Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-19T15:29:25.208Z Has data issue: false hasContentIssue false

Chapter 6 - Ketamine and Other Novel Psychoactive Substances with Dissociative Effects

from Part II - Drugs with Primarily Depressant Effects

Published online by Cambridge University Press:  06 October 2022

Dima Abdulrahim
Affiliation:
Programme Manager and Principal Researcher for the NEPTUNE Project, Central and North West London NHS Foundation Trust
Owen Bowden-Jones
Affiliation:
Consultant Addiction Psychiatrist, Central and North West London NHS Foundation Trust
Get access

Summary

Dissociative drugs distort perceptions of sight and sound and produce feelings of detachment (or dissociation) from the environment and self. Among the dissociative drugs, ketamine and phencyclidine (PCP) are the drugs most commonly used for recreational purposes.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

World Drug Report 2019 (United Nations publication, Sales No. E.19.XI.8).Google Scholar
Craig CL, , Loeffler GH., The ketamine analog methoxetamine: a new designer drug to threaten military readiness. Mil Med 2014;179(10):1149.Google Scholar
Zukin, SR, Sloboda, ZJ, Daniel, C. Phencyclidine (PCP). In: Substance Abuse: A Comprehensive Textbook, 4th ed., pp. 324335. Edited by Lowinson, JH, Ruiz, P, Millmann, B, et al. Philadelphia, PA, Lippincott Williams & Wilkins, 1994.Google Scholar
World Drug Report 2019 (United Nations publication, Sales No. E.19.XI.8).Google Scholar
European Monitoring Centre for Drugs and Drug Addiction (EMCDDA). European Drug Report 2019: Trends and Developments. Luxembourg, Publications Office of the European Union, 2019.Google Scholar
Van Hout, Hearne E., MWord of mouse’: indigenous harm reduction and online consumerism of the synthetic compound methoxphenidine. J Psychoactive Drugs 2015;47(1):3041. https://doi.org/10.1080/02791072.2014.974002Google Scholar
Bäckberg M, , Beck O, , Helander A., Phencyclidine analog use in Sweden: intoxication cases involving 3-MeO-PCP and 4-MeO-PCP from the STRIDA project. Clin Toxicol 2015;53(9):856864. https://doi.org/10.3109/15563650.2015.1079325Google Scholar
See also Wallach, JB, Simon D. Phencyclidine-based new psychoactive substances. Handb Exp Pharmacol 2018;252:261303.Google Scholar
Berger, ML, Schweifer, A, Rebernik, P, Hammerschmidt, F. NMDA receptor affinities of 1,2-diphenylethylamine and 1-(1,2-diphenylethyl) piperidine enantiomers and of related compounds. Bioorg Med Chem 2009;17:34563462.Google Scholar
Wallach, J, De Paoli, G, Adejare, A, Brandt, SD. Preparation and analytical characterization of 1-(1-phenylcyclohexyl)piperidine (PCP) and 1-(1-phenylcyclohexyl)pyrrolidine (PCPy) analogues. Drug Test Anal 2014;6:633650.Google Scholar
Anis, NA, Berry, SC, Burton, NR, Lodge, D. The dissociative anaesthetics, ketamine and phencyclidine, selectively reduce excitation of central mammalian neurones by N-methyl-aspartate. Br J Pharmacol 1983;79:565575.Google Scholar
Helander, A, Beck, O, Bäckberg, M. Intoxications by the dissociative new psychoactive substances diphenidine and methoxphenidine. Clin Toxicol (Phila) 2015;53:446453.Google Scholar
Morris, H, Wallach, J. From PCP to MXE: a comprehensive review of the non-medical use of dissociative drugs. Drug Test Anal 2014;6:614632.Google Scholar
Domino, EF, Chodoff, P, Corssen, G. Pharmacologic effects of Ci-581, a new dissociative anesthetic, in man. Clin Pharmacol Ther 1965;6:279291.Google Scholar
Kalsi, SS, Wood, DM, Dargan, PI. The epidemiology and patterns of acute and chronic toxicity associated with recreational ketamine use. Emerg Health Threats J 2011;4:7107. https://doi.org/10.3402/ehtj.v4i0.7107Google Scholar
Quibell, R, Prummer, EC, Mihalyo, M, Twycross, R, Wilcock, A. Ketamine. J Pain Symptom Mgt 2011;41:640649.Google Scholar
Rabiner, EA. Imaging of striatal dopamine release elicited with NMDA antagonists: is there anything there to be seen? J Psychopharmacol 2007;21:253258.Google Scholar
Yanagihara, Y, Kariya, S, Ohtani, M, et al. Involvement of CYP2B6 in n-demethylation of ketamine in human liver microsomes. Drug Metab Dispos 2001;29:887890.Google Scholar
World Health Organization. Model List of Essential Medicines: 19th List (April 2015) amended November 2015.Google Scholar
Liao, Y, Tang Y-L, Hao W. Ketamine and international regulations. Am J Drug Alcohol Abuse 2017(online). https://doi.org/10.1080/00952990.2016.1278449Google Scholar
Advisory Council on the Misuse of Drugs (ACMD). Ketamine: A Review of Use and Harm. London, Home Office, 2013.Google Scholar
Weil, A, Rosen, W. Chocolate to Morphine: Understanding Mind-Active Drugs. Boston, MA, Houghton Mifflin, 1983.Google Scholar
Corazza, O, Schifano, F, Simonato, P, et al. Phenomenon of new drugs on the Internet: the case of ketamine derivative methoxetamine. Hum Psychopharmacol 2012;27(2):145149. https://doi.org/10.1002/hup.1242CrossRefGoogle ScholarPubMed
Copeland, J, Dillon, P. The health and psycho-social consequences of ketamine use. Int J Drug Policy 2005;16:122131.Google Scholar
Hijazi, Y, Boulieu, R. Contribution of CYP3A4, CYP2B6, and CYP2C9 isoforms to N-demethylation of ketamine in human liver microsomes. Drug Metab Dispos 2002;30:853858.Google Scholar
Halberstadt AL, , Slepak N, , Hyun J, , Buell MR, , Powell SB. The novel ketamine analog methoxetamine produces dissociative-like behavioral effects in rodents. Psychopharmacology 2016;233:12151225. https://doi.org/10.1007/s00213-016-4203-3CrossRefGoogle ScholarPubMed
Gibbons, S, Zloh, M. An analysis of the ‘legal high’ mephedrone. Bioorg Med Chem Lett 2010;20:41354139.Google Scholar
Hofer, KE, Grager, B, Müller, DM, et al. Ketamine-like effects after recreational use of methoxetamine. Ann Emerg Med 2012;60(1):9799. https://doi.org/10.1016/j.annemergmed.2011.11.018Google Scholar
Roth, BL, Gibbons, S, Arunotayanun, W, et al. The ketamine analogue methoxetamine and 3- and 4-methoxy analogues of phencyclidine are high affinity and selective ligands for the glutamate NMDA receptor. PLoS One 2013;8(3):e59334. https://doi.org/10.1371/ journal.pone.0059334Google Scholar
Zanda, MT, Fadda, P, Antinori, S, et al. Methoxetamine affects brain processing involved in emotional response in rats. Br J Pharmacol 2017;174(19):33333345. https://doi.org/10.1111/bph.13952Google Scholar
Coppola, M, Mondola, R. Methoxetamine: from drug of abuse to rapid-acting antidepressant. Med Hypotheses 2012;79:504507.Google Scholar
Corazza, O, Assi, S, Schifano, F. From ‘Special K’ to ‘Special M’: the evolution of the recreational use of ketamine and methoxetamine. CNS Neurosci Ther 2013;19:454460.Google Scholar
Corazza, O, Schifano, F, Simonato, P, et al. Phenomenon of new drugs on the Internet: the case of ketamine derivative methoxetamine. Hum Psychopharmacol Clin Exp 2012;27:145149.Google Scholar
Winstock AR, , Lawn W, , Deluca P, , Borschmann R., Methoxetamine: an early report on the motivations for use, effect profile and prevalence of use in a UK clubbing sample. Drug Alcohol Rev 2016;35:212217. https://doi.org/10.1111/dar.12259Google Scholar
Lawn, W, Borschmann, R, Cottrell, A, Winstock, A. Methoxetamine: prevalence of use in the USA and UK and associated urinary problems. J Subst Use 2016;21:115120.Google Scholar
Dargan, P, Tang, H, Liang, W, Wood, D, Yew, D. Three months of methoxetamine administration is associated with significant bladder and renal toxicity in mice. Clin Toxicol 2014;52:176180.Google Scholar
Wang, Q, Wu, Q, Wang, J, et al. Ketamine analog methoxetamine induced inflammation and dysfunction of bladder in rats. Int J Mol Sci 2017;18:117.Google Scholar
Botanasa CJ, , Bryan de la, Penaa J, , Kima HJ, , Sup Lee Y, , Hoon J., Methoxetamine: a foe or friend? Neurochem Int 2019; 122:17.Google Scholar
Karlow, N, Schlaepfer, C H, Stoll, C RT, et al. A systematic review and meta-analysis of ketamine as an alternative to opioids for acute pain in the emergency department. Acad Emerg Med 2018;25(10):10861097. https://doi.org/10.1111/acem.13502CrossRefGoogle ScholarPubMed
National Poisons Information Service. Annual Report 2012/2013. London, Public Health England, 2013.Google Scholar
Jones, JL, Mateus, CF, Malcolm, RJ, Brady, KT, Back, SE. Efficacy of ketamine in the treatment of substance use disorders: a systematic review. Front Psychiatry 2018;9:277. https://doi.org/10.3389/fpsyt.2018.00277Google Scholar
Malhi GS, , Byrow Y, , Cassidy F, et al. Ketamine: stimulating antidepressant treatment? BJPsych Open 2016;2:e5e9. https://doi.org/10.1192/bjpo.bp.116.002923Google Scholar
Singh I, , Morgan C, , Curran V., Ketamine treatment for depression: opportunities for clinical innovation and ethical foresight. Lancet Psychiatry 2017;4(5):419426.Google Scholar
Schoevers RA, , Chaves TV, , Balukova SM, , van het Rot M, Kortekaas R. Oral ketamine for the treatment of pain and treatment-resistant depression Br J Psychiatry 2016;208:108113. https://doi.org/1192/bjp.bp.115.165498Google Scholar
Swiatek KM, Jordan K, Coffman J. New use for an old drug: oral ketamine for treatment-resistant depression. Br Med J Case Rep 2016 (online). https://doi.org/10.1136/bcr-2016-216088Google Scholar
Zarate, CA, Singh, JB, Carlson, PJ, et al. A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry 2006;63(8):856864.Google Scholar
Krystal, JH. Ketamine and the potential role for rapid acting antidepressant medications. Swiss Med Wkly 2007;137:215216.Google ScholarPubMed
Schwartz J, , Murrough JW, , Iosifescu DV. Ketamine for treatment-resistant depression: recent developments and clinical applications Evid Based Mental Health 2016;19(2):3538.Google Scholar
Mathew, SJ, Shah, A, Lapidus, K, et al. Ketamine for treatment-resistant unipolar depression. CNS Drugs 2012;26:189204.Google Scholar
Murrough, JW, Iosifescu, DV, Chang, LC, et al. An antidepressant efficacy of ketamine in treatment-resistant major depression: a two-site randomized controlled trial. Am J Psychiatry 2013;170:11341142.Google Scholar
Fond, G, Loundou, A, Rabu, C, et al. Ketamine administration in depressive disorders: a systematic review and meta-analysis. Psychopharmacology (Berl) 2014;231:36633676.Google Scholar
McGirr, A, Berlim, MT, Bond, DJ, et al. A systematic review and meta-analysis of randomized, double-blind, placebo-controlled trials of ketamine in the rapid treatment of major depressive episodes. Psychol Med 2015;45:693704.Google Scholar
SchakJennifer KM, Van de Voort L, , Johnson EK, et al. Potential risks of poorly monitored ketamine use in depression treatment. Am J Psychiatry 2016;173:3.Google Scholar
DeWilde, KE, Levitch, CF, Murrough, JW, Mathew, SJ, Iosifescu, DV. The promise of ketamine for treatment-resistant depression: current evidence and future directions. Ann N Y Acad Sci 2015;1345;4758. https://doi.org/10.1111/nyas.12646CrossRefGoogle ScholarPubMed
Short B, , Fong J, , Galvez V, , Shelker W, , Loo CK. Side-effects associated with ketamine use in depression: a systematic review. Lancet Psychiatry 2018;5:6578. https://doi.org/10.1016/ S2215-0366(17)30272-9Google Scholar
Berman, RM, Cappiello, A, Anand, A, et al. Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 2000;47(4):351354.CrossRefGoogle ScholarPubMed
Zarate, CA, Singh, JB, Carlson, PJ, et al. A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry 2006;63(8):856864.Google Scholar
Krystal, JH. Ketamine and the potential role for rapid acting antidepressant medications. Swiss Med Wkly 2007;137:215216.Google Scholar
Bell RF. Ketamine for chronic noncancer pain: concerns regarding toxicity. Curr Opin Support Palliat Care 2012;6(2):183187. https://doi.org/10.1097/SPC.0b013e328352812cGoogle Scholar
Zhu W, , Ding Z, , Zhang Y, , Shi J, , Hashimoto K, , Lu L. Risks associated with misuse of ketamine as a rapid-acting antidepressant. Neurosci Bull 2016;32(6):557564. https://doi.org/10.1007/s12264-016-0081-2Google Scholar
Botanasa CJ, , Bryan de la, Penaa J, , Kima HJ, , Lee YS, , Cheonga JH., Methoxetamine: a foe or friend? Neurochem Int 2019;122:17.Google Scholar
Coppola, M, Mondola, R. Methoxetamine: from drug of abuse to rapid-acting antidepressant. Med Hypotheses 2012;79:504507.Google Scholar
Botanas, CJ, de la Pena, JB, Custodio, RJ, de la PenKim, HI, Cho, MC, Lee, YS. Methoxetamine produces rapid and sustained antidepressant effects probably via glutamatergic and serotonergic mechanisms. Neuropharmacology 2017;126:121127.Google Scholar
Zanda, M, Fadda, P, Antinori, S, et al. Methoxetamine affects brain processing involved in emotional response in rats. Br J Pharmacol 2017;174:33333345.Google Scholar
Sayson, L V, Botanas, C J, Custodio, RJ et al. The novel methoxetamine analogs N-ethylnorketamine hydrochloride (NENK), 2-MeO-N-ethylketamine hydrochloride (2-MeO-NEK), and 4-MeO-N-ethylketamine hydrochloride (4-MeO-NEK) elicit rapid antidepressant effects via activation of AMPA and 5-HT2 receptors. Psychopharmacology 2019;236(7):22012210. https://doi.org/10.1007/s00213-019-05219-xGoogle Scholar
European Monitoring Centre for Drugs and Drug Addiction (EMCDDA). 2012 Annual Report on the State of the Drug Problem in Europe.Google Scholar
European Monitoring Centre for Drugs and Drug Addiction (EMCDDA). European Drug Report 2019: Trends and Developments. Luxembourg, Publications Office of the European Union, 2019.Google Scholar
Moore, K, Measham, F.It’s the most fun you can have for twenty quid’: motivations, consequences and meanings of British ketamine use. Addict Res Theory 2008;16(3):231244.CrossRefGoogle Scholar
Curran, V, Morgan, C. Cognitive, dissociative and psychotogenic effects of ketamine in recreational users on the night of drug use and 3 days later. Addiction 2000;95:575590.Google Scholar
Dillon, P, Copeland, J, Jansen, K. Patterns of use and harms associated with non-medical ketamine use. Drug Alcohol Depend 2003;69:2328.Google Scholar
Clatts, MC, Goldsamt, L, Huso, Y. Club drug use among young men who have sex with men in NYC: a preliminary epidemiological profile. Subst Use Misuse 2005;40:13171330.Google Scholar
Dalgarno, PJ, Shewan, D. Illicit use of ketamine in Scotland. J Psychoactive Drugs 1996;28:191199.Google Scholar
Long, H. Case report: ketamine medication error resulting in death. Int J Med Toxicol 2003;6:2.Google Scholar
Licata, M, Pierini, G, Popoli, G. A fatal ketamine poisoning. J Forensic Sci 1994;39:13141320.Google Scholar
World Drug Report 2019 (United Nations publication, Sales No. E.19.XI.8).Google Scholar
Riley, SC, James, C, Gregory, D, Dingle, H, Cadger, M. Patterns of recreational drug use at dance events in Edinburgh, Scotland. Addiction 2001;96(7):10351047.Google Scholar
Mitcheson, L, McCambridge, J, Byrne, A, Hunt, N, Winstock, A. Sexual health risk among dance drug users: cross-sectional comparisons with nationally representative data. Int J Drug Policy 2008;19(4):304310. https://doi.org/10.1016/j.drugpo.2007.02.002Google Scholar
Darrow, WW, Biersteker, S, Geiss, T, et al. Risky sexual behaviors associated with recreational drug use among men who have sex with men in an international resort area: challenges and opportunities. J Urban Health 2005;82:601609.Google Scholar
Lee, SJ, Galanter, M, Dermatis, H, McDowell, D. Circuit parties and patterns of drug use in a subset of gay men. J Addictive Diseases 2003;22(4):4760.CrossRefGoogle Scholar
Mattison, AM, Ross, MW, Wolfson, T, Franklin, D. Circuit party attendance, club drug use, and unsafe sex in gay men. J Subst Abuse 2001;13(1–2):119126.Google Scholar
Ross, MW, Mattison, AM, Franklin, D. Club drugs and sex on drugs are associated with different motivations for gay circuit party attendance in men. Subst Use Misuse 2003;38(8):11711179.Google Scholar
Jang, MY, Long CY, , Chuang SM, et al. Sexual dysfunction in women with ketamine cystitis: a case-control study. BJU Int 2012;110(3):427431. https://doi.org/10.1111/j.1464-410X.2011.10780.xGoogle Scholar
Suppiah, B, Vicknasingam B, , Singh D, , Narayanan S, . Erectile dysfunction among people who use ketamine and poly-drugs. J Psychoactive Drugs 2016;48(2):8692.CrossRefGoogle ScholarPubMed
Lankenau, SE, Bloom, JJ, Shin, C. Longitudinal trajectories of ketamine use among young injection drug users. Int J Drug Policy 2010;21(4):306314. https://doi.org/10.1016/j.drugpo.2010.01.007Google Scholar
Lankenau, SE, Clatts, MC. Ketamine injection among high-risk youths: preliminary findings from New York City. J Drug Issues 2002;32(3):893905.Google Scholar
Bristol Drug Project. Ketamine: just a harmless party drug? Drink and Drug News, 28 July 2008.Google Scholar
Darke S, , Duflou J, , Farrell M, , Peacock, A, Lappin, J. Characteristics and circumstances of death related to the self‐administration of ketamine. Addiction 2020 (online). https://doi.org/10.1111/add.15154Google Scholar
Han E, , Kwon NJ, , Feng L-Y, , Li J-H, , Chung, H. Illegal use patterns, side effects, and analytical methods of ketamine. Forensic Sci Int 2016;268:2534. https://doi.org/10.1016/j.forsciint.2016.09.001Google Scholar
Sinner, B, Graf, BM. Ketamine. Handb Exp Pharmacol 2008;182:313333.Google Scholar
Jansen, KL. A review of the nonmedical use of ketamine: use, users and consequences. J Psychoactive Drugs 2000;32:419433.Google Scholar
Corazza, O, Assi, S, From, Schifano F.Special K’ to ‘Special M’: the evolution of the recreational use of ketamine and methoxetamine. CNS Neurosci Ther 2013;19(6):454460. https://doi.org/10.1111/cns.12063Google Scholar
Curran, HV, Monaghan, L. In and out of the K-hole: a comparison of the acute and residual effects of ketamine in frequent and infrequent ketamine users. Addiction 2001;96(5):749760.Google Scholar
Jansen, KL, Darracot-Cankovic, R. The nonmedical use of ketamine, part two: a review of problem use and dependence. J Psychoactive Drugs 2001;33:151158.Google Scholar
Morgan, CJ, Rees, H, Curran, HV. Attentional bias to incentive stimuli in frequent ketamine users. Psychol Med 2008;38:13311340.CrossRefGoogle ScholarPubMed
Moreton, JE, Meisch, RA, Stark, L, Thompson, T. Ketamine self-administration by the rhesus monkey. J Pharmacol Exp Ther 1977;203:303309.Google Scholar
Wood, D, Cottrell, A, Baker, SC, et al. Recreational ketamine: from pleasure to pain. BJU Int 2011;107(12):18811884. https://doi.org/10.1111/j.1464-410X.2010.10031.xGoogle Scholar
Rosenbaum, CD, Carreiro, SP, Babu, KM. Here today, gone tomorrow … and back again? A review of herbal marijuana alternatives (K2, Spice), synthetic cathinones (Bath Salts), Kratom, Salvia divinorum, methoxetamine, and piperazines. J Med Toxicol 2012;8(1):1532. https://doi.org/10.1007/ s13181-011-0202-2Google Scholar
Corazza, O, Schifano, F, Simonato, P, et al. The phenomenon of new drugs on the Internet: a study on the diffusion of the ketamine derivative methoxetamine (‘MXE’). Hum Psychopharmacol 2012;27:145149.Google Scholar
Corazza, O, Assi, S, Schifano, F. From ‘Special K’ to ‘Special M’: the evolution of the recreational use of ketamine and methoxetamine. CNS Neurosci Ther 2013;19:454e460. https://doi.org/10.1111/cns.12063Google Scholar
Hondebrink L, , Kasteel EEJ, , Tukker AM, et al. Neuropharmacological characterization of the new psychoactive substance methoxetamine. Neuropharmacology 2017;123:19.Google Scholar
Winstock AR, , Lawn W, , Deluca P, , Borschmann, R. Methoxetamine: an early report on the motivations for use, effect profile and prevalence of use in a UK clubbing sample. Drug Alcohol Rev 2016;35:212217. https://doi.org/10.1111/dar.12259Google Scholar
Craig CL, , Loeffler GH., The ketamine analog methoxetamine: a new designer drug to threaten military readiness. Mil Med 2014;179(10): 1149.Google Scholar
Botanasa CJ, Bryan de la Pena, J, Kima HJ, , Lee YS, , Cheonga JH. Methoxetamine: a foe or friend? Neurochem Int 2019; 122:17.Google Scholar
Advisory Council on the Misuse of Drugs (ACMD). Statement of Evidence on Methoxetamine. London, Home Office, 2012.Google Scholar
Gerace, E, Bovetto, E, Di Corcia, D, Vincenti, M, Salomone, A. A case of nonfatal intoxication associated with the recreational use of diphenidine. J Forensic Sci 2017;62:11071111.Google Scholar
Siegel, RK. Phencyclidine and ketamine intoxication: a study of four populations of recreational users. In: Peterson, RC, Stillman, RC, eds. Phencyclidine Abuse: An Appraisal (NIDA Research Monograph 21), pp. 119147. Bethesda, MD, National Institute on Drug Abuse, 1978.Google Scholar
Benschop, A, Urbán, R, Kapitány-Fövény, M, et al. Why do people use new psychoactive substances? Development of a new measurement tool in six European countries. J Psychopharmacol 2020;34(6):600611. https://doi.org/10.1177/0269881120904951Google Scholar
Teltzrow, R, Bosch, OG. Ecstatic anaesthesia: ketamine and GHB between medical use and self-experimentation. Appl Cardiopulm Pathophysiol 2012;16:309321.Google Scholar
Hurt, PH, Ritchie, EC. A case of ketamine dependence. Am J Psychiatry 1994;151:779.Google Scholar
Teltzrow, R, Bosch, OG. Ecstatic anaesthesia: ketamine and GHB between medical use and self-experimentation. Appl Cardiopulm Pathophysiol 2012;16:309321.Google Scholar
Ross, S. Ketamine and addiction. Prim Psychiatry 2008;15(9):6169.Google Scholar
Wolff K. Ketamine: the pharmacokinetics and pharmacodynamics in misusing populations. In: The SAGE Handbook of Drug & Alcohol Studies. London: Sage Publications, 2016.Google Scholar
Stirling, J, McCoy, L. Quantifying the psychological effects of ketamine: from euphoria to the K-hole. Subst Use Misuse. 2010;45(14):24282443. https://doi.org/10.3109/10826081003793912Google Scholar
Leary, T, Sirius, RU. Design for Dying. London: HarperCollins, 1998.Google Scholar
Critchlow, DG. A case of ketamine dependence with discontinuation symptoms. Addiction 2006;101(8):12121213.Google Scholar
Gill, JR, Stajíc, M. Ketamine in non-hospital and hospital deaths in New York City. J Forensic Sci 2000;45(3):655658.Google Scholar
Corazza, O, Schifano, F. Ketamine-induced near-death experience states in a sample of 50 misusers. Subst Use Misuse 2010;45(6):916924.Google Scholar
Corazza, O, Assi, S, Schifano, F. From ‘Special K’ to ‘Special M’: the evolution of the recreational use of ketamine and methoxetamine. CNS Neurosci Ther 2013;19:454e460. https://doi.org/10.1111/cns.12063Google Scholar
Corazza, O, Schifano, F, Simonato, P, et al. Phenomenon of new drugs on the Internet: the case of ketamine derivative methoxetamine. Hum Psychopharmacol 2012;27:145e149. https://doi.org/10.1002/hup.1242Google Scholar
Horsley, RR, Lhotkova, E, Hajkova, K, Jurasek, B, Kuchar, M, Palenicek, T. Detailed pharmacological evaluation of methoxetamine (MXE), a novel psychoactive ketamine analogue: behavioural, pharmacokinetic and metabolic studies in the Wistar rat. Brain Res Bull 2016 (online). https://doi.org/10.1016/j.brainresbull.2016.05.002Google Scholar
Van, Hout MC, Hearne, E.Word of Mouse’: indigenous harm reduction and online consumerism of the synthetic compound methoxphenidine. J Psychoactive Drugs 2015;47(1):3041https://doi.org/10.1080/02791072.2014.974002Google Scholar
Botanasa CJ, Bryan de la Pena, J, Kima HJ, Lee YS, Cheonga JH., Methoxetamine: a foe or friend? Neurochem Int 2019;122:17.Google Scholar
Zawilska, JB. Methoxetamine: a novel recreational drug with potent hallucinogenic properties. Toxicol Lett 2014;230:402e407. https://doi.org/ 10.1016/j.toxlet.2014.08.011Google Scholar
Corazza, O, Assi, S, Schifano, F. From ‘Special K’ to ‘Special M’: the evolution of the recreational use of ketamine and methoxetamine. CNS Neurosci Ther 2013;19:454e460. https://doi.org/10.1111/cns.12063Google Scholar
Corazza, O, Schifano, F, Simonato, P, et al. Phenomenon of new drugs on the Internet: the case of ketamine derivative methoxetamine. Hum Psychopharmacol 2012;27:145e149. https://doi.org/10.1002/hup.1242Google Scholar
Hout MC, Van, Hearne E., Word of Mouse’: indigenous harm reduction and online consumerism of the synthetic compound methoxphenidine. J Psychoactive Drugs 2015;47(1):3041https://doi.org/10.1080/02791072.2014.974002Google Scholar
Schifano, F, Corkery, J, Oyefeso, A, Tonia, T, Ghodse, AH. Trapped in the ‘K-hole’: overview of deaths associated with ketamine misuse in the UK (1993–2006). J Clin Psychopharmacol 2008;28:114116.Google Scholar
Corazza, O, Assi, S, Schifano, F. From ‘Special K’ to ‘Special M’: the evolution of the recreational use of ketamine and methoxetamine. CNS Neurosci Ther 2013;19:454e460. https://doi.org/10.1111/cns.12063Google Scholar
Craig, CL, Loeffler, GH. The ketamine analog methoxetamine: a new designer drug to threaten military readiness. Mil Med 2014;179:11491157.Google Scholar
Zanda, MT, Fadda, P, Chiamulera, C, Fratta, W, Fattore, L. Methoxetamine: a novel psychoactive substance with serious adverse pharmacological effects: a review of case reports and preclinical findings. Behav Pharmacol 2016;27:489496.Google Scholar
Morgan, CJA, Curran, HV. Ketamine use: a review. Addiction 2011;107:2738.Google Scholar
Morgan, CJ, Curran, HV. Acute and chronic effects of ketamine upon human memory: a review. Psychopharmacology (Berl) 2006;188:408424.Google Scholar
Haas, DA, Harper, DG. Ketamine: a review of its pharmacological properties and use in ambulatory anesthesia. Anesth Prog 1992:39:6168.Google ScholarPubMed
Weiner, AL, Vieira, L, McKay, CA, Bayer, MJ. Ketamine abusers presenting to the emergency department: a case series. J Emerg Med 2000;18:447451.Google Scholar
Sassano-Higgins S, , Baron D, Juarez G, , Esmaili N, , Gold M. A review of ketamine abuse and diversion. Depress Anxiety 2016;33:718727.Google Scholar
SPC data for ketamine hydrochloride for injection. SPC states that respiratory depression may occur with overdosage.Google Scholar
Ng, SH, Tse, ML, Ng, HW, Lau, FL. Emergency department presentation of ketamine abusers in Hong Kong: a review of 233 cases. Hong Kong Med J 2010;16(1):611.Google Scholar
Felser, JM, Orban, DJ. Dystonic reaction after ketamine abuse. Ann Emerg Med 1982;11(12):673675.Google Scholar
Lahti, AC, Weiler, MA, Michaelidis, T, Parwani, A, Tammminga, C. Effects of ketamine in normal and schizophrenic volunteers. Neuropsychopharmacology 2001;25:455467.Google Scholar
Lahti, AC, Koffel, B, LaPorte, D, Tamminga, CA. Subanesthetic doses of ketamine stimulate psychosis in schizophrenia. Neuropsychopharmacology 1995;13:919.Google Scholar
Malhotra, AK, Pinals, DA, Adler, CM, et al. Ketamine-induced exacerbation of psychotic symptoms and cognitive impairment in neuroleptic-free schizophrenics. Neuropsychopharmacology 1997;17:141150.Google Scholar
Lahti, AC, Holcomb, HH, Medoff, DR, Tamminga, CA. Ketamine activates psychosis and alters limbic blood flow in schizophrenia. Neuroreport 1995;6:869872.Google Scholar
Wood, DM, Bishop, CR, Greene, SL, Dargan, PI. Ketamine-related toxicology presentations to the ED. Clin Toxicol 2008;46:630.Google Scholar
Weiner, AL, Vieira, L, McKay, CA, Bayer, MJ. Ketamine abusers presenting to the emergency department: a case series. J Emerg Med 2000;18:447451.Google Scholar
Rollin, A, Maury, P, Guilbeau-Frugier, C, Transient, Brugada J. ST elevation after ketamine intoxication: a new cause of acquired brugada ECG pattern. J Cardiovasc Electrophysiol 2011;22(1):9194. https://doi.org/10.1111/j.1540-8167.2010.01766.xGoogle Scholar
Maskell SF, Bailey ML, Rutherfoord Rose S., Self-medication with methoxetamine as an analgesic resulting in significant toxicity. Pain Med 2016;17:1773–1775. https://doi.org/10.1093/pm/pnw041Google Scholar
Craig CL, , Loeffler GH., The ketamine analog methoxetamine: a new designer drug to threaten military readiness. Mil Med 2014;179(10): 1149.Google Scholar
Shields, JE, Dargan, PI, Wood, DM, Puchnarewicz, M, Davies, S, Waring, WS. Methoxetamine associated reversible cerebellar toxicity: three cases with analytical confirmation. Clin Toxicol (Phila) 2012;50(5):438440. https://doi.org/10.3109/15563650.2012.683437Google Scholar
Michelot, D, Melendez-Howell, LM. Amanita muscaria: chemistry, biology, toxicology, and ethnomycology. Mycol Res 2003;107:131146.Google Scholar
Wood, DM, Davies, S, Puchnarewicz, M, Johnston, A, Dargan, PI. Acute toxicity associated with the recreational use of the ketamine derivative methoxetamine. Eur J Clin Pharmacol 2012;68(5):853856. https://doi.org/10.1007/s00228-011-1199-9Google Scholar
Ward, J, Rhyee, S, Plansky, J, Boyer, E. Methoxetamine: a novel ketamine analog and growing health-care concern. Clin Toxicol 2011;49:874875.Google Scholar
Craig CL, , Loeffler GH., The ketamine analog methoxetamine: a new designer drug to threaten military readiness. Mil Med 2014;179(10):1149.Google Scholar
Shields, JE, Dargan, PI, Wood, DM, Puchnarewicz, M, Davies, S, Waring, WS. Methoxetamine-associated reversible cerebellar toxicity: three cases with analytical confirmation. Clin Toxicol 2012;50:438440.Google Scholar
Wood, DM, Davies, S, Puchnarewicz, M, Johnston, A, Dargan, PI. Acute toxicity associated with the recreational use of the ketamine derivative methoxetamine. Eur J Clin Pharmacol 2012;68:853856. https://doi.org/10.1007/s00228-011-1199-9Google Scholar
Sein Anand, J, Wiergowski, M, Barwina, M, Kaletha, K. Accidental intoxication with high dose of methoxetamine (MXE) – a case report. Przegl Lek 2012;69(8):609610.Google Scholar
Corazza, O, Assi, S, Schifano, F. From ‘Special K’ to ‘Special M’: the evolution of the recreational use of ketamine and methoxetamine. CNS Neurosci Ther 2013;19:454e460. http://dx.doi.org/10.1111/cns.12063Google Scholar
Zawilska, JB. Methoxetamine: a novel recreational drug with potent hallucinogenic properties. Toxicol Lett 2014;230:402e407. https://doi.org/ 10.1016/j.toxlet.2014.08.011Google Scholar
Shields, JE, Dargan, PI, Wood, DM, Puchnarewicz, M, Davies, S, Waring, WS. Methoxetamine-associated reversible cerebellar toxicity: three cases with analytical confirmation. Clin Toxicol 2012;50:438440.Google Scholar
Bäckberg M, , Beck O, , Helander A., Phencyclidine analog use in Sweden: intoxication cases involving 3-MeO-PCP and 4-MeO-PCP from the STRIDA project. Clin Toxicol 2015;53(9):856864. https://doi.org/10.3109/15563650.2015.1079325Google Scholar
Bakota E, , Arndt C, , Romoser AA, Wilson SK. Fatal intoxication involving 3-MeO-PCP: a case report and validated method. J Anal Toxicol 2016;40:504510. https://doi.org/10.1093/jat/bkw056Google Scholar
Jacobs, R, Nowell, M. Phencyclidine hydrochloride: a challenge to medicine. J Natl Med Assoc 1981;73:170172.Google Scholar
Bey, T, Patel, A. Phencyclidine intoxication and adverse effects: a clinical and pharmacological review of an illicit drug. Calif J Emerg Med 2007;8:914.Google Scholar
Johansson A, , Lindsted D, , Roman M, et al. A non-fatal intoxication and seven deaths involving the dissociative drug 3-MeO-PCP. Forensic Sci Int 2017;275:7682.Google Scholar
Bakota E, , Arndt C, , Romoser AA, , Wilson SK., Fatal intoxication involving 3-MeO-PCP: a case report and validated method. J Anal Toxicol 2016;40:504510. https://doi.org/10.1093/jat/bkw056Google Scholar
Jacobs, R, Nowell, M. Phencyclidine hydrochloride: a challenge to medicine. J Natl Med Assoc 1981;73:170172.Google Scholar
Bey, T, Patel, A. Phencyclidine intoxication and adverse effects: a clinical and pharmacological review of an illicit drug. Calif J Emerg Med 2007;8:914.Google Scholar
Bakota E, , Arndt C, , Romoser AA, , Wilson SK., Fatal intoxication involving 3-MeO-PCP: a case report and validated method. J Anal Toxicol 2016;40:504510. https://doi.org/10.1093/jat/bkw056Google Scholar
Jacobs, R, Nowell, M. Phencyclidine hydrochloride: a challenge to medicine. J Natl Med Assoc 1981;73:170172.Google Scholar
Bey, T, Patel, A. Phencyclidine intoxication and adverse effects: a clinical and pharmacological review of an illicit drug. Calif J Emerg Med 2007;8:914.Google Scholar
Bäckberg M, , Beck O, , Helander A., Phencyclidine analog use in Sweden: intoxication cases involving 3-MeO-PCP and 4-MeO-PCP from the STRIDA project. Clin Toxicol 2015;53(9):856864. https://doi.org/10.3109/15563650.2015.1079325Google Scholar
Thornton, S, Lisbon, D, Lin, T, Gerona, R. ketamine, Beyond and phencyclidine: analytically confirmed use of multiple novel arylcyclohexylamines. J Psychoactive Drugs 2017;49(4):289293. https://doi.org/10.1080/02791072.2017.1333660Google Scholar
Thornton, S, Lisbon, D, Lin, T, Gerona, R. Beyond ketamine and phencyclidine: analytically confirmed use of multiple novel arylcyclohexylamines. J Psychoactive Drugs 2017;49(4);289293. https://doi.org/10.1080/02791072.2017.1333660Google Scholar
Bertol E, , Pascali J, , Palumbo D, et al. 3-MeO-PCP intoxication in two young men: first in vivo detection in Italy. Forensic Sci Int 2017;274:712.Google Scholar
Orsolin L, , Papanti G, , Schifano, FR. Methoxphenidine (1-(1-(2-methoxyphenyl)-2-phenylethyl) Piperidine; 2-meo-diphenidine): preliminary data on chemical, pharmacological and clinical effects. Eur Psychiatry 2015;30(Suppl.1):1046.CrossRefGoogle Scholar
Helander A, , Beck O, , Bäckberg M., Intoxications by the dissociative new psychoactive substances diphenidine and methoxphenidine. Clin Toxicol 2015;53(5):446453https://doi.org/10.3109/15563650.2015.1033630Google Scholar
Hofer KE, , Degrandi C, , Müller DM, et al. Acute toxicity associated with the recreational use of the novel dissociative psychoactive substance methoxphenidine. Clin Toxicol 2014;52(10):12881291. https://doi.org/10.3109/15563650.2014.974264Google Scholar
Hofer KE, , Degrandi C, , Müller DM, et al. Acute toxicity associated with the recreational use of the novel dissociative psychoactive substance methoxphenidine. Clin Toxicol 2014;52(10):12881291. https://doi.org/10.3109/15563650.2014.974264Google Scholar
Helander A, , Beck O, , Bäckberg M., Intoxications by the dissociative new psychoactive substances diphenidine and methoxphenidine. Clin Toxicol 2015;53(5):446453https://doi.org/10.3109/15563650.2015.1033630Google Scholar
Hofer KE, , Degrandi C, , Müller DM, et al. Acute toxicity associated with the recreational use of the novel dissociative psychoactive substance methoxphenidine. Clin Toxicol 2014;52(10):12881291. https://doi.org/10.3109/15563650.2014.974264Google Scholar
Helander, A, Beck, O, Bäckberg, M. Intoxications by the dissociative new psychoactive substances diphenidine and methoxphenidine. Clin Toxicol 2015;53:446453.Google Scholar
Hofer, EK, Degrandi, C, Müller, DM, et al. Acute toxicity associated with the recreational use of the novel dissociative psychoactive substance methoxphenidine. Clin Toxicol 2014;52:12881291.Google Scholar
Gerace, E, Bovetto, E, Di Corcia, D, Vincenti, M, Salomone, A. A case of nonfatal intoxication associated with the recreational use of diphenidine. J Forensic Sci 2017;62:11071111.Google Scholar
Hofer, EK, Degrandi, C, Müller, DM, et al. Acute toxicity associated with the recreational use of the novel dissociative psychoactive substance methoxphenidine. Clin Toxicol 2014;52:12881291.Google Scholar
Lam RPK, , Yip WL, , Tsui MSH, , Ng SW, , Ching CK, , Mak TWL., Severe rhabdomyolysis and acute kidney injury associated with methoxphenidine. Clin Toxicol 2016;54(5):464465https://doi.org/10.3109/15563650.2016.1157724Google Scholar
Orsolin L, , Papanti G, , Schifano, FR. Methoxphenidine (1-(1-(2-methoxyphenyl)-2-phenylethyl) Piperidine; 2-meo-diphenidine): preliminary data on chemical, pharmacological and clinical effects. Eur Psychiatry 2015;30(Suppl. 1):1046.Google Scholar
Tang MHY, , Chong YK, , Chan CY, , et al. Cluster of acute poisonings associated with an emerging ketamine analogue, 2-oxo-PCE. Forensic Sci Int 2018;290:238243.Google Scholar
Tang MHY, , Chong YK, , Chan CY, , et al. Cluster of acute poisonings associated with an emerging ketamine analogue, 2-oxo-PCE. Forensic Sci Int 2018;290:238243.Google Scholar
Dobbs, T. Report: after patient death, UVM medical center waited weeks to fix flawed systems. VPR, 7 July, 2015.Google Scholar
European Monitoring Centre for Drugs and Drug Addiction (EMCDDA). Technical report on 2-(3-methoxyphenyl)- 2-(ethylamino)cyclohexanone (methoxetamine), Lisbon, EMCDDA, April 2014.Google Scholar
Darke S, , Duflou J, , Farrell M, , Peacock, A, Lappin J., Characteristics and circumstances of death related to the self‐administration of ketamine. Addiction 2020 (online). https://doi.org/10.1111/add.15154Google Scholar
Stewart, CE. Ketamine as a street drug. Emerg Med Serv 2001;30(11):30,32,34 passim.Google Scholar
Adamowicz P, , Zuba D. Fatal intoxication with methoxetamine. J Forensic Sci 2015;60(S1). https://doi.org/10.1111/1556-4029.12594Google Scholar
European Monitoring Centre for Drugs and Drug Addiction (EMCDDA). Technical report on 2-(3-methoxyphenyl)- 2-(ethylamino)cyclohexanone (methoxetamine), Lisbon, EMCDDA, April 2014.Google Scholar
Elliott SP, , Brandt SD, , Wallach J, , Morris H, Kavanagh PV. First reported fatalities associated with the ‘research chemical’ 2-methoxydiphenidine. J Anal Toxicol 2015;39:287293. https://doi.org/10.1093/jat/bkv006Google Scholar
Adamowicz P, , Zuba D. Fatal intoxication with methoxetamine. J Forensic Sci 2015;60(S1). https://doi.org/10.1111/1556-4029.12594Google Scholar
Elliott SP, , Brandt SD, , Wallach J, , Morris H, Kavanagh PV. First reported fatalities associated with the ‘research chemical’ 2-methoxydiphenidine. J Anal Toxicol 2015;39:287293. https://doi.org/10.1093/jat/bkv006Google Scholar
Elliott S, , Sedefov R, , Evans‐Brown M. Assessing the toxicological significance of new psychoactive substances in fatalities. Drug Test Anal 2018;10:120.Google Scholar
Bäckberg M, , Beck O, , Helander A., Phencyclidine analog use in Sweden: intoxication cases involving 3-MeO-PCP and 4-MeO-PCP from the STRIDA project. Clin Toxicol 2015;53(9):856864. https://doi.org/10.3109/15563650.2015.1079325Google Scholar
Johansson A, , Lindsted D, , Roman M, et al. A non-fatal intoxication and seven deaths involving the dissociative drug 3-MeO-PCP. Forensic Sci Int 2017;275:7682.Google Scholar
Bäckberg M, , Beck O, , Helander A., Phencyclidine analog use in Sweden: intoxication cases involving 3-MeO-PCP and 4-MeO-PCP from the STRIDA project. Clin Toxicol 2015;53(9):856864. https://doi.org/10.3109/15563650.2015.1079325Google Scholar
Bakota E, , Arndt C, , Romoser AA, , Wilson SK., Fatal intoxication involving 3-MeO-PCP: a case report and validated method. J Anal Toxicol 2016;40:504510. https://doi.org/10.1093/jat/bkw056Google Scholar
McIntyre IM, , Trochta A, , Gary RD, , Storey A, , Corneal J, , Schaber B., Hallucinogenic compounds: 4-methoxyphencyclidine and 4-hydroxy-N-methyl-N-ethyltryptamine. J Anal Toxicol 2015;39(9):751755https://doi.org/10.1093/jat/bkv089Google Scholar
de Jong LAA, , Olyslager EJH, , Duijst WLJM., The risk of emerging new psychoactive substances: the first fatal 3-MeO-PCP intoxication in the Netherlands. J Forensic Leg Med 2019;65:101104.CrossRefGoogle ScholarPubMed
Mitchell-Mata C, , Thomas B, , Peterson B, , Couper, F. Two fatal intoxications involving 3-methoxyphencyclidine. J Anal Toxicol 2017;41:503507. https://doi.org/10.1093/jat/bkx048Google Scholar
Zidkova M, , Hlozek T, , Balik M, et al. Two cases of non-fatal intoxication with a novel street hallucinogen: 3-methoxy-phencyclidine. J Anal Toxicol 2017;41:350354. https://doi.org/10.1093/jat/bkx009Google Scholar
Wood, DM, Nicolaou, M, Dargan, PI. Epidemiology of recreational drug toxicity in a nightclub environment. Subst Use Misuse 2009;44:14951502.Google Scholar
Tang MHY, , Chong YK, , Chan CY, , et al. Cluster of acute poisonings associated with an emerging ketamine analogue, 2-oxo-PCE. Forensic Sci Int 2018;290:238243.Google Scholar
Smith, KM, Larive, LL, Romanelli, F. Club drugs: methylene dioxymethamphetaine, flunitrazepam, ketamine hydrochloride, and gamma-hydroxybutyrate. Am J Health Syst Pharm 2002;59(11):10671076.Google Scholar
Shields JE, , Dargan PI, , Wood DM, , Waring WS., Methoxetamine-associated reversible cerebellar toxicity: three cases with analytical confirmation. Clin Toxicol 2012;50(5):438440. https://doi.org/10.3109/15563650.2012.683437Google Scholar
Craig CL, , Loeffler GH, . The ketamine analog methoxetamine: a new designer drug to threaten military readiness. Mil Med 2014;179(10): 1149.Google Scholar
Craig CL, , Loeffler GH, . The ketamine analog methoxetamine: a new designer drug to threaten military readiness. Mil Med 2014;179(10): 1149.Google Scholar
Wood, DM, Dargan PI. Novel psychoactive substances: how to understand the acute toxicity associated with the use of these substances. Ther Drug Monit 2012;34(4):363366.Google Scholar
Wood DM, , Davies S, , Puchnarewicz M, , Johnston A, , Dargan PI. Acute toxicity associated with the recreational use of the ketamine derivative methoxetamine. Eur J Clin Pharmacol 2012;68:853856. https://doi.org/10.1007/s00228-011-1199-9Google Scholar
Shields JE, , Dargan PI, , Wood DM, , Waring WS., Methoxetamine-associated reversible cerebellar toxicity: three cases with analytical confirmation. Clin Toxicol 2012;50(5):438440. https://doi.org/10.3109/15563650.2012.683437Google Scholar
Bäckberg M, , Beck O, , Helander A., Phencyclidine analog use in Sweden: intoxication cases involving 3-MeO-PCP and 4-MeO-PCP from the STRIDA project. Clin Toxicol 2015;53(9):856864. https://doi.org/10.3109/15563650.2015.1079325Google Scholar
Tang MHY, , Chong YK, , Chan CY, , et al. Cluster of acute poisonings associated with an emerging ketamine analogue, 2-oxo-PCE. Forensic Sci Int 2018;290:238243.Google Scholar
Matulewicz, P, Kasicki, S, Hunt, MJ. The effect of dopamine receptor blockade in the rodent nucleus accumbens on local field potential oscillations and motor activity in response to ketamine. Brain Res 2010;1366:226232.Google Scholar
Moore, NN, Bostwick, JM. Ketamine dependence in anesthesia providers. Psychosomatics 1999;40:356359.Google Scholar
Pal, HR, Berry, N, Kumar, R, Ray, R. Ketamine dependence. Anaesth Intensive Care 2002;30:382384.Google Scholar
Jansen, KL. Ketamine – can chronic use impair memory? Int J Addict 1990;25:133139.Google Scholar
Cumming, JF. The development of an acute tolerance to ketamine. Anesth Analg 1976;55:788791.Google Scholar
Bree, MM, Feller, I, Corssen, G. Safety and tolerance of repeated anesthesia with CI 581 (ketamine) in monkeys. Anesth Analg 1967;46:596600.Google Scholar
Byer DE, , Gould, AB Jr. Development of tolerance to ketamine in an infant undergoing repeated anesthesia. Anesthesiology 1981;54:255256.Google Scholar
Muetzelfeldt, L, Kamboj, SK, Rees, H, Taylor, J, Morgan, CJ, Curran, HV. Journey through the K-hole: phenomenological aspects of ketamine use. Drug Alcohol Depend 2008;95(3):219229. https://doi.org/10.1016/j.drugalcdep.2008.01.024Google Scholar
Chen L-Y, , Chen C-K, , Chen C-H, , Chang H-M, , Huang M-C, , Xu K., Association of craving and depressive symptoms in ketamine‐dependent patients undergoing withdrawal treatment. Am J Addict 2020;29(1):4350https://doi.org/10.1111/ajad.12978Google Scholar
Striebel, JM, Nelson, EE, Kalapatapu, RK. ‘Being with a Buddha’: a case report of methoxetamine use in a United States veteran with PTSD. Case Rep Psychiatry 2017;7:2319094.Google Scholar
Botanasa CJ, , Bryan de la Pena J, Kima HJ, Lee YS, Hoon J. Methoxetamine: a foe or friend? Neurochem Int 2019;122:17.Google Scholar
Blachut, M, Solowiow, K, Janus, A, et al. A case of ketamine dependence. Psychiatr Pol 2009;43:593599.Google Scholar
Lim, DK. Ketamine-associated psychedelic effects and dependence. Singapore Med J 2003;44:3134.Google Scholar
Wang, YC, Chen, SK, Lin, CM. Breaking the drug addiction cycle is not easy in ketamine abusers. Int J Urol 2010;17(5):496. https://doi.org/10.1111/j.1442-2042.2010.02491.xGoogle Scholar
Monaghan, DT, Bridges, RJ, Cotman, CW. The excitatory amino acid receptors: their classes, pharmacology and distinct properties in the function of the central nervous system. Annu Rev Pharmacol Toxicol 1989;29:365402.Google Scholar
Craig CL, , Loeffler GH., The ketamine analog methoxetamine: a new designer drug to threaten military readiness. Mil Med 2014;179(10):1149.Google Scholar
Wei, YB, Yang, JR. ‘Ketamine-induced ulcerative cystitis’ is perhaps better labelled ‘ketamine-induced uropathy’. Addiction 2013;108(8):1515. https://doi.org/10.1111/add.12195Google Scholar
Chu, PS, Ma, WK, Wong, SC, et al. The destruction of the lower urinary tract by ketamine abuse: a new syndrome? BJU Int 2008;102(11):16161622. https://doi.org/10.1111/j.1464-410X.2008.07920.xGoogle Scholar
Wong, SW, Lee, KF, Wong, J, Ng, WW, Cheung, YS, Lai, PB. Dilated common bile ducts mimicking choledochal cysts in ketamine abusers. Hong Kong Med J 2009;15(1):5356.Google Scholar
Ramos SP, , Zambonato TK, , Graziott TM., Reduced functional bladder capacity associated with ketamine use. Braz J Psychiatry 2019;41(3):270271. https://doi.org/10.1590/1516-4446-2018-0314Google Scholar
Sihra N, , Ockrim J, , Wood D., The effects of recreational ketamine cystitis on urinary tract reconstruction – a surgical challenge. BJU Int 2018;121:458465.Google Scholar
Myers, FA, Bluth, MH, Cheung, WW Ketamine, : a cause of urinary tract dysfunction. Clin Lab Med 2016;36:721744.https://doi.org/10.1016/j.cll.2016.07.008Google Scholar
Gill P, , Logan K, , John B, , Reynolds F, , Shaw C, , Madden K. Participants’ experiences of ketamine bladder syndrome: a qualitative study. PhD Int J Urol Nurs 2018;12:7683.Google Scholar
Cottrell, A, Warren, K, Ayres, R, Weinstock, P, Gillatt, DA. The relationship of chronic recreational ketamine use and severe bladder pathology: presentation, management of symptoms and public health concerns. Eur Urol Suppl 2009;8:170.Google Scholar
Middela, S, Pearce, I. Ketamine-induced vesicopathy: a literature review. Int J Clin Pract 2011;65(1):2730. https://doi.org/10.1111/j.1742-1241.2010.02502.xGoogle Scholar
Gill P, , Logan K, , John B, , Reynolds F, , Shaw C, , Madden K. Participants’ experiences of ketamine bladder syndrome: a qualitative study. PhD Int J Urol Nurs 2018;12:7683.Google Scholar
Yew, DT, Wood, DM, Liang, W, Tang, HC, Dargan, PI. An animal model demonstrating significant bladder inflammation and fibrosis associated with chronic methoxetamine administration. Clin Toxicol 2013;51(4):278.Google Scholar
Lawn W, , Borschmann R, , Cottrell, A, Winstock A., Methoxetamine: prevalence of use in the USA and UK and associated urinary problems. J Subst Use 2016;21(2):115120. https://doi.org/10.3109/14659891.2014.966345Google Scholar
Liu, SUQ, Ng, SKK,Tam YH, et al. Clinical pattern and prevalence of upper gastrointestinal toxicity in patients abusing ketamine. J Dig Dis 2017;18(9):504510.Google Scholar
Liu, SUQ, Ng, SKK,Tam YH, et al. Clinical pattern and prevalence of upper gastrointestinal toxicity in patients abusing ketamine. J Dig Dis 2017;18(9):504510.Google Scholar
Liu, SUQ, Ng, SKK,Tam YH, et al. Clinical pattern and prevalence of upper gastrointestinal toxicity in patients abusing ketamine. J Dig Dis 2017;18(9):504510.Google Scholar
Selby, NM, Anderson, J, Bungay, P, Chesterton, LJ, Kohle, NV. Obstructive nephropathy and kidney injury associated with ketamine abuse. Nephrol Dial Transplant Plus 2008;1(2):310312.Google Scholar
Ng, SH, Lee, HK, Chan, YC, Lau, FL. Dilated common bile ducts in ketamine abusers. Hong Kong Med J 2009;15:157.Google Scholar
Wong, GL, Tam, YH, Ng, CF, et al. Liver injury is common among chronic abuses of ketamine. Clin Gastroenterol Hepatol 2014;12:17591762.Google Scholar
Wong, GL, Tam, YH, Ng, CF, et al. Liver injury is common among chronic abuses of ketamine. Clin Gastroenterol Hepatol 2014;12:17591762.Google Scholar
Yu, WL, Cho, CC, Lung, PF, et al. Ketamine-related cholangiopathy: a retrospective study on clinical and imaging findings. Abdom Imaging 2014;39:12411246.Google Scholar
Morgan, CJ, Curran, HV. Ketamine use: a review. Addiction 2011;107:2738.Google Scholar
Liu, SUQ, Ng, SKK,Tam YH, et al. Clinical pattern and prevalence of upper gastrointestinal toxicity in patients abusing ketamine. J Dig Dis 2017;18(9):504510.Google Scholar
Randall, T. Ectasy-fuelled ‘rave’ parties become dances of death for English youths. J Am Med Assoc 1993;269:869870.Google Scholar
Glasgow, AM, Tynan, D, Schwartz, R, et al. Alcohol and drug use in teenagers with diabetes mellitus. J Adolesc Health 1997;12:1114.Google Scholar
Gold, MA, Gladstein, J. Substance use among adolescents with diabetes mellitus: preliminary findings. J Adolesc Health 1993;14:8084.Google Scholar
Martínez-Aguayo, A, Araneda, JC, Fernandez, D, Gleisner, A, Perez, V, Codner, E. Tobacco, alcohol, and illicit drug use in adolescents with diabetes mellitus. Pediatr Diabetes 2007;8:265271.Google Scholar
Ng, RS, Darko, DA, Hillson, RM. Street drug use among young patients with type 1 diabetes in the UK. Diabet Med 2004;21:295296.Google Scholar
Lee, P, Greenfield, JR, Campbell, LV. ‘Mind the gap’ when managing ketoacidosis in type 1 diabetes. Diabetes Care 2008;31:e58.Google Scholar
Rattray, M. Ecstasy: towards an understanding of the biochemical basis of the action of MDMA. Essays Biochem 1991;26:77.Google Scholar
Britt, GC, McCance-Katz, EF. A brief overview of the clinical pharmacology of ‘club drugs’. Subst Use Misuse 2005;40:11891201.CrossRefGoogle ScholarPubMed
Seymour, HR, Gilman, D, Quin, JD. Severe ketoacidosis complicated by ‘ecstasy’ ingestion and prolonged exercise. Diabet Med 1996;13:908909.Google Scholar
Giorgi, FS, Lazzeri, G, Natale, G, et al. MDMA and seizures: a dangerous liaison? Ann NY Acad Sci 2006;1074:357364.Google Scholar
Rosenson, J, Smollin, C, Sporer, KA, Blanc, P, Olson, KR. Patterns of ecstasy-associated hyponatremia in California. Ann Emerg Med 2007;49:164171.Google Scholar
Kalantar-Zadeh, K, Nguyen, MK, Chang, R, Kurtz, I. Fatal hyponatremia in a young woman after ecstasy ingestion. Nat Clin Pract Nephrol 2006;2:283288.Google Scholar
Ben-Abraham, R, Szold, O, Rudick, V, Weinbroum, AA. ‘Ecstasy’ intoxication: life-threatening manifestations and resuscitative measures in the intensive care setting. Eur J Emerg Med 2003;10:309313.Google Scholar
Brvar, M, Kozelj, G, Osredkar, J, Mozina, M, Gricar, M, Bunc, M. Polydipsia as another mechanism of hyponatremia after ‘ecstasy’ (3,4 methyldioxymethamphetamine) ingestion. Eur J Emerg Med 2004;11:302304.Google Scholar
Kwon, C, Zaritsky, A, Dharnidharka, VR. Transient proximal tubular renal injury following ecstasy ingestion. Pediatr Nephrol 2003;18:820822.Google Scholar
Lee, P, Nicoll, AJ, McDonough, M, Colman, PG. Substance abuse in young patients with type 1 diabetes: easily neglected in complex medical management. Intern Med J 2005;35:359361.Google Scholar
Rome, ES. It’s a rave new world: rave culture and illicit drug use in the young. Cleve Clin J Med 2001;68:541550.Google Scholar
Buchanan, JF, Brown, CR. ‘Designer drugs’. A problem in clinical toxicology. Med Toxicol Adverse Drug Exp 1988;3:1.Google Scholar
Koesters, SC, Rogers, PD, Rajasingham, CR. MDMA (‘ecstasy’) and other ‘club drugs’. The new epidemic. Paediatr Clin North Am 2002;49:415.Google Scholar
Lee, P, Campbell, LV. Diabetic ketoacidosis: the usual villain or a scapegoat? A novel cause of severe metabolic acidosis in type 1 diabetes. Diabetes Care 2008;31:e13.Google Scholar
Romanelli, F, Smith, KM, Pomeroy, C. Use of club drugs by HIV-seropositive and HIV-seronegative gay and bisexual men. Top HIV Med 2003;11(1):2532.Google Scholar
Morgan, CJ, Muetzelfeldt, L, Curran, HV. Consequences of chronic ketamine self-administration upon neurocognitive function and psychological wellbeing: a 1-year longitudinal study. Addiction 2010;105:121133.Google Scholar
Morgan, CJ, Rossell, SL, Pepper, F, et al. Semantic priming after ketamine acutely in healthy volunteers and following chronic self-administration in substance users. Biol Psychiatry 2006;59:265272.Google Scholar
Morgan, CJ, Perry, EB, Cho, HS, Krystal, JH, D’Souza, DC. Greater vulnerability to the amnestic effects of ketamine in males. Psychopharmacology (Berl) 2006;187:405414.Google Scholar
Morgan, CJ, Muetzelfeldt, L, Curran, HV. Ketamine use, cognition and psychological wellbeing: a comparison of frequent, infrequent and ex-users with polydrug and non-using controls. Addiction 2009;104:7787.Google Scholar
Morgan, CJ, Monaghan, L, Curran, HV. Beyond the K-hole: a 3-year longitudinal investigation of the cognitive and subjective effects of ketamine in recreational users who have substantially reduced their use of the drug. Addiction 2004;99(11):14501461.Google Scholar
Narendran, R, Frankle, WG, Keefe, R, et al. Altered prefrontal dopaminergic function in chronic recreational ketamine users. Am J Psychiatry 2005;162:23522359.Google Scholar
Aan het Rot, M, Collins, KA, Murrough, JW, et al. Safety and efficacy of repeated-dose intravenous ketamine for treatment-resistant depression. Biol Psychiatry 2010;67:139145.Google Scholar
Womble, AL. Effects of ketamine on major depressive disorder in a patient with posttraumatic stress disorder. AANA J 2013;81(2):118119.Google Scholar
Berman, RM, Cappiello, A, Anand, A, et al. Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 2000;47(4):351354.Google Scholar
Aan het, Rot M, Collins, KA, Murrough, JW, et al. Safety and efficacy of repeated-dose intravenous ketamine for treatment resistant depression. Biol Psychiatry 2010;67:139145.Google Scholar
Womble, AL. Effects of ketamine on major depressive disorder in a patient with posttraumatic stress disorder. AANA J 2013;81(2):118119.Google Scholar
Murrough, JW. Antidepressant efficacy of ketamine in treatment-resistant major depression: a two-site, randomized, parallel-arm, midazolam-controlled, clinical trial. Biol Psychiatry 2013;73(9 Suppl. 1):142S.Google Scholar
Zarate, CA, Singh, JB, Carlson, PJ, et al. A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry 2006;63(8):856864.Google Scholar
McGirr, A, Berlim, MT, Bond, DJ, Fleck, MP, Yatham, LN, Lam, RW. A systematic review and meta-analysis of randomized, double-blind, placebo-controlled trials of ketamine in the rapid treatment of major depressive episodes. Psychol Med 2015;45(4):693704.Google Scholar
Iadarola, ND, Niciu, MJ, Richards, EM, et al. Ketamine and other N-methyl-D-aspartate receptor antagonists in the treatment of depression: a perspective review. Ther Adv Chronic Dis 2015;6(3):97114.Google Scholar
Mathew, SJ, Zarate Jr, CA eds. Ketamine for Treatment-Resistant Depression: The First Decade of Progress. New York, Springer, 2016.Google Scholar
Singh, JB, Fedgchin, M, Daly, EJ, et al. A double-blind, randomized, placebo-controlled, dose-frequency study of intravenous ketamine in patients with treatment-resistant depression. Am J Psychiatry 2016;173(8):816826.Google Scholar
Albott, C, Lim, K. Forbes, M, et al. 1001-Neurocognitive effects of repeated ketamine infusions in co-occurring posttraumatic stress disorder and treatment-resistant depression. Biol Psychiatry 2017;81(10):S405.Google Scholar
Al Shirawi, MI, Kennedy, SH, Ho, KT, Byrne, R, Downar, J. Oral ketamine in treatment-resistant depression: a clinical effectiveness case series. J Clin Psychopharmacol 2017;37(4):464467.Google Scholar
Singh, I, Morgan, C, Curran, V, Nutt, D, Schlag, A, McShane, R. Ketamine treatment for depression: opportunities for clinical innovation and ethical foresight. Lancet Psychiatry 2017;4(5):419426.Google Scholar
Berman, RM, Cappiello, A, Anand, A, et al. Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 2000;47(4):351354.Google Scholar
Zarate, CA, Singh, JB, Carlson, PJ, et al. A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry 2006;63(8):856864.Google Scholar
Krystal, JH. Ketamine and the potential role for rapid acting antidepressant medications. Swiss Med Wkly 2007;137:215216.Google Scholar
Schwartz J, , Murrough JW, , Iosifescu DV. Ketamine for treatment-resistant depression: recent developments and clinical applications. Evid Based Mental Health 2016 ;19(2):3538.Google Scholar
Mathew, SJ, Shah, A, Lapidus, K, et al. Ketamine for treatment-resistant unipolar depression. CNS Drugs 2012;26:189204.Google Scholar
Murrough, JW, Iosifescu, DV, Chang, LC, et al. An antidepressant efficacy of ketamine in treatment-resistant major depression: a two-site randomized controlled trial. Am J Psychiatry 2013;170:11341142.Google Scholar
Fond, G, Loundou, A, Rabu, C, et al. Ketamine administration in depressive disorders: a systematic review and meta-analysis. Psychopharmacology (Berl) 2014;231:36633676.Google Scholar
McGirr, A, Berlim, MT, Bond, DJ, et al. A systematic review and meta-analysis of randomized, double-blind, placebo-controlled trials of ketamine in the rapid treatment of major depressive episodes. Psychol Med 2015;45:693704.Google Scholar
SchakJennifer KM, Van de Voort L, , Johnson EK, et al. Potential risks of poorly monitored ketamine use in depression treatment. Am J Psychiatry 2016;173:3.Google Scholar
Murrough, JW. Antidepressant efficacy of ketamine in treatment-resistant major depression: a two-site, randomized, parallel-arm, midazolam-controlled, clinical trial. Biol Psychiatry 2013;73(9) Suppl. 1(142S).Google Scholar
Chang, H, Huang, MC, Chen, LY. Major depressive disorder induced by chronic ketamine abuse: a case report. Prim Care Companion CNS Disord 2016;18(3):10. https://doi.org/10.4088/PCC.15l01881Google Scholar
Liang HJ, , Tang KL, , Chan F, , Ungvari GS, , Tang KW., Ketamine users have high rates of psychosis and/or depression. J Addic Nurs 2015;26(1):813.Google Scholar
Liao, Y, Tang, J, Ma, M, et al. Frontal white matter abnormalities following chronic ketamine use: a diffusion tensor imaging study. Brain 2010;133:21152122.Google Scholar
Liao, Y, Tang, J, Corlett, PR, et al. Reduced dorsal prefrontal gray matter after chronic ketamine use. Biol Psychiatry 2011;69(1):4248. https://doi.org/10.1016/j.biopsych.2010.08.030Google Scholar
Maxwell, JC. The response to club drug use. Curr Opin Psychiatry 2003;16:279289.Google Scholar
Krystal, J, Karper, H, Bennett, LP, et al. Interactive effects of sub anaesthetic ketamine and subhypnotic lorazepam in humans. Psychopharmacology 1998;135:213229.Google Scholar
Bhad R, , Dayal P, , Kumar S, , Ambekar A. The drug ketamine: a double-edged sword for mental health professionals. J Subst Use 2016;21(4):341343https://doi.org/10.3109/14659891.2015.1040092Google Scholar
Pérez Gómez L, , González Martínez M, , González Fernández A, et al. Possible use of paliperidone palmitate in ketamine addiction. Eur Psychiatry 2015;30(Suppl. 1):1085. https://doi.org/10.1016/S0924-9338(15)30856-7Google Scholar
Huang M-C, , Chen L-Y, , Chen C-K, , Lin S-K., Potential benefit of lamotrigine in managing ketamine use disorder. Med Hypotheses 2016;87:97100. https://doi.org/10.1016/j.mehy.2015.11.011Google Scholar
Chang F, , Xu K, , Huang M-C, , Krystal J-H, . Alcohol triggers re-emergence of ketamine-like experience in a ketamine ex-user. J Clin Psychopharmacol 2017;37(1):110112. https://doi.org/10.1097/JCP.0000000000000635Google Scholar
de P. Ramos S, Zambonato TK, , Graziottin TM., Reduced functional bladder capacity associated with ketamine use. Braz J Psychiatry 2019;41(3):270271. https://doi:10.1590/1516-4446-2018-0314Google Scholar
de P. Ramos S, Zambonato TK, , Graziottin TM., Reduced functional bladder capacity associated with ketamine use. Braz J Psychiatry 2019;41(3):270271. https://doi:10.1590/1516-4446-2018-0314Google Scholar
de P. Ramos S, Zambonato TK, , Graziottin TM., Reduced functional bladder capacity associated with ketamine use. Braz J Psychiatry 2019;41(3):270271. https://doi:10.1590/1516-4446-2018-0314Google Scholar
Cottrell, AM, Gillat, DA. Ketamine-associated urinary pathology: the tip of the iceberg for urologists? Br J Med Surg Urol 2008;1:136138.Google Scholar
Robles-Martínez M, , Abad AC, Pérez-Rodríguez V, RosCucurull E, Esojo A, Roncero C. Delayed urinary symptoms induced by ketamine. J Psychoactive Drugs 2017 (online). https://doi.org/10.1080/02791072.2017.1371364Google Scholar
Winstock, AR, Mitcheson, L, Gillatt, DA, Cottrell, AM. The prevalence and natural history of urinary symptoms among recreational ketamine users. BJU Int 2012;110(11):17621766. https://doi.org/10.1111/j.1464-410X.2012.11028.xGoogle Scholar
Sihra N, , Ockrim J, , Wood D., The effects of recreational ketamine cystitis on urinary tract reconstruction – a surgical challenge. BJU Int 2018;121:458465.Google Scholar
Wood, D. Ketamine and damage to the urinary tract. Addiction 2013;108:15151519.Google Scholar
Robles-Martínez M, , Abad AC, , Pérez-Rodríguez V, , Cucurull ER, , Esojo A, , Roncero C., Delayed urinary symptoms induced by ketamine. J Psychoactive Drugs 2017 (online). https://doi.org/10.1080/02791072.2017.1371364Google Scholar
Sihra N, , Ockrim J, , Wood D., The effects of recreational ketamine cystitis on urinary tract reconstruction – a surgical challenge. BJU Int 2018;121:458465.Google Scholar
Sihra N, , Ockrim J, , Wood D., The effects of recreational ketamine cystitis on urinary tract reconstruction – a surgical challenge. BJU Int 2018;121:458465.Google Scholar
Siu, AMH, Mak SK., Ko FSL Outcome evaluation of a short-term hospitalization and community support program for people who abuse ketamine. Front Psychiatry 2018;9:313.Google Scholar
Lankenau, S, Clatts, M. Drug injection practices among high-risk youth: the first shot of ketamine. J Urban Health 2004;81(2):232248.Google Scholar
Lankenau, S, Clatts, M. Patterns of polydrug use among ketamine injectors in New York City. Subst Use Misuse 2005;40:13811397.Google Scholar
Lankenau, S, Sanders, B. Patterns and frequencies of ketamine injection in New York City. J Psychoactive Drug 2007;39(1):2129.Google Scholar
Cheng, WC, Ng, KM, Chan, KK, Mok, VK, Cheung, BK. Roadside detection of impairment under the influence of ketamine – evaluation of ketamine impairment symptoms with reference to its concentration in oral fluid and urine. Forensic Sci Int 2007;170:5158.Google Scholar
Giorgetti R, , Marcotulli D, , Tagliabrac A, , Schifano F., Effects of ketamine on psychomotor, sensory and cognitive functions relevant for driving ability. Forensic Sci Int 2015;252:127142. https://doi.org/10.1016/j.forsciint.2015.04.024Google Scholar
Cheng, JY, Chan, DT, Mok, VK. An epidemiological study on alcohol-/drugs-related fatal traffic crash cases of deceased drivers in Hong Kong between 1996 and 2000. Forensic Sci Int 2005;153:196201.Google Scholar
Fassette T, , Martinez A, . An impaired driver found to be under the influence of methoxetamine. J Anal Toxicol 2016;40(8):700702https://doi.org/10.1093/jat/bkw054Google Scholar
Scott-Ham, M, Burton, FC. Toxicological findings in cases of alleged drug-facilitated sexual assault in the United Kingdom over a 3-year period. J Clin Forensic Med 2005;12:175186.Google Scholar
Du Mont, J, Macdonald, S, Rotbard, N, et al. Drug-facilitated sexual assault in Ontario, Canada: toxicological and DNA findings. J Forensic Leg Med 2010;17:333338.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×