC, Campbell, CA, Stretton, JL, Mackay, KB. Correlation between motor impairment and infarct volume after permanent and transient middle cerebral artery occlusion in the rat. Stroke 1997; 28:2060–5.
DiNapoli, VA, Rosen, CL, Nagamine, T, Crocco, T. Selective MCA occlusion: A precise embolic stroke model. J Neurosci Methods 2006; 154:233–8.
Orset, C, Macrez, R, Young, AR, Panthou, D, Angles-Cano, E, Maubert, E, et al. Mouse model of in situ thromboembolic stroke and reperfusion. Stroke 2007; 38:2771–8.
Chen, F, Suzuki, Y, Nagai, N, Jin, LX, Yu, J, Wang, HJ, et al. Rodent stroke induced by photochemical occlusion of proximal middle cerebral artery: evolution monitored with MR imaging and histopathology. Eur J Radiol 2007; 63:68–75.
Symon, L. Regional vascular reactivity in the middle cerebral arterial distribution. An experimental study in baboons. J Neurosurg 1970; 33:532–41.
Hata, R, Maeda, K, Hermann, D, Mies, G, Hossmann, K-A. Evolution of brain infarction after transient focal cerebral ischemia in mice. J Cereb Blood Flow Metab 2000; 20:937–46.
Toole, JF, McGraw, CP. The steal syndromes. Annu Rev Med 1975; 26:321–9.
Pakkenberg, B, Gundersen, HJ. Neocortical neuron number in humans: effect of sex and age. J Comp Neurol 1997; 384:312–20.
Clarke, DD, Sokoloff, L. Circulation and energy metabolism of the brain. In: Siegel, G, Agranoff, B, Albers, RW, Fisher, S, eds. Basic Neurochemistry: Molecular, Cellular, and Medical Aspects, 6th ed. Philadelphia: Lippincott-Raven; 1999: 637–69.
Sokoloff, L. Energetics of functional activation in neural tissues. Neurochem Res 1999; 24:321–9.
Magistretti, PJ, Pellerin, L. Astrocytes couple synaptic activity to glucose utilization in the brain. News Physiol Sci 1999; 14:177–82.
Laughlin, SB, Attwell, D. The metabolic cost of neural information: from fly eye to mammalian cortex. In: Frackowiak, RSJ, Magistretti, PJ, Shulman, RG, Altman, JS, Adams, M, eds. Neuroenergetics: Relevance for Functional Brain Imaging. Strasbourg: HFSP Workshop XI, 2001; 54–64.
Frackowiak, RSJ, Magistretti, PJ, Shulman, RG, Altman, JS, Adams, M (eds). Neuroenergetics: Relevance for Functional Brain Imaging. Strasbourg: HFSP Workshop XI, 2001.
Astrup, J, Siesjö, BK, Symon, L. Thresholds in cerebral ischemia – the ischemic penumbra. Stroke 1981; 12:723–5.
Heiss, WD. Experimental evidence of ischemic thresholds and functional recovery. Stroke 1992; 23:1668–72.
Hossmann, KA. Viability thresholds and the penumbra of focal ischemia. Ann Neurol 1994; 36:557–65.
Kirino, T. Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res 1982; 239:57–69.
Hossmann, K-A, Mies, G (eds). Multimodal Mapping of the Ischemic Penumbra in Animal Models. New York: Marcel Dekker; 2007: 77–92.
Hata, R, Maeda, K, Hermann, D, Mies, G, Hossmann, K-A. Dynamics of regional brain metabolism and gene expression after middle cerebral artery occlusion in mice. J Cereb Blood Flow Metab 2000; 20:306–15.
Heiss, WD. Ischemic penumbra: evidence from functional imaging in man [Review]. J Cereb Blood Flow Metab 2000; 20:1276–93.
Takasawa, M, Beech, JS, Fryer, TD, Hong, YT, Hughes, JL, Igase, K, et al. Imaging of brain hypoxia in permanent and temporary middle cerebral artery occlusion in the rat using F-18-fluoromisonidazole and positron emission tomography: a pilot study. J Cereb Blood Flow Metab 2007; 27:679–89.
Kane, I, Sandercock, P, Wardlaw, J. Magnetic resonance perfusion diffusion mismatch and thrombolysis in acute ischaemic stroke: a systematic review of the evidence to date. J Neurol Neurosurg Psychiatry 2007; 78:485–90.
Hoehn-Berlage, M, Norris, DG, Kohno, K, Mies, G, Leibfritz, D, Hossmann, K-A. Evolution of regional changes in apparent diffusion coefficient during focal ischemia of rat brain: the relationship of quantitative diffusion NMR imaging to reduction in cerebral blood flow and metabolic disturbances. J Cereb Blood Flow Metab 1995; 15:1002–11.
Sun, PZ, Zhou, JY, Sun, WY, Huang, J, Zijl, PCM. Detection of the ischemic penumbra using pH-weighted MRI. J Cereb Blood Flow Metab 2007; 27:1129–36.
Heckl, S. Future contrast agents for molecular imaging in stroke. Curr Med Chem 2007; 14:1713–28.
Strong, AJ, Anderson, PJ, Watts, HR, Virley, DJ, Lloyd, A, Irving, EA, et al. Peri-infarct depolarizations lead to loss of perfusion in ischaemic gyrencephalic cerebral cortex. Brain 2007; 130:995–1008.
Simon, R, Xiong, Z. Acidotoxicity in brain ischaemia. Biochem Soc Trans 2006; 34:1356–61.
Choi, DW. Excitotoxic cell-death. J Neurobiol 1992; 23:1261–76.
Siesjö, BK. Calcium, excitotoxins, and brain damage. News Physiol Sci 1990; 5:120–5.
MacDonald, JF, Xiong, ZG, Jackson, MF. Paradox of Ca2+signaling, cell death and stroke. Trends Neurosci 2006; 29:75–81.
Chan, PH. Role of oxidants in ischemic brain damage. Stroke 1996; 27:1124–9.
Shuaib, A, Lees, K, Lyden, P, Grotta, J, Davalos, A, Davis, S, et al. NXY-059 for the treatment of acute ischemic stroke. N Engl J Med 2007; 357:562.
Dalkara, T, Moskowitz, MA. The complex role of nitric oxide in the pathophysiology of focal cerebral ischemia. Brain Pathol 1994; 4:49–57.
Sensi, SL, Jeng, JM. Rethinking the excitotoxic ionic milieu: the emerging role of Zn2+in ischemic neuronal injury. Curr Mol Med 2004; 4:87–111.
Paschen, W. Dependence of vital cell function on endoplasmic reticulum calcium levels: implications for the mechanisms underlying neuronal cell injury in different pathological states [Review]. Cell Calcium 2001; 29:1–11.
DeGracia, DJ, Hu, BR. Irreversible translation arrest in the reperfused brain. J Cereb Blood Flow Metab 2007; 27:875–93.
Norenberg, MD, Rao, KVR. The mitochondrial permeability transition in neurologic disease. Neurochem Int 2007; 50:983–97.
Rothwell, NJ, Luheshi, GN. Interleukin I in the brain: biology, pathology and therapeutic target [Review]. Trends Neurosci 2000; 23:618–25.
Planas, AM, Gorina, R, Chamorro, A. Signalling pathways mediating inflammatory responses in brain ischaemia. Biochem Soc Trans 2006; 34:1267–70.
Wang, CX, Shuaib, A. Critical role of microvasculature basal lamina in ischemic brain injury. Prog Neurobiol 2007; 83:140–8.
Walz, B, Zimmermann, C, Bottger, S, Haberl, RL. Prognosis of patients after hemicraniectomy in malignant middle cerebral artery infarction. J Neurol 2002; 249:1183–90.
Lansberg, MG, Thijs, VN, O'Brien, MW, Ali, JO, Crespigny, AJ, Tong, DC, et al. Evolution of apparent diffusion coefficient, diffusion-weighted, and T2-weighted signal intensity of acute stroke. Am J Neuroradiol 2001; 22:637–44.
Badaut, T, Lasbennes, T, Magistretti, PJ, Regli, L. Aquaporins in brain: distribution, physiology, and pathophysiology. J Cereb Blood Flow Metab 2002; 22:367–78.
Johnson, EM, Greenlund, LJS, Akins, PT, Hsu, CY. Neuronal apoptosis: current understanding of molecular mechanisms and potential role in ischemic brain injury. J Neurotrauma 1995; 12:843–52.
MacManus, JP, Buchan, AM. Apoptosis after experimental stroke: Fact or fashion? [Review]. J Neurotrauma 2000; 17:899–914.
Dirnagl, U, Simon, RP, Hallenbeck, JM. Ischemic tolerance and endogenous neuroprotection. Trends Neurosci 2003; 26:248–54.
Zhao, H, Sapolsky, RM, Steinberg, GK. Interrupting reperfusion as a stroke therapy: ischemic postconditioning reduces infarct size after focal ischemia in rats. J Cereb Blood Flow Metab 2006; 26:1114–21.
Wiltrout, C, Lang, B, Yan, YP, Dempsey, RJ, Vemuganti, R. Repairing brain after stroke: a review on post-ischemic neurogenesis. Neurochem Int 2007; 50:1028–41.
Kuhl, , Phelps, ME, Kowell, AP, Metter, EJ, Selin, C, Winter, J. Effects of stroke on local cerebral metabolism and perfusion: Mapping by emission computed tomography of 18 FDG and 13 NH 3. Ann Neurol 1980; 8:47–60.
Baron, JC, Frackowiak, RS, Herholz, K, Jones, T, Lammertsma, AA, Mazoyer, B, et al. Use of PET methods for measurement of cerebral energy metabolism and hemodynamics in cerebrovascular disease. J Cereb Blood Flow Metab 1989; 9:723–42.
Heiss, WD, Grond, M, Thiel, A, Ghaemi, M, Sobesky, J, Rudolf, J, et al. Permanent cortical damage detected by flumazenil positron emission tomography in acute stroke. Stroke 1998; 29:454–61.
Sobesky, J, Weber, OZ, Lehnhardt, FG, Hesselmann, V, Neveling, M, Jacobs, A, et al. Does the mismatch match the penumbra? Magnetic resonance imaging and positron emission tomography in early ischemic stroke. Stroke 2005; 36:980–5.
Garcia, JH, Liu, KF, Ho, KL. Neuronal necrosis after middle cerebral artery occlusion in Wistar rats progresses at different time intervals in the caudoputamen and the cortex. Stroke 1995; 26:636–42.
Magistretti, PJ. Coupling synaptic activity to glucose metabolism. In: Frackowiak, RSJ, Magistretti, PJ, Shulman, RG, Altman, JS, Adams, M, eds. Neuroenergetics: Relevance for Functional Brain Imaging. Strasbourg: HFSP Workshop XI, 2001: 133–42.
Attwell, D, Laughlin, SB. An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 2001; 21:1133–45.