Skip to main content Accessibility help
×
Home
  • Print publication year: 2021
  • Online publication date: May 2021

4 - Mechanisms of Plastic Deformation in Metals

Summary

The capacity of metals to undergo large plastic strains (without fracturing) is one of their most important characteristics. It allows them to be formed into complex shapes. It also means that a component under mechanical load is likely to experience some (local) plasticity, rather than starting to crack or exhibit other kinds of damage that could impair its function. Metals are in general superior to other types of material in this respect. This has been known for millennia, but the reasons behind it, and the mechanisms involved in metal plasticity, only started to become clear less than a century ago and have been understood in real depth for just a few decades. Central to this understanding is the atomic scale structure of dislocations, and the ways in which they can move so as to cause plastic deformation, although there are also several other plasticity mechanisms that can be activated under certain circumstances. These are described in this chapter, together with information about how they tend to be affected by the metal microstructure. This term encompasses a complex range of features, including crystal structure, grain size, texture, alloying additions, impurities, phase constitution etc.

1.Hirth, JP, A brief history of dislocation theory. Metallurgical Transactions A: Physical Metallurgy and Materials Science, 1985. 16(12): 20852090.
2.Rodriguez, P, Sixty years of dislocations. Bulletin of Materials Science, 1996. 19(6): 857872.
3.Chang, R and Graham, LJ, Edge dislocation core structure and Peierls barrier in body-centred cubic iron. Physica Status Solidi, 1966. 18(1): 99103.
4.Schmid, E and Boas, W, Plasticity of Crystals, with Special Reference to Metals (translated from German). London: FA Hughes & Co., 1950.
5.Tang, M, Devincre, B and Kubin, LP, Simulation and modelling of forest hardening in body centre cubic crystals at low temperature. Modelling and Simulation in Materials Science and Engineering, 1999. 7(5): 893908.
6.Saimoto, S, Dynamic dislocation-defect analysis. Philosophical Magazine, 2006. 86(27): 42134233.
7.Norfleet, DM, Dimiduk, DM, Polasik, SJ, Uchic, MD and Mills, MJ, Dislocation structures and their relationship to strength in deformed nickel microcrystals. Acta Materialia, 2008. 56(13): 29883001.
8.Brown, LM, Constant intermittent flow of dislocations: central problems in plasticity. Materials Science and Technology, 2012. 28(11): 12091232.
9.Ashby, MF, Results and consequences of a recalculation of Frank–Read and Orowan stress. Acta Metallurgica, 1966. 14(5): 679–681.
10.Xu, SZ, Xiong, LM, Chen, YP and McDowell, DL, An analysis of key characteristics of the Frank–Read source process in FCC metals. Journal of the Mechanics and Physics of Solids, 2016. 96: 460476.
11.Thornton, PR, Mitchell, TE and Hirsch, PB, Dependence of cross-slip on stacking fault energy in face centred cubic metals and alloys. Philosophical Magazine, 1962. 7(80): 1349–1369.
12.Puschl, W, Models for dislocation cross-slip in close-packed crystal structures: a critical review. Progress in Materials Science, 2002. 47(4): 415461.
13.Rao, SI, Dimiduk, DM, Parthasarathy, TA, El-Awady, J, Woodward, C and Uchic, MD, Calculations of intersection cross-slip activation energies in FCC metals using nudged elastic band method. Acta Materialia, 2011. 59(19): 71357144.
14.Sakai, T and Jonas, JJ, Dynamic recrystallization – mechanical and microstructural considerations. Acta Metallurgica, 1984. 32(2): 189209.
15.Doherty, RD, Hughes, DA, Humphreys, FJ, Jonas, JJ, Jensen, DJ, Kassner, ME, King, WE, McNelley, TR, McQueen, HJ and Rollett, AD, Current issues in recrystallization: a review. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing, 1997. 238(2): 219274.
16.Sakai, T, Belyakov, A, Kaibyshev, R, Miura, H and Jonas, JJ, Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions. Progress in Materials Science, 2014. 60: 130207.
17.Roters, F, Eisenlohr, P, Hantcherli, L, Tjahjanto, DD, Bieler, TR and Raabe, D, Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: theory, experiments, applications. Acta Materialia, 2010. 58(4): 11521211.
18.Lee, J, Kim, YC, Lee, S, Ahn, S and Kim, NJ, Correlation of the microstructure and mechanical properties of oxide-dispersion-strengthened coppers fabricated by internal oxidation. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2004. 35A(2): 493502.
19.Chen, F, Yan, ZQ and Wang, T, Effects of internal oxidation methods on microstructures and properties of Al2O3 dispersion-strengthened copper alloys, in High Performance Structural Materials, Han, Y, ed. Singapore: Springer-Verlag, 2018, pp. 18.
20.Guskovic, D, Markovic, D and Nestorovic, S, Effect of deformation and oxygen content on mechanical properties of different copper wires. Bulletin of Materials Science, 1997. 20(5): 693697.
21.Ravichandran, N and Prasad, Y, Influence of oxygen on dynamic recrystallization during hot working of polycrystalline copper. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing, 1992. 156(2): 195204.
22.Takeuchi, S and Argon, AS, Glide and climb resistance to the motion of an edge dislocation due to dragging a Cottrell atmosphere. Philosophical Magazine A: Physics of Condensed Matter Structure Defects and Mechanical Properties, 1979. 40(1): 6575.
23.Zhao, JZ, De, AK and De Cooman, BC, Kinetics of Cottrell atmosphere formation during strain aging of ultra-low carbon steels. Materials Letters, 2000. 44(6): 374378.
24.Wilde, J, Cerezo, A and Smith, GDW, Three-dimensional atomic-scale mapping of a Cottrell atmosphere around a dislocation in iron. Scripta Materialia, 2000. 43(1): 3948.
25.Veiga, RGA, Perez, M, Becquart, CS and Domain, C, Atomistic modeling of carbon Cottrell atmospheres in BCC iron. Journal of Physics-Condensed Matter, 2013. 25(2).
26.Herman, H, Fine, ME and Cohen, JB, Formation and reversion of Guinier–Preston zones in Ai-5.3 at.% Zn. Acta Metallurgica, 1963. 11(1): 43–56.
27.Gerold, V, On the structures of Guinier–Preston zones in Al-Cu alloys. Scripta Metallurgica, 1988. 22(7): 927932.
28.Matsuda, K, Gamada, H, Fujii, K, Uetani, Y, Sato, T, Kamio, A and Ikeno, S, High-resolution electron microscopy on the structure of Guinier–Preston zones in an Al-1.6 mass pct Mg2Si alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1998. 29(4): 11611167.
29.Chalmers, B, The cry of tin. Nature, 1932. 129: 650651.
30.Kelly, A, Neumann bands in pure iron. Proceedings of the Physical Society of London Section A, 1953. 66: 403–405.
31.Otsuka, K and Ren, X, Physical metallurgy of Ti-Ni-based shape memory alloys. Progress in Materials Science, 2005. 50(5): 511678.
32.Kim, HY, Ikehara, Y, Kim, JI, Hosoda, H and Miyazaki, S, Martensitic transformation, shape memory effect and superelasticity of Ti-Nb binary alloys. Acta Materialia, 2006. 54(9): 24192429.
33.Jani, JM, Leary, M, Subic, A and Gibson, MA, A review of shape memory alloy research, applications and opportunities. Materials & Design, 2014. 56: 10781113.
34.Weertman, J, Steady-state creep through dislocation climb. Journal of Applied Physics, 1957. 28(3): 362364.
35.Ashby, MF, On interface-reaction control of Nabarro–Herring creep and sintering. Scripta Metallurgica, 1969. 3(11): 837842.
36.Nix, WD, The effects of grain shape on Nabarro–Herring and Coble creep processes. Metals Forum, 1981. 4(1–2): 3843.
37.Owen, DM and Langdon, TG, Low stress creep behavior: an examination of Nabarro–Herring and Harper–Dorn creep. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing, 1996. 216(1–2): 2029.
38.Yue, QZ, Liu, L, Yang, WC, Huang, TW, Zhang, J and Fu, HZ, Stress dependence of dislocation networks in elevated temperature creep of Ni-based single crystal superalloy. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing, 2019. 742: 132137.
39.Chandler, HD, Steady state power law creep resulting from dislocation substructure saturation being approached at higher stress. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing, 2020. 771 138622, https://doi.org/10.1016/j.msea.2019.138622.