Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-27T03:55:47.571Z Has data issue: false hasContentIssue false

Chapter 33 - Cross-Cultural Psychopharmacotherapy

from Section 4 - Theoretical Aspects of Management

Published online by Cambridge University Press:  16 March 2018

Dinesh Bhugra
Affiliation:
Institute of Psychiatry, London
Kamaldeep Bhui
Affiliation:
Barts and the London School of Medicine and Dentistry
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akamine, Y., Yasui-Furukori, N., Ieiri, I. and Uno, T. (2012). Psychotropic drug–drug interactions involving P-glycoprotein. CNS Drugs, 26(11), 959973.CrossRefGoogle ScholarPubMed
Awad, A. G. (1993). Subjective response to neuroleptics in schizophrenia. Schizophrenia Bulletin, 19(3), 609618.Google Scholar
Awad, A. G., Hogan, T. P., Voruganti, L. N. P. and Heslegrave, R. J. (1995). Patients’ subjective experiences on antipsychotic medications: implications for outcome and quality of life. International Clinical Psychopharmacology, 10(Suppl 3), 123132.Google Scholar
Bailey, D. G., Spence, J. D., Munoz, C. and Arnold, J. M. O. (1991). Interaction of citrus juices with felodipine and nifedipine. The Lancet, 337(8736), 268269.CrossRefGoogle ScholarPubMed
Bailey, D. G., Dresser, G. K. and Bend, J. (2003). Bergamottin, lime juice, and red wine as inhibitors of cytochrome P450 3A4 activity: comparison with grapefruit juice. Clinical Pharmacology and Therapeutics, 73(6), 529537.Google Scholar
Baune, B. T., Dannlowski, U., Domschke, K. et al. (2010). The interleukin 1 beta (IL1B) gene is associated with failure to achieve remission and impaired emotion processing in major depression. Biological Psychiatry, 67(6), 543549.CrossRefGoogle ScholarPubMed
Bousman, C. A. and Hopwood, M. (2016). Commercial pharmacogenetic-based decision-support tools in psychiatry. The Lancet Psychiatry, 3(6), 585590.CrossRefGoogle ScholarPubMed
Bousman, C. A., Sarris, J., Won, E. S. et al. (2014). Escitalopram efficacy in depression: a cross-ethnicity examination of the serotonin transporter promoter polymorphism. Journal of Clinical Psychopharmacology, 34(5), 645648.Google Scholar
Bradford, L. D. (2002). CYP2D6 allele frequency in European Caucasians, Asians, Africans and their descendants. Pharmacogenomics, 3(2), 229243.CrossRefGoogle ScholarPubMed
Carrillo, J. A., Herraiz, A. G., Ramos, S. I., Benítez, J. (1998). Effects of caffeine withdrawal from the diet on the metabolism of clozapine in schizophrenic patients. Journal of Clinical Psychopharmacology, 18(4), 311316.Google Scholar
Escobar, J. I. and Tuason, V. B. (1980). Antidepressant agents – a cross-cultural study. Psychopharmacology Bulletin, 16(3), 4952.Google Scholar
Fontana, R. J., Lown, K. S., Paine, M. et al. (1999). Effects of a chargrilled meat diet on expression of CYP3A, CYP1A, and P-glycoprotein levels in healthy volunteers. Gastroenterology, 117(1), 8998.Google Scholar
Fricke-Galindo, I., Cespedes-Garro, C., Rodrigues-Soares, F. et al. (2016). Interethnic variation of CYP2C19 alleles, ‘predicted’ phenotypes and ‘measured’ metabolic phenotypes across world populations. The Pharmacogenomics Journal, 16(2), 113123.Google Scholar
Fuhr, U. (1998). Drug interactions with grapefruit juice. Extent, probable mechanism and clinical relevance. Drug Safety, 18(4), 251272.CrossRefGoogle ScholarPubMed
Goldman, N., Glei, D. A., Lin, Y-H. and Weinstein, M. (2010). The serotonin transporter polymorphism (5-HTTLPR): allelic variation and links with depressive symptoms. Depression and Anxiety, 27(3), 260269.Google Scholar
Goldstein, J. A., Ishizaki, T., Kan, C. et al. (1997). Frequencies of the defective CYP2C19 alleles responsible for the mephenytoin poor metabolizer phenotype in various Oriental, Caucasian, Saudi Arabian and American black populations. Pharmacogenetics, 7(1), 5964.Google Scholar
Grant, D. M., Morike, K., Eichelbaum, M. and Meyer, U. A. (1990). Acetylation pharmacogenetics. The slow acetylator phenotype is caused by decreased or absent arylamine N-acetyltransferase in human liver. The Journal of Clinical Investigation, 85(3), 968972.Google Scholar
Gunes, A. and Dahl, M. L. (2008). Variation in CYP1A2 activity and its clinical implications: influence of environmental factors and genetic polymorphisms. Pharmacogenomics, 9(5), 625637.Google Scholar
Harris, R. Z., Jang, G. R. and Tsunoda, S. (2003). Dietary effects on drug metabolism and transport. Clinical Pharmacokinetics, 42(13), 10711088.CrossRefGoogle ScholarPubMed
Hicks, J. K., Bishop, J. R., Sangkuhl, K. et al. (2015). Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for CYP2D6 and CYP2C19 genotypes and dosing of selective serotonin reuptake inhibitors. Clinical Pharmacology and Therapeutics, 98(2), 127134.CrossRefGoogle ScholarPubMed
Kappas, A., Anderson, K. E., Conney, Allan H. and Alvares, Alvito P. (1976). Influence of dietary protein and carbohydrate on antipyrine and theophylline metabolism in man. Clinical Pharmacology and Therapeutics, 20(6), 643653.CrossRefGoogle ScholarPubMed
Lee, R. P. (1980). Perceptions and uses of Chinese medicine among the Chinese in Hong Kong. Culture, Medicine and Psychiatry, 4(4), 345375.Google Scholar
Lin, H. J., Han, C. Y., Lin, B. K. and Hardy, S. (1993). Slow acetylator mutations in the human polymorphic N-acetyltransferase gene in 786 Asians, blacks, Hispanics, and whites: application to metabolic epidemiology. American Journal of Human Genetics, 52(4), 827834.Google Scholar
Lin, K. M. and Smith, M. W. (2000). Psychopharmacotherapy in the context of culture and ethnicity. In Ethnicity and Psychopharmacology, ed. Ruiz, P.. Washington DC: American Psychiatric Press, pp. 136.Google Scholar
Madhusoodanan, S., Velama, U., Parmar, J. et al. (2014). A current review of cytochrome P450 interactions of psychotropic drugs. Annals of Clinical Psychiatry: Official Journal of the American Academy of Clinical Psychiatrists, 26(2), 120138.Google ScholarPubMed
Mannel, M. (2004). Drug interactions with St John’s wort: mechanisms and clinical implications. Drug Safety, 27(11), 773797.Google Scholar
Mantonakis, J., Markidis, M., Kontaxakis, V. and Liakos, A. (1985). A scale for detection of negative attitudes towards medication among relatives of schizophrenic patients. Acta Psychiatrica Scandinavica, 71(2), 186189.Google Scholar
Murphy, E. and McMahon, F. J. (2013). Pharmacogenetics of antidepressants, mood stabilizers, and antipsychotics in diverse human populations. Discovery Medicine, 16(87), 113122.Google ScholarPubMed
Ng, C. H. (2008). Research directions in ethno-psychopharmacology. In Ethno-Psychopharmacology: Advances in Current Practice, ed. Ng, C. H., Lin, K. M., Singh, B. and Chiu, E.. New York, Cambridge University Press, pp. 169176.Google Scholar
Ng, C. and Klimidis, S. (2008). Cultural factors and the use of psychotropic medications. In Ethno-Psychopharmacology: Advances in Current Practice, ed. Ng, C. H., Lin, K. M., Singh, B. and Chiu, E.. New York: Cambridge University Press, pp. 123134.CrossRefGoogle Scholar
Ng, C. H., Schweitzer, I., Norman, T., Easteal, S. (2004). The emerging role of pharmacogenetics: implications for clinical psychiatry. The Australian and New Zealand Journal of Psychiatry, 38(7), 483489.CrossRefGoogle ScholarPubMed
Ng, C. H., Chong, S. A., Lambert, T. et al. (2005). An inter-ethnic comparison study of clozapine dosage, clinical response and plasma levels. International Clinical Psychopharmacology, 20(3), 163168.Google Scholar
Ng, C. H., Easteal, S., Tan, S. et al. (2006). Serotonin transporter polymorphisms and clinical response to sertraline across ethnicities. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 30(5), 953957.Google Scholar
Ng, C., Sarris, J., Singh, A. et al. (2013). Pharmacogenetic polymorphisms and response to escitalopram and venlafaxine over 8 weeks in major depression. Human Psychopharmacology, 28(5), 516522.Google Scholar
Obach, R. S. (2000). Inhibition of human cytochrome P450 enzymes by constituents of St John’s Wort, an herbal preparation used in the treatment of depression. The Journal of Pharmacology and Experimental Therapeutics, 294(1), 8895.Google Scholar
Ozawa, S., Soyama, A., Saeki, M. et al. (2004). Ethnic differences in genetic polymorphisms of CYP2D6, CYP2C19, CYP3As and MDR1/ABCB1. Drug Metabolism and Pharmacokinetics, 19(2), 8395.Google Scholar
Padmanabhan, S. (2014). Handbook of Pharmacogenomics and Stratified Medicines. London and San Diego: Academic Press.Google Scholar
Palma-Aguirre, J. A., Nava Rangel, J., Hoyo-Vadillo, C., et al. (1994). Influence of Mexican diet on nifedipine pharmacodynamics in healthy volunteers. Proceedings of the Western Pharmacology Society, 37, 8586.Google Scholar
Pantuck, E. J., Pantuck, C. B., Garland, W. A. et al. (1979). Stimulatory effect of brussels sprouts and cabbage on human drug metabolism. Clinical Pharmacology and Therapeutics, 25(1), 8895.CrossRefGoogle ScholarPubMed
Perera, V., Gross, A. S. and McLachlan, A. J. (2012). Influence of environmental and genetic factors on CYP1A2 activity in individuals of South Asian and European ancestry. Clinical Pharmacology and Therapeutics, 92(4), 511519.Google Scholar
Pi, E. H. and Gray, G. E. (1998). A cross-cultural perspective on psychopharmacology. Essential Psychopharmacology, 2, 233262.Google Scholar
Pollock, B. G., Ferrell, R. E., Mulsant, B. et al. (2000). Allelic variation in the serotonin transporter promoter affects onset of paroxetine treatment response in late-life depression. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 23(5), 587590.CrossRefGoogle ScholarPubMed
Poolsup, N., Li Wan Po, A. and Knight, T. (2000). Pharmacogenetics and psychopharmacotherapy. Journal of Clinical Pharmacy and Therapeutics, 25(3), 197220.CrossRefGoogle ScholarPubMed
Priebe, S. (1987). Early subjective reactions predicting the outcome of hospital treatment in depressive patients. Acta Psychiatrica Scandinavica, 76(2), 134138.Google Scholar
Schwartz, R. S. (2001). Racial profiling in medical research. The New England Journal of Medicine, 344(18), 13921393.Google Scholar
Teh, L. K. and Bertilsson, L. (2012). Pharmacogenomics of CYP2D6: molecular genetics, interethnic differences and clinical importance. Drug Metabolism and Pharmacokinetics, 27(1), 5567.CrossRefGoogle ScholarPubMed
Udomratn, P. and Ng, C. (2008). Outpatients prescribing practices in Asian countries. In Ethno-Psychopharmacology: Advances in Current Practice, ed. Ng, C. H., Lin, K. M., Singh, B. and Chiu, E.. New York: Cambridge University Press, pp. 135143.Google Scholar
Van Booven, D., Marsh, S., McLeod, H. et al. (2010). Cytochrome P450 2C9-CYP2C9. Pharmacogenetics and Genomics, 20(4), 277281.CrossRefGoogle ScholarPubMed
Westermeyer, J. (1989). Somatotherapies. In Psychiatric Care of Migrants: A Clinical Guide, ed. Gold, J. H.. Washington DC: American Psychiatric Press, pp. 139168.Google Scholar
World Health Organization (2016). WHO model list of essential medicines, 19th edn (cited 23 May 2016). Available online at www.who.int/medicines/publications/essentialmedicines/EML_2015_FINAL_amended_NOV2015.pdf?ua=1.Google Scholar
Yee, G. C., Stanley, D. L., Pessa, L. et al. (1995). Effect of grapefruit juice on blood cyclosporin concentration. The Lancet, 345(8955), 955956.Google Scholar
Yu, S. H., Liu, S. K. et al. (2007). Psychopharmacology across cultures. In Textbook of Cultural Psychiatry, ed. Bhugra, D. and Bhui, K.. Cambridge: Cambridge University Press.Google Scholar
Zanger, U. M., Turpeinen, M., Klein, K. and Schwab, M. (2008). Functional pharmacogenetics/genomics of human cytochromes P450 involved in drug biotransformation. Analytical and Bioanalytical Chemistry, 392(6), 10931108.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×