Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-05T21:59:52.564Z Has data issue: false hasContentIssue false

Part II - Integrative Approaches for Sustainability Assessment

Published online by Cambridge University Press:  27 March 2020

Claudia R. Binder
Affiliation:
École Polytechnique Fédérale de Lausanne
Romano Wyss
Affiliation:
École Polytechnique Fédérale de Lausanne
Emanuele Massaro
Affiliation:
École Polytechnique Fédérale de Lausanne
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Adger, W. N., Arnell, N. W., & Tompkins, E.L. (2005). Successful adaptation to climate change across scales. Global Environmental Change, 15, 7786.CrossRefGoogle Scholar
ASCE, UNESCO (1998). Sustainability criteria for water resource systems. ASCE, Reston.Google Scholar
Babel, M., Pandey, V., Rivas, A., & Wahid, S. (2011). Indicator-based approach for assessing the vulnerability of freshwater resources in the Bagmati River Basin, Nepal. Environmental Management 48, 10441059.Google Scholar
Binder, C. R, Hutter, M., Pang, M., & Webb, R. (2020). System science and sustainability assessment. In Binder, C. R., Massaro, E, & Wyss, R (eds.), Sustainability Assessment in Urban Systems. Cambridge University Press, pp. 3064.Google Scholar
Bonriposi, M. (2013). Les usages de l’eau dans la région de Crans-Montana-Sierre: description, quantification et prévisions (Doctoral thesis). University of Lausanne, Switzerland.Google Scholar
CH2011 (2011). Les scénarios du changement climatique en Suisse CH2011. www.ch2011.ch (accessed 08.05.2012).Google Scholar
Creswell, J. W., & Clark, V. L. P. (2017). Designing and Conducting Mixed Methods Research. Los Angeles, London, New Delhi, Singapore, Washington, DC: Sage Publications.Google Scholar
Folke, C., Hahn, T., Olsson, P., & Norberg, J. (2005). Adaptive governance of social-ecological systems. Annual Review of Environment and Resources, 30, 441473.Google Scholar
Franco, L. (2006). Forms of conversation and problem structuring methods: A conceptual development. Journal of the Operational Research Society, 57(7), 813821.Google Scholar
Fraser, N. (2009). Scales of Justice: Re-imagining Political Space in a Globalizing World. New York: Columbia University Press.Google Scholar
Fritz, L., & Meinherz, F. (2020). How Values Play into Sustainability Assessments: Challenges and a Possible Way Forward. In Binder, C. R., Massaro, E, & Wyss, R (eds.), Sustainability Assessment in Urban Systems. Cambridge University Press, pp. 87122.Google Scholar
Gibson, R. B. (2006). Sustainability assessment: Basic components of a practical approach. Impact Assessment and Project Appraisal, 24, 170182.Google Scholar
Gleick, P. H. (1998). Water in crisis: Paths to sustainable water use. Ecological Applications, 8, 571579.Google Scholar
Gupta, J., Termeer, C., Klostermann, J., et al. (2010). The adaptive capacity wheel: A method to assess the inherent characteristics of institutions to enable the adaptive capacity of society. Environmental Science & Policy, 13, 459471.Google Scholar
Hartmuth, G., Huber, K., & Rink, D. (2008). Operationalization and contextualization of sustainability at the local level. Sustainable Development, 16, 261270.Google Scholar
Hill, M. (2013). Climate Change and Water Governance: Adaptive Capacity in Chile and Switzerland. Dordrecht: Springer.Google Scholar
Ioris, A. A. R., Hunter, C., & Walker, S. (2008). The development and application of water management sustainability indicators in Brazil and Scotland. Journal of Environmental Management, 88, 11901201.Google Scholar
Johnson, R. B., Onwuegbuzie, A. J., & Turner, L. A. (2007). Toward a definition of mixed methods research. Journal of Mixed Methods Research, 1(2), 112133. DOI:http://10.1177/1558689806298224.Google Scholar
Kondratyev, S., Gronskaya, T., Ignatieva, N., Blinova, I., Telesh, I., & Yefremova, L. (2002). Assessment of present state of water resources of Lake Ladoga and its drainage basin using sustainable development indicators. Ecological Indicators, 2, 7992.Google Scholar
Lachavanne, B., & Juge, R. (2009). LEMANO. Pour une gestion durable de l’eau. Lémaniques, 72, 116.Google Scholar
Larson, K. L., Wiek, A., & Withycombe Keeler, L. (2013). A comprehensive sustainability appraisal of water governance in Phoenix, AZ. Journal of Environmental Management, 116, 5871.Google Scholar
McDermott, M., Mahanty, S., & Schreckenberg, K. (2013). Examining equity: A multidimensional framework for assessing equity in payments for ecosystem services. Environmental Science & Policy, 33, 416427.Google Scholar
McDonald, D., Bammer, G., & Deane, P. (2009). Research Integration Using Dialogue Methods. Canberra: ANU E Press.CrossRefGoogle Scholar
Meinherz, F., Fritz, L., & Schneider, F. (2020). The value-loadedness of sustainability: Implications for the transformative potential of sustainability assessments. In Binder, C. R., Massaro, E, & Wyss, R (eds.), Sustainability Assessment in Urban Systems. Cambridge University Press, pp. 6586.Google Scholar
Merino-Saum, A. (2020). Assessing sustainability through participatory multi-criteria approaches (PMCAs): An updated comparative analysis. In Binder, C. R., Massaro, E, & Wyss, R (eds.), Sustainability Assessment in Urban Systems. Cambridge University Press, pp. 209238.Google Scholar
Mori, K., & Christodoulou, A. (2012). Review of sustainability indices and indicators: Towards a new City Sustainability Index (CSI). Environmental Impact Assessment Review, 32, 94106.Google Scholar
Olsson, P., Gunderson, L. H., Carpenter, S. R., et al. (2006). Shooting the rapids: Navigating transitions to adaptive governance of social-ecological systems. Ecology and Society, 11, 18. www.ecologyandsociety.org/vol11/iss11/art18/.Google Scholar
Pahl-Wostl, C. (2009). A conceptual framework for analysing adaptive capacity and multi-level learning processes in resource governance regimes. Global Environmental Change, 19, 354365.Google Scholar
Reed, P. M., & Kasprzyk, J. (2009). Water resources management: The myth, the wicked, and the future. Journal of Water Resources Planning and Management, 135, 411413.Google Scholar
Reynard, E., Bonriposi, M., Graefe, O., et al. (2014.) Interdisciplinary assessment of complex regional water systems and their future evolution: How socio-economic drivers can matter more than climate. WIREs Water, 1, 413426.Google Scholar
Rixen, C., Stoeckli, V., & Ammann, W. (2003). Does artificial snow production affect soil and vegetation of ski pistes? A review. Perspectives in Plant Ecology, Evolution and Systematics, 5, 219230.Google Scholar
Schlosberg, D. (2007). Defining Environmental Justice: Theories, Movements, and Nature, New York: Oxford University Press.Google Scholar
Schneider, F., & Homewood, C. (2013). Exploring water governance arrangements in the Swiss Alps from the perspective of adaptive capacity. Mountain Research and Development, 33, 225233.CrossRefGoogle Scholar
Schneider, F., & Rist, S. (2014). Envisioning sustainable water futures in a transdisciplinary learning process: combining normative, explorative, and participatory scenario approaches. Sustainability Science 9, 119.CrossRefGoogle Scholar
Schneider, F., Bonriposi, M., Graefe, O., et al. (2015). Assessing the sustainability of water governance systems: The sustainability wheel. Journal of Environmental Planning and Management, 58, 15771600.Google Scholar
Schneider, F., Kläy, A., Zimmermann, A., Buser, T., Ingalls, M., & Messerli, P. How Can Science Support the 2030 Agenda for Sustainable Development? Four Tasks to Deal with the Normative Dimension of Sustainability. Sustainability Science, 112.Google Scholar
Shen, L.-Y., Jorge Ochoa, J., Shah, M. N., & Zhang, X. (2011). The application of urban sustainability indicators: A comparison between various practices. Habitat International, 35, 1729.Google Scholar
Sullivan, C., & Meigh, J. (2007). Integration of the biophysical and social sciences using an indicator approach: Addressing water problems at different scales. Water Resources Management, 21, 111128.Google Scholar
Tompkins, E. L., & Adger, W. (2004). Does adaptive management of natural resources enhance resilience to climate change? Ecology and Society, 9, 10. www.ecologyandsociety.org/vol19/iss12/art10.Google Scholar
Turcu, C. (2013). Re-thinking sustainability indicators: Local perspectives of urban sustainability. Journal of Environmental Planning and Management, 56, 695719.Google Scholar
Valenzuela Montes, L. M., & Matarán Ruiz, A. (2008). Environmental indicators to evaluate spatial and water planning in the coast of Granada (Spain). Land Use Policy, 25, 95105.Google Scholar
WCED. (1987). Our Common Future (“The Brundtland Report”). Oxford: Oxford University Press.Google Scholar
Wiek, A., & Larson, K. (2012). Water, People, and Sustainability: A systems framework for analyzing and assessing water governance regimes. Water Resources Management, 26, 31533171.Google Scholar
Ziegler, R., & Ott, K. (2011). The quality of sustainability science: A philosophical perspective. Sustainability: Science, Practice and Policy, 7, 3144.Google Scholar

References

Acker-Widmaier, G. (1999). Intertemporale Gerechtigkeit und nachhaltiges Wirtschaften. Zur normativen Begründung eines Leitbildes. Marburg: Metropolis-Verlag.Google Scholar
Barton, J., Jordan, F. R., León, A. S. M., & Solis, M. O. (2007). ¿Cuán sustentable es la Región Metropolitana de Santiago? Metodologías de evaluación de la sustentabilidad. Santiago de Chile: Comisión Económica para América Latina y el Caribe (CEPAL), pp. 6570.Google Scholar
Barton, J., & Kopfmüller, J. (2012). Sustainable urban development in Santiago de Chile: Background – concept – challenges. In Heinrichs, D, Krellenberg, K, Hansjürgens, B, & Martinez, F. (eds.), Risk Habitat Megacity. Heidelberg: Springer, pp. 6586.Google Scholar
Birnbacher, D. (1999). Kommentargutachten, beauftragt im Rahmen des HGF-Projekts „Untersuchung zu einem integrativen Konzept nachhaltiger Entwicklung. Bestandsaufnahme, Problemanalyse, Weiterentwicklung.” Düsseldorf Edition.Google Scholar
Brandl, V., Jörissen, J., Kopfmüller, J., & Paetau, M. (2001). Das integrative Konzept: Mindestbedingungen nachhaltiger Entwicklung. In Grunwald, A, Coenen, R, Nitsch, J, Sydow, A, & Wiedemann, P (eds.), Forschungswerkstatt Nachhaltigkeit – Wege zur Diagnose und Therapie von Nachhaltigkeitsdefiziten. Berlin: edition sigma, pp. 79102.Google Scholar
Bräutigam, K.-R., Gonzalez, T., Szanto, M., Seifert, H., & Vogdt, J. (2012). Municipal solid waste management in Santiago de Chile: Challenges and perspectives towards sustainability. In Heinrichs, D, Krellenberg, K, Hansjürgens, B, & Martínez, F (eds.), Risk Habitat Megacity. Heidelberg: Springer, pp. 279301.Google Scholar
Brown-Weiss, E. (1989). In Fairness to Future Generations: International Law, Common Patrimony and Intergenerational Equity. Dobbs Ferry, NY: The United Nations University and Transnational Publishers.Google Scholar
District Future – Urban Lab. (2018). www.itas.kit.edu/english/num_current_paro11_quazu.php (accessed 26.4.2018).Google Scholar
Emmrich, R., & Melzer, M. (2012). Das integrative Nachhaltigkeitskonzept der HGF als Baustein der Bildung für eine nachhaltige Entwicklung. In Kopfmüller, J (ed.), Ein Konzept auf dem Prüfstand: Das integrative Nachhaltigkeitskonzept in der Forschungspraxis. Berlin: edition sigma, pp. 171188.Google Scholar
Energy Ministry. (2013). Balance National de Energía 2012. Santiago de Chile. www.minenergia.cl/documentos/balance-energetico.html (accessed 10.11.2018).Google Scholar
ES 2050. (2018). Energy System 2050: A Contribution of the Research Field Energy. www.helmholtz.de/en/research/energy/energy_system_2050/ (accessed 26.4.2018).Google Scholar
Fuss, M., Vasconcelos Barros, R. T., & Poganietz, W. R. (2018). Designing a framework for municipal solid waste management towards sustainability in emerging economy countries: An application to a case study in Belo Horizonte (Brazil). Journal of Cleaner Production, 178, pp. 655664.Google Scholar
Grunwald, A., Coenen, R., Nitsch, J., Sydow, A., & Wiedemann, P. (2001). Forschungswerkstatt Nachhaltigkeit: Wege zur Diagnose und Therapie von Nachhaltigkeitsdefiziten. Berlin: edition sigma.Google Scholar
Hartlieb, N., Bräutigam, K.-R., Kopfmüller, J., Sardeman, G., Achternbosch, M., & Kupsch, C. (2012). Das Nachhaltigkeitskonzept im Kontext der Abfallwirtschaft. Anwendung auf das Beispiel der Cadmiumstoffströme. In Kopfmüller, J (ed.), Ein Konzept auf dem Prüfstand: Das integrative Nachhaltigkeitskonzept in der Forschungspraxis. Berlin: edition sigma, pp. 213233.Google Scholar
Hartmuth, G., Huber, K., & Rink, D. (2012). Downscaling von Nachhaltigkeit: Das Integrative Nachhaltigkeitskonzept als Bauplan für kommunale Indikatorensysteme. In Kopfmüller, J (ed.), Ein Konzept auf dem Prüfstand: Das integrative Nachhaltigkeitskonzept in der Forschungspraxis. Berlin: edition sigma, pp. 99114.Google Scholar
Heinrichs, D., Krellenberg, K., Hansjürgens, B., & Martínez, F. (2012). Risk Habitat Megacity. Heidelberg: Springer.Google Scholar
Jörissen, J., Coenen, R., & Stelzer, V. (2005). Zukunftsfähiges Wohnen und Bauen. Herausforderungen, Defizite, Strategien. Berlin: edition sigma.Google Scholar
Justen, A., Martinez, F., Lenz, B., & Cortés, C. (2012). Santiago 2030: Perspectives on the urban transport system. In Heinrichs, D, Krellenberg, K, Hansjürgens, B, & Martínez, F (eds.), Risk Habitat Megacity. Heidelberg: Springer, pp. 207227.Google Scholar
Kopfmüller, J. (2006). Das integrative Konzept nachhaltiger Entwicklung: Motivation, Architektur, Perspektiven. In Kopfmüller, J (ed.), Ein Konzept auf dem Prüfstand: Das integrative Nachhaltigkeitskonzept in der Forschungspraxis. Berlin: edtion sigma, pp. 2337.Google Scholar
Kopfmüller, J. (2011). The integrative sustainability concept of the Helmholtz Association. The “Risk Habitat Megacity” project as a case of application. In: Banse, G, Nelson, G. L., & Parodi, O (eds.), Sustainable Development – The Cultural Perspective. Concepts – Aspects – Examples. Berlin: edition sigma, pp. 137149.Google Scholar
Kopfmüller, J., Brandl, V., Jörissen, J., et al. (2001). Nachhaltige Entwicklung integrativ betrachtet. Konstitutive Elemente, Regeln, Indikatoren. Berlin: edition sigma.Google Scholar
Kopfmüller, J., Barton, J., & Salas, A. (2012). How sustainable is Santiago? In Heinrichs, D, Krellenberg, K, Hansjürgens, B, & Martínez, F (eds.), Risk Habitat Megacity. Heidelberg: Springer, pp. 305326.Google Scholar
Lehn, H., McPhee, J., Vogdt, J., et al. (2012). Risks and opportunities for sustainable management of water resources and services in Santiago de Chile. In Heinrichs, D, Krellenberg, K, Hansjürgens, B, & Martínez, F (eds.), Risk Habitat Megacity. Heidelberg: Springer, pp. 251278.Google Scholar
Ministry of Planning. (2006). Final results of energy sector in metropolitan region, year 2006. Santiago de Chile.Google Scholar
MINVU – Ministerio de Vivienda y Urbanismo (2006). Manual de aplicación, Reglamentación térmica. MINVU e Instituto de la Contrucción. Santiago de Chile. www.sodal.cl/files/1_Manual%20A%20 R%20 T.pdf (accessed 10.11.2018).Google Scholar
National Institute of Statistics (2011). Electric generation and distribution. Historical series: Electric distribution by sector in GWh, years 1997–2010. Santiago de Chile. www.ine.cl/canales/chile_estadistico/estadisticas_economicas/energia/series_estadisticas/series_estadisticas.php (accessed 10.11.2018).Google Scholar
Nayono, S., Lehmann, A., Kopfmüller, J., & Lehn, H. (2016). Improving sustainability by technology assessment and systems analysis: The case of IWRM Indonesia. Applied Water Science, 6(3), 279292. DOI:http://0.1007/s13201-016-0427-y.CrossRefGoogle Scholar
Parodi, O. (2008). Technik am Fluss: Philosophische und kulturwissenschaftliche Betrachtungen zum Wasserbau als kulturelle Unternehmung. Munich: oekom.Google Scholar
Paulesich, R. (2012). EaseyX. Der HGF-Ansatz in einem Modell zur Bewertung börsennotierter Unternehmen. In Kopfmüller, J (ed.), Ein Konzept auf dem Prüfstand: Das integrative Nachhaltigkeitskonzept in der Forschungspraxis. Berlin: edition sigma, pp. 189212.Google Scholar
Quevedo, D.L. (Ed.) (2010). Escenarios Energéticos Chile 2030. Santiago de Chile.Google Scholar
Quitzow, R., Ollier, L., Bangert, A., et al. (2018). Multikriterieller Bewertungsansatz für eine nachhaltige Energiewende: Von der Analyse zur Entscheidungsfindung mit ENavi. Potsdam: IAAS.Google Scholar
Rawls, J. (1971). A Theory of Justice. Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
Rösch, C., Raab, K., Skarka, J., & Stelzer, V. (2007). Energie aus dem Grünland: Eine nachhaltige Entwicklung? Karlsruhe: Karlsruhe Institute of Technology, Institute of Technology Assessment and Systems Analysis. www.itas.kit.edu/english/num_completed_roes03_gruen.php (accessed 12.10.2018).Google Scholar
Rösch, C., Skarka, J., Raab, K., & Stelzer, V. (2009). Energy production from grassland: Assessing the sustainability of different process chains under German conditions. Biomass & Bioenergy, 33(4), 689700. DOI:10.1016/j.biombioe.2008.10.008.Google Scholar
Rösch, C., Bräutigam, K. -R., Kopfmüller, J., Stelzer, V., & Lichtner, P. (2017). Indicator system for the sustainability assessment of the German energy system and its transition. Energy, Sustainability and Society, 7(1), 113. DOI:10.1186/s13705-016-0103-y.Google Scholar
Rösch, C., Bräutigam, K. -R., Kopfmüller, J., Stelzer, V., Lichtner, P., & Fricke, A. (2018). Indicator-based Sustainability Assessment of the German Energy System and its Transition. Karlsruhe: Karlsruhe Institute of Technology.Google Scholar
Schäfer, M. (2012). Der Beitrag wirtschaftlicher Akteure zu nachhaltiger Entwicklung und Lebensqualität. In Kopfmüller, J (ed.), Ein Konzept auf dem Prüfstand: Das integrative Nachhaltigkeitskonzept in der Forschungspraxis. Berlin: edition sigma, pp. 115137.Google Scholar
Schidler, S. (2012). Interdisziplinäre Bildung von Nachhaltigkeitskriterien. Fallbeispiel Nachwachsende Rohstoffe: Grüne Bioraffinerie. In Kopfmüller, J (ed.), Ein Konzept auf dem Prüfstand: Das integrative Nachhaltigkeitskonzept in der Forschungspraxis. Berlin: edition sigma, pp. 157169.Google Scholar
Schultz, J., Brand, F., Kopfmüller, J., & Ott, K. (2008). Building a “theory of sustainable development”: Two salient conceptions within the German discourse. International Journal for Environment and Sustainable Development, 7(4), 465482. DOI:10.1504/IJESD.2008.022390.Google Scholar
Schumacher, U., Bonas, I., & Tisch, A. (2012): Gemeinschaftseinrichtungen zur nachhaltigen Entwicklung in Brandenburg. In Kopfmüller, J (ed.), Ein Konzept auf dem Prüfstand: Das integrative Nachhaltigkeitskonzept in der Forschungspraxis. Berlin: edition sigma, pp. 139156.Google Scholar
Simon, S., Stelzer, V., Quintero, A., et al. (2010). Thematic field: Energy. In Krellenberg, K, Kopfmüller, J, & Barton, J (eds.), How Sustainable is Santiago de Chile? Current Performance – Future Trends – Potential Measures: Synthesis Report of the Risk Habitat Megacity Research Initiative (2007–2011). Leipzig: UFZ.Google Scholar
Simon, S., Stelzer, V., Vargas, L., Gonzalo, P., Quintero-Márquez, A., & Kopfmüller, J. (2012). Energy systems. In Heinrichs, D, Krellenberg, K, Hansjürgens, B, & Martínez, F (eds.), Risk Habitat Megacity. Heidelberg: Springer, pp. 183205.Google Scholar
Spangenberg, J. (2005). Die ökonomische Nachhaltigkeit der Wirtschaft. Theorien, Kriterien und Indikatoren. Berlin: edition sigma.Google Scholar
Stelzer, V., Kopfmüller, J., & Simon, S. (2010). Nachhaltige Energieversorgung in Megacities. Das Beispiel Santiago de Chile. Technikfolgenabschätzung Theorie und Praxis, 19(3), 3038.Google Scholar
Stelzer, V., Knapp, M., Meyer, R., & Pehle, A. (2017). Integrative sustainability assessment to evaluate OUI biomass scenarios over URR. In Schumacher, K, Fichtner, K. W., and Schultmann, F (eds.), Innovations for Sustainable Biomass Utilisation in the Upper Rhine Region. Karlsruhe: KIT Scientific Publishing, pp. 218226.Google Scholar
Stelzer, V., Quintero, A., Vargas, L., et al. (2014). Indicator based sustainability analysis of future energy situation of Santiago de Chile. In Awrejcewicz, J, Shitikova, M, Niola, V, Panagopoulos, T, Wenzel, W, Gorunescu, F, Horova, I, & Korobeinikov, A (eds.), Energy, Environment, Biology and Biomedicine. Prague: WSEAS – World Scientific and Engineering Academy and Society. ISBN: 978–1-61804–232-3, pp. 2427.Google Scholar
UN – United Nations (1992a). Agenda 21. New York: United Nations. https://sustainabledevelopment.un.org/content/documents/Agenda21.pdf (accessed 12.10.2018).Google Scholar
UN – United Nations (1992b). Report of the United Nations conference on environment and development, Rio de Janeiro, 3–14 June 1992, Annex I, Rio declaration on environment and development. A/CONF.151/26(I). New York: United Nations.Google Scholar
UN – United Nations (2015). Sustainable Development Goals. New York: United Nations. www.un.org/sustainabledevelopment/sustainable-development-goals/ (accessed 12.10.2018).Google Scholar
WCED – World Commission on Environment and Development (1987). Our Common Future. Oxford: Oxford University Press.Google Scholar

References

Bakshi, B. R., Gutowski, T., & Sekulic, D. (Eds.). (2011). Thermodynamics and the Destruction of Resources. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511976049.Google Scholar
Berardi, U. (2012). Sustainability assessment in the construction sector: Rating systems and rated buildings. Sustainable Development, 20(6), 411424. https://doi.org/10.1002/sd.532.Google Scholar
Bibri, S. E., & Krogstie, J. (2017). Smart sustainable cities of the future: An extensive interdisciplinary literature review. Sustainable Cities and Society, 31, 183212. https://doi.org/10.1016/j.scs.2017.02.016.Google Scholar
Binder, C. R., Feola, G., & Steinberger, J. K. (2010). Considering the normative, systemic and procedural dimensions in indicator-based sustainability assessments in agriculture. Environmental Impact Assessment Review, 30(2), 7181. https://doi.org/10.1016/j.eiar.2009.06.002.Google Scholar
Binder, C. R., Hutter, M., Pang, M., & Webb, B. (2020a). System science and sustainability assessment. In Binder, C. R., Massaro, E, & Wyss, R (eds.), Sustainability Assessment in Urban Systems. Cambridge University Press, pp. 3064.Google Scholar
Binder, C. R., Schmid, A., & Steinberger, J. K. (2012). Sustainability solution space of the Swiss milk value added chain. Ecological Economics, 83, 210220. https://doi.org/10.1016/j.ecolecon.2012.06.022.Google Scholar
Binder, C. R., & Wiek, A. (2007). The role of transdisciplinary processes in sustainability assessment of agricultural systems. In Binder, C. R. & Wiek, A, From Common Principles to Common Practice: Proceedings and Outputs of the First Symposium of the International Forum on Assessing Sustainability in Agriculture (INFASA). Bern: International Institute of Sustainable Development and Swiss College of Agriculture, pp. 3348.Google Scholar
Boesch, A., & de Montmollin, A. (2020). Indicators for assessing the sustainability of cities. In Binder, C. R., Massaro, E, & Wyss, R (eds.), Sustainability Assessment in Urban Systems. Cambridge University Press, pp. 311331.Google Scholar
Bossel, H. (1999). Indicators for Sustainable Development: Theory, Method, Applications: A Report to the Balaton group. Winnipeg: IISD.Google Scholar
Brundtland, G. H. (1987). Report of the World Commission on Environment and Development: “Our Common Future.” United Nations.Google Scholar
European Commission, Directorate-General for the Environment, Intrasoft International, University of the West of England (UWE), & Science Communication Unit. (2017). Indicators for Sustainable Cities.Google Scholar
Fritz, L. & Meinherz, F. (2020). The politics of participatory sustainability assessments: An analysis of power. In Binder, C. R., Massaro, E, & Wyss, R (eds.), Sustainability Assessment in Urban Systems. Cambridge University Press, pp. 87122.Google Scholar
Halla, P., & Binder, C. R. (2020). Sustainability Assessment: Introduction and Framework. In Binder, C. R., Massaro, E, & Wyss, R (eds.), Sustainability Assessment in Urban Systems. Cambridge University Press, pp. 729.Google Scholar
Hashemian, B., Massaro, E., Bojic, I., Arias, J. M., Sobolevsky, S., & Ratti, C. (2017). Socioeconomic characterization of regions through the lens of individual financial transactions. PloS one, 12(11), e0187031.Google Scholar
Holden, E., Linnerud, K., & Banister, D. (2014). Sustainable development: Our Common Future revisited. Global Environmental Change, 26, 130139. https://doi.org/10.1016/j.gloenvcha.2014.04.006.Google Scholar
Kangas, P. C. (2002). Handbook of Emergy Evaluation. Center for Environmental Policy.Google Scholar
Klopp, J. M., & Petretta, D. L. (2017). The urban sustainable development goal: Indicators, complexity and the politics of measuring cities. Cities, 63, 9297. https://doi.org/10.1016/j.cities.2016.12.019.Google Scholar
Massaro, E., Athanassiadis, A., Psyllidis, A., & Binder, C. R. (2020). Ontology-based integration of urban sustainability indicators. In Binder, C. R., Massaro, E, & Wyss, R (eds.), Sustainability Assessment in Urban Systems. Cambridge University Press, pp. 332350.Google Scholar
Meinherz, F., Fritz, L., & Schneider, F. (2020). The value-loadedness of sustainability: Implications for the transformative potential of sustainability assessments. In Binder, C. R., Massaro, E, & Wyss, R (eds.), Sustainability Assessment in Urban Systems. Cambridge University Press, pp. 6586.Google Scholar
Merino-Saum, A. (2020). Assessing sustainability through participatory multi-criteria approaches (PMCAs): An updated comparative analysis. In Binder, C. R., Massaro, E, & Wyss, R (eds.), Sustainability Assessment in Urban Systems. Cambridge University Press, pp. 209238.Google Scholar
Ness, B., Urbel-Piirsalu, E., Anderberg, S., & Olsson, L. (2007). Categorising tools for sustainability assessment. Ecological Economics, 60(3), 498508. https://doi.org/10.1016/j.ecolecon.2006.07.023.Google Scholar
Nijkamp, P., & Vreeker, R. (2000). Sustainability assessment of development scenarios: Methodology and application to Thailand. Ecological Economics, 33(1), 727. https://doi.org/10.1016/S0921-8009(99)00135-4.Google Scholar
Pagani, A., Laurenti, R., & Binder, C. R. (2020). Sustainability assessment of the housing system: Exploring the interplay between the material system and the social structure. In Binder, C. R., Massaro, E, & Wyss, R (eds.), Sustainability Assessment in Urban Systems. Cambridge University Press, pp. 384416.Google Scholar
Rees, W., & Wackernagel, M. (1996). Urban ecological footprints: Why cities cannot be sustainable – And why they are a key to sustainability. Environmental Impact Assessment Review, 16(4–6), 223248. https://doi.org/10.1016/S0195-9255(96)00022-4.Google Scholar
Schilling, T., Mühlemeier, S., Wyss, R., & Binder, C. R. (2020). A Concept for Sustainability Transition Assessment (STA): A Dynamic Systems Perspective Informed by Resilience Thinking. In Binder, C. R., Massaro, E, & Wyss, R (eds.), Sustainability Assessment in Urban Systems. Cambridge University Press, pp. 123138.Google Scholar
Scholz, R. W., & Tietje, O. (2002). Embedded Case Study Methods: Integrating Quantitative and Qualitative Knowledge. Thousand Oaks, CA: Sage Publications.Google Scholar
Sciubba, E. (2008). Exergy destruction as an ecological indicator. In Encyclopedia of Ecology. pp. 15101522. https://doi.org/10.1016/B978-008045405-4.00107-5.Google Scholar
Singh, R. K., Murty, H. R., Gupta, S. K., & Dikshit, A. K. (2012). An overview of sustainability assessment methodologies. Ecological Indicators, 15(1), 281299. https://doi.org/10.1016/j.ecolind.2011.01.007.Google Scholar
Stelzer, V., & Kopfmüller, J. (2020). How Values Play into Sustainability Assessments: Challenges and a Possible Way Forward. In Binder, C. R., Massaro, E, & Wyss, R (eds.), Sustainability Assessment in Urban Systems. Cambridge University Press, pp. 161180.Google Scholar
UN-Habitat. (2012). The State of the World’s Cities 2012/2013: Prosperity of Cities. http://unhabitat.org/books/prosperity-of-cities-state-of-the-worlds-cities-20122013/.Google Scholar
Waheed, B., Khan, F., & Veitch, B. (2009). Linkage-based frameworks for sustainability assessment: Making a case for Driving Force-Pressure-State-Exposure-Effect-Action (DPSEEA) frameworks. Sustainability, 1(3), 441463. https://doi.org/10.3390/su1030441.Google Scholar
Wiek, A., & Binder, C. (2005). Solution spaces for decision-making: A sustainability assessment tool for city-regions. Environmental Impact Assessment Review, 25(6), 589608. https://doi.org/10.1016/j.eiar.2004.09.009.Google Scholar
Williams, B., & Hummelbrunner, R. (2011). Systems Concepts In Action: A Practitioner’s Toolkit. Palo Alto, CA: Stanford Univesity Press. http://site.ebrary.com/id/10459535.Google Scholar

References

Alberti, M., & Susskind, L. (1996). Managing urban sustainability: An introduction to the Special Issue. Environmental Impact Assessment Review, 16, 213221.CrossRefGoogle Scholar
Banville, C., Landry, M., Martel, J. M., & Boulaire, C. (1998). A stakeholder approach to MCDA. Systems Research and Behavioral Science, 15, 1532.Google Scholar
Bellamy, R., Chilvers, J., Vaughan, N. E., & Lenton, T. M. (2013). Opening up geoengineering appraisal: Multi-criteria mapping of options for tackling climate change. Global Environmental Change, 23, 926937.Google Scholar
Bromley, D. W. (2007). Environmental regulations and the problem of sustainability: Moving beyond “market failure.” Ecological Economics, 63, 676683.Google Scholar
Bromley, D. W., & Paavola, J. (2002). Economics, Ethics, and Environmental Policy. In Bromley, D. W. & Paavola, J, (eds.), Economics, Ethics, and Environmental Policy: Contested Choices. Oxford: Blackwell Publishing, pp. 261276.Google Scholar
Bulkeley, H., & Betsill, M. (2005). Rethinking sustainable cities: Multilevel governance and the “urban” politics of climate change. Environmental Politics, 14(1), 4263.Google Scholar
Chamaret, A. (2007). Une démarche top‐down / bottom‐up pour l”évaluation en termes multicritères et multiacteurs des projets miniers dans l”optique du développement durable. Application sur les mines d”Uranium d”Arlit (Niger). PhD Dissertation. University of Versailles Saint‐Quentin-en‐ Yvelines, Guyancourt.Google Scholar
Cole, J., Sharvelle, S., Grigg, N., Pivo, G., & Haukaas, J. (2018). Collaborative, risk-informed, triple bottom line, multi-criteria decision analysis planning framework for integrated urban water management. Water, 10(12), 1722.Google Scholar
De Marchi, B., Funtowicz, S. O., Lo Cascio, S., & Munda, G. (2000). Combining participative and institutional approaches with multicriteria evaluation: An empirical study for water issues in Troina, Sicily. Ecological Economics, 34, 267282.Google Scholar
De Montis, A., De Toro, P., Droste-Franke, B., Omann, I., & Stagl, S. (2000). Criteria for quality assessment of MCDA methods. Paper presented at the 3rd Conference of the ESEE, May 3–6, Vienna.Google Scholar
De Montis, A., & Lai, S. (2008). Multi-criteria evaluation and planning support choosing among alternative scenarios for an urban natural park in Sardinia, Italy. In Vreeker, R, Deakin, M, & Curwell, S (eds.), Sustainable Urban Development, Volume 3: The Toolkit for Assessment, London: Routledge, pp. 6282.Google Scholar
Da Cunha, C. (2010). Quelle prise en compte de la diversité dans les enjeux de performances de l’activité agricole en Ile de France? : expérimentation d’une démarche d’évaluation participative multicritère. PhD Dissertation. University of Versailles Saint‐Quentin-en‐ Yvelines, Guyancourt.Google Scholar
Dodgson, J., Spackman, M., Pearman, A., & Phillips, L. (2009). Multi-criteria analysis: A manual. London: Department for Communities and Local Government.Google Scholar
Domenèch, L., March, H., & Saurí, D. (2011). Degrowth initiatives in the urban water sector? A social multi-criteria evaluation of non-conventional water alternatives in Metropolitan Barcelona. Journal of Cleaner Production, 38, 4455.Google Scholar
Finco, A., & Nijkamp, P. (2001). Pathways to urban sustainability. Journal of Environmental Policy & Planning, 3, 289302.Google Scholar
Foster, J. (Ed.). (1997). Valuing Nature? Economics, Ethics and Environment, Routledge, London.Google Scholar
Gamboa, G. (2006). Social multi-criteria evaluation of different development scenarios of the Aysén region, Chile. Ecological Economics, 59, 157170.Google Scholar
Fritz, L., & Meinherz, F. (2020). The politics of participatory sustainability assessments: an analysis of power. In Binder, C. R., Massaro, E, & Wyss, R (eds.), Sustainability Assessment in Urban Systems. Cambridge University Press, pp. 87122.Google Scholar
Gamboa, G., & Munda, G. (2007). The problem of windfarm location: A social multi-criteria evaluation framework. Energy Policy, 35, 15641583.Google Scholar
Garmendia, E., Gamboa, G., Franco, J., Garmendia, J. M., Liria, P., & Olazabal, M. (2010). Social multi-criteria evaluation as a decision support tool for integrated coastal zone management. Ocean & Coastal Management, 53(7), 385403.Google Scholar
Gerber, J. -F., Rodríguez-Labajos, B., Yánez, I., et al. (2012). Guide to Multicriteria Evaluation for Environmental Justice Organisations. EJOLT Report No. 8, 45 p.Google Scholar
Giampietro, M. (2002). Complexity and Scales: The Challenge for Integrated Assessment. Integrated Assessment, 3(23), 247265.Google Scholar
Godard, O. (2004). La pensée économique face à la question de l”environnement. Cahiers du Laboratoire d”Econométrie de l”Ecole Polytechnique, Cahier n° 2004–013, Ecole Polytechnique, Palaiseau.Google Scholar
Gregory, R., Lichtenstein, S., & Slovic, P. (1993). Valuing Environmental Resources: A Constructive Approach. Journal of Risk and Uncertainty, 7, 177197.Google Scholar
Guitouni, A., & Martel, J. M. (1998). Tentative guidelines to help choosing an appropriate MCDA method. European Journal of Operational Research. 109, 501521.Google Scholar
Halla, P., Wyss, R., & Binder, C. R. (2020). Conceptualising Urban Systems for Sustainability Assessment: Four Powerful Metaphors. In Binder, C. R., Massaro, E, & Wyss, R (eds.), Sustainability Assessment in Urban Systems. Cambridge University Press, pp. 241260.Google Scholar
Hansen, S. F. (2010). Multicriteria mapping of stakeholder preferences in regulating nanotechnology. Journal of Nanoparticle Research, 12, 19591970.CrossRefGoogle ScholarPubMed
Hwang, C. L., & Yoon, K. (1981). Multiple Attributes Decision Making Methods and Applications. Berlin: Springer.Google Scholar
Jacobs, M. ([1991] 1997). La Economía Verde. Medio Ambiente, Desarrollo Sostenible y la Política del Futuro. Barcelona: Icaria.Google Scholar
Janssen, R., & Munda, G. (1999). Multi-criteria methods for quantitative, qualitative and fuzzy evaluation problem. In van den Bergh, J (ed.), Handbook of Environmental and Resource Economics. Cheltenham: Edward Elgar, pp. 837852.Google Scholar
Lahdelma, R., Salminen, P., & Hokkanen, J. (2000). Using multicriteria methods in environmental planning and management. Environmental Management, 26(6), 595605.Google Scholar
Landert, J., Schader, C., Moschitz, H., & Stolze, M. (2017). A holistic sustainability assessment method for urban food system governance. Sustainability, 9, 490.Google Scholar
Liu, S., Proctor, W., & Cook, D. (2010). Using an integrated fuzzy set and deliberative multi-criteria evaluation approach to facilitate decision-making in invasive species management. Ecological Economics, 69(12), 23742382.Google Scholar
Lockwood, M. (1999). Humans valuing nature: synthesising insights from philosophy, psychology and economics, Environmental Values, 8, 381401.Google Scholar
Lupo, T., & Cusumano, M. (2018). Towards more equity concerning quality of Urban Waste Management services in the context of cities. Journal of Cleaner Production, 171, 13241341.Google Scholar
Martel, J. M., & Rousseau, A. (1993). Cadre de référence d’une démarche multicritère de gestion intégrée des ressources en milieu forestier. Rapport préparé pour le Gouvernement du Québec, Ministère du loisir, de la chasse et de la pêche, Ministère des Forêts et Ministère de l’Environnement, document technique 93/11, 49 pages.Google Scholar
Martí, N. (2005). La multidimensionalidad de los sistemas locales de alimentación en los Andes peruanos: los chalayplasa del Valle de Lares (Cusco). PhD Dissertation. Universitat Autónoma de Barcelona.Google Scholar
Martínez-Alier, J., Munda, G., & O’Neill, J. (1998). Weak comparability of values as a foundation for ecological Economics. Ecological Economics, 26, 277286.Google Scholar
Martínez-Alier, J., & Roca, J. ([2000] 2001). Economía Ecológica y Política Ambiental, México D.F.: Fondo de Cultura Económica.Google Scholar
Maxim, L. (2008). Mobilisation d’un outil multimédia d’aide à la délibération pour l’analyse socio‐économique des changements de la biodiversité. Réflexions autour de trois études de cas, à l’échelle régionale (Île‐de‐France), nationale (France) et continentale (Europe). PhD Dissertation. University of Versailles Saint‐Quentin-en‐ Yvelines, Guyancourt.Google Scholar
Merino-Saum, A. (2015). Vivre avec le feu en région méditerranéenne. Une approche participative multicritère et multi-scénarios appliquée au cas du massif des Maures (Var, France). PhD Dissertation. University of Versailles Saint‐Quentin-en‐ Yvelines, Guyancourt.Google Scholar
McDowall, W., & Eames, M. (2006). Towards a sustainable hydrogen economy: A multi-criteria mapping of the UKSHEC hydrogen futures. London: Policy Studies Institute.Google Scholar
Millstone, E., & Lobstein, T. (2007). The PorGrow project: Overall cross-national results, comparisons and implications. Obesity Reviews, 8, 2936.Google Scholar
Munda, G. (2003). Multicriteria assessment. In Internet Encyclopedia of Ecological Economics. International Society for Ecological Economics.Google Scholar
Munda, G. (2004a). Social multi-criteria evaluation: Methodological foundations and operational consequences. European Journal of Operational Research, 158, 662677.Google Scholar
Munda, G. (2004b). Multi-criteria evaluation. In Proops, J & Safonov, P (eds.), Modelling in Ecological Economics. Cheltenham: Edward Elgar, pp. 130154.Google Scholar
Munda, G. (2006). Social multi-criteria evaluation for urban sustainability policies. Land Use Policy, 23, 8694.Google Scholar
Munda, G. (2008). Social Multi-Criteria Evaluation for a Sustainable Economy. Berlin Heidelberg: Springer-Verlag.Google Scholar
Munda, G. (2009). A conflict analysis approach for illuminating distributional issues in sustainability policy. European Journal of Operational Research, 194, 307322.Google Scholar
Munda, G., & Nardo, M. (2003). Mathematical modelling of composite indicators for ranking countries, Proceedings of the First OECD/JRC Workshop on Composite Indicators of Country Performance, JRC, Ispra.Google Scholar
Munda, G., Nijkamp, P., & Rietveld, P. (1995). Qualitative multicriteria methods for fuzzy evaluation problems: An illustration of economic-ecological evaluation. European Journal of Operational Research, 82, 7997.Google Scholar
Munda, G., & Russi, D. (2008). Social multicriteria evaluation of conflict over rural electrification and solar energy in Spain. Environment and Planning C: Government and Policy, 26, 712727.CrossRefGoogle Scholar
Nijkamp, P., Rietveld, P., Voogd, H. (1991). Multicriteria Analysis for Physical Planning.Amsterdam: Elsevier.Google Scholar
O’Connor, M. (1997). Environmental valuation: From the point of view of sustainability. In Dragun, A. K. & Jakobsson, M. J. (eds.), Sustainability and Global Environmental Policy: New Perspectives. Cheltenham: Edward Elgar, pp.149178.Google Scholar
O’Connor, M. (2000). Pathways for environmental evaluation: A walk in the (Hanging) Gardens of Babylon. Ecological Economics, 34, 175193.Google Scholar
O’Connor, M. (2006). Deliberative Sustainability Assessment: Multiple Scales, Multiple Stakeholders, Multidisciplinarity and Multiple Bottom Lines. Rapport de Recherche du C3ED, University of Versailles St-Quentin-en-Yvelines, Guyancourt.Google Scholar
O’Connor, M. (2007). Deliberative Sustainability Assessment with the on line KerDST Deliberation Support Tool. Cahiers du C3ED, n°07–03, University of Versailles St-Quentin-en-Yvelines, Guyancourt.Google Scholar
O’Connor, M., Faucheux, S., Froger, G., Funtowicz, S., & Munda, G. (1996). Emergent complexity and procedural rationality: Post-normal science for sustainability. In Constanza, R, Segura, O, & Martínez-Alier, J (eds.), Getting down to Earth, Island Press, Washington DC: International Society of Ecological Economics, pp. 223247.Google Scholar
O’Connor, M., van den Hove, S. O’Neill, J., & Hue, C. (2001). Le Modèle Politique de la Démocratie Délibérative, Documentation interne du C3ED.Google Scholar
O’Connor, M., & Spangenberg, J. H. (2007). A methodology for CSR reporting: Assuring a representative diversity of indicators across stakeholders, scales, sites and performance issues. Journal of Cleaner Production, 16(13), 13991415.Google Scholar
O’Connor, M., Small, B., & Wedderburn, M. E. (2010). Sustainable Agriculture in Aotearoa: Social Learning through Piecewise Deliberation. REEDS Working Papers series 2010–10, Université de Versailles St-Quentin-en-Yvelines, Rambouillet.Google Scholar
Omann, I. (2004). Multi-criteria decision aid as an approach for sustainable development analysis and implementation. PhD Dissertation, University of Graz.Google Scholar
O’Neill, J. (1993). Ecology, Policy and Politics. London: Routledge.Google Scholar
O’Neill, J. (1997). Value pluralism, incommensurability and institutions. In Foster, J (ed.), Valuing Nature? Economics, Ethics and Environment. London: Routledge, pp. 7588.Google Scholar
Paneque Salgado, P., Quintana, S. C., Guimaraes Pereira, A., Del Moral, Ituarte, L., & Pedregal Mateos, B. (2009). Participative multi-criteria analysis for the evaluation of water governance alternatives: A case in the Costa del Sol (Málaga). Ecological Economics, 68, 9901005.Google Scholar
Proctor, W. (2009). Environmental Decision Making: An application of Multi-criteria Analysis to a Case Study of Australia’s Forests. Saarbrücken: Lambert Academic Publishing.Google Scholar
Proctor, W., & Dreschler, M. (2006). Deliberative multicriteria evaluation. Environment and Planning C: Government and Policy, 24, 169190.Google Scholar
Quintana, S. C. (2001). Una Metodología integrada de exploración y compensión de los procesos de elaboración de políticas públicas. PhD Dissertation. University of La Laguna.Google Scholar
Rauschmayer, F., & Wittmer, H. (2006). Evaluating deliberative and analytical methods for the resolution of environmental conflicts. Land Use Policy, 23, 108122.Google Scholar
Ravetz, J. (2000). Integrated assessment for sustainability appraisal in cities and regions. Environmental Impact Assessment Review, 20, 3164.Google Scholar
Reichel, V., Chamaret, A., & O’Connor, M. (2010). Les Avenirs de la Boucle de Moisson : un projet de réflexion participative pour un développement territorial soutenable. Rapport de Recherche REEDS n° 2010‐06, University of Versailles St-Quentin-en-Yvelines, Rambouillet.Google Scholar
Remvikos, Y., Mahamat, A., & Reichel, V. (2010). L’interface science/décision au travers d’une évaluation multicritères et multi-acteurs du plan régional pour la qualité de l’air en Ile-de-France, Cahiers du Centre REEDS n° 2010–12, University of Versailles St-Quentin-en-Yvelines, Rambouillet.Google Scholar
Renn, O. (1986). Decision analytic tools for resolving uncertainty in the energy debate. Nuclear Engineering and Design, 93(2–3), 167180.Google Scholar
Renn, O. (2003). Social assessment of waste energy utilization scenarios. Energy, 28, 13451357.Google Scholar
Renn, O. (2006). Participatory processes for designing environmental policies. Land Use Policy, 23, 3443.Google Scholar
Renn, O., & Webler, T. (1992). Anticipating Conflicts: Public Participation in Managing the Solid Waste Crisis. GAIA, 2, 8494.Google Scholar
Renn, O., Webler, T., Horst, R., Dienel, P., & Johnson, B. (1993). Public participation in decision-making: A three-step procedure. Policy Science, 26, 189214.Google Scholar
Renn, O., Webler, T., & Kastenholz, , H. (1996). Procedural and substantive fairness in landfill siting: A Swiss Case Study. RISK: Health, Safety & Environment, 7(2), 145168.Google Scholar
Roy, B., & Bouyssou, D. (1993). Aide multicritère à la décision: méthodes et cas. Paris: Economica.Google Scholar
Roy, B., & Vincke, P. (1981). Multicriteria analysis: Survey and new directions. European Journal of Operational Research, 8, 207218.Google Scholar
Royuela, J. B., Eames, M., & Buckingham, S. (2016). “Participative foresight scenario mapping”: Adapting an MCM method to appraise foresight scenarios for the long-term sustainable development of a small island. International Journal of Multicriteria Decision Making, 6(2), 118137.Google Scholar
Sagoff, M. (1998). Aggregation and deliberation in valuing environmental public goods: A look beyond contingent pricing. Ecological Economics, 24, 213230.Google Scholar
Schkade, D. A., & Payne, J. W. (1994). How people respond to contingent valuation questions: A verbal protocol analysis of willingness to pay for an environmental regulation. Journal of Environmental Economics and Management, 26, 88109.Google Scholar
Schneider, E., Oppermann, B., Renn, O. (1998). Implementing structured participation for regional level waste management planning. Risk: Health, Safety and Environment, 9, 379395.Google Scholar
Scolobig, A., Castán Broto, V., & Zabala, A. (2008). Integrating multiple perspectives in social multicriteria evaluation of flood-mitigation alternatives: The case of Malborghetto-Valbruna. Environment and Planning C: Government and Policy, 26, 11431161.Google Scholar
Spash, C. (2008). Contingent valuation design and data treatment: If you can’t shoot the messenger, change the message. Environment and Planning C: Government and Policy, 26, 3453.Google Scholar
Stagl, S. (2003). Multicriteria Evaluation and Public Participation: In Search for Theoretical Foundations. Paper presented at the ESEE Conference (European Society for Ecological Economics), Tenerife, Spain, 1215 February.Google Scholar
Stagl, S. (2006). Multicriteria evaluation and public participation: the case of UK energy policy. Land Use Policy, 23, 5362.Google Scholar
Stagl, S. (2007). Emerging Methods for Sustainability Valuation and Appraisal. Rapid Research and Evidence Reviews, The Sustainable Development Research Network.Google Scholar
Stirling, A. (1997). Multi-criteria mapping: Mitigating the problems of environmental valuation? In Foster, J (ed.), Valuing Nature? Economics, Ethics and Environment. London: Routledge, pp. 186210.Google Scholar
Stirling, A. (2005). Multi-Criteria Mapping: A Detailed Interview Protocol. Unpublished technical report.Google Scholar
Stirling, A., & Mayer, S. (1999). Rethinking Risk: A Pilot Multi-criteria Mapping of a Genetically Modified Crop in Agricultural Systems in the UK. University of Sussex, Science Policy Research Unit.Google Scholar
Stirling, A., & Mayer, S. (2000). A precautionary approach to technology appraisal? A multi-criteria mapping of genetic modification in UK agriculture. SCHWERPUNKTHEMA, 3(9), 3951.Google Scholar
Vatn, A. (2005a). Institutions and the Environment. Cheltenham: Edward Elgar.Google Scholar
Vatn, A. (2005b). Rationality, institutions and environmental policy. Ecological Economics, 55, 203217.Google Scholar
Vatn, A., & Bromley, D. W. (1994). Choices without prices without apologies. Journal of Environmental Economics and Management, 26, 129148.Google Scholar
Walter, M., Latorre Tomás, S., Munda, G., & Larrea, C. (2016). A social multi-criteria evaluation approach to assess extractive and non-extractive scenarios in Ecuador: Intag case study. Land Use Policy, 57, 444458.Google Scholar
Whitehead, M. (2003). (Re)Analysing the sustainable city: Nature, urbanisation and the regulation of socio-environmental relations in the UK. Urban Studies, 40(7), 11831206.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×