Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T16:26:01.324Z Has data issue: false hasContentIssue false

7 - Surface electromagnetic waves on structured perfectly conducting surfaces

Published online by Cambridge University Press:  01 June 2011

A. I. Fernández-Domínguez
Affiliation:
Universidad Autonoma de Madrid, E-28049 Madrid, Spain
F. García-Vidal
Affiliation:
Universidad Autonoma de Madrid, E-28049 Madrid, Spain
L. Martín-Moreno
Affiliation:
Universidad de Zaragoza, E-500009 Zaragoza, Spain
Alexei A. Maradudin
Affiliation:
University of California, Irvine
Get access

Summary

Introduction

The ability to localize electromagnetic energy below the diffraction limit of classical optics featured by surface plasmon polaritons (SPPs) (electromagnetic surface waves sustained at the interface between a conductor and a dielectric) is currently being exploited in numerous studies ranging from photonics, optoelectronics, and materials science to biological imaging and biomedicine [1]. While the basic physics of SPPs has been described in a number of seminal papers spanning the twentieth century [2, 3], the more recent emergence of powerful nanofabrication and characterization tools has catalyzed a vast interest in their study and exploitation. The dedicated field of plasmonics [4] brings together researchers and technologists from a variety of disciplines, with the common aim to take advantage of the subwavelength light confinement associated with the excitation of SPPs.

Most interest is focused on the optical regime, where SPPs are strongly confined to the respective metal/dielectric interface, i.e. where subwavelength mode localization is achieved in the direction perpendicular to the interface. These strongly confined SPPs occur at frequencies which are still an appreciable fraction of the intrinsic plasma frequency of the metal in question. In this regime, the motion of the conduction electrons at the interface is dephased with respect to the driving electromagnetic fields, leading to a reduction in both phase and group velocities of the SPP, and, therefore, to strong localization. A considerable fraction of the SPP field energy resides inside the conductor.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Barnes, W. L., Dereux, A., and Ebbesen, T. M., “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).CrossRefGoogle ScholarPubMed
[2] Sommerfeld, A., “Uber die Fortpflanzung elektrodynamischer Wellen langs eines Drahtes,” Ann. Phys. Chemie 303, 233–290 (1899).CrossRefGoogle Scholar
[3] Ritchie, R. H., “Plasma losses by fast electrons in thin films,” Phys. Rev. 106, 874–881 (1957).CrossRefGoogle Scholar
[4] Maier, S. A., Brongersma, M. L., Kik, P. G., Meltzer, S., Requicha, A. A. G., and Atwater, H. A., “Plasmonics – a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).3.0.CO;2-Z>CrossRefGoogle Scholar
[5] Zenneck, J., “Ueber die Fortpflanzung ebener elektromagnetischer Wellen laengs einer ebenen Leiterflaeche und ihre Beziehung zur drahtlosen Telegraphie,” Ann. Phys. 23, 846–866 (1907).CrossRefGoogle Scholar
[6] Fano, U., “The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfelds waves),” J. Opt. Soc. Am. 31, 213–222 (1941).CrossRefGoogle Scholar
[7] Gobau, G., “Surface waves and their application to transmission lines,” J. Appl. Phys. 21, 1119–1128 (1950).CrossRefGoogle Scholar
[8] Mills, D. L. and Maradudin, A. A., “Surface corrugation and surface-polariton binding in the infrared frequency range,” Phys. Rev. B 39, 1569–1574 (1989).CrossRefGoogle ScholarPubMed
[9] Munk, B. A., Frequency Selective Surfaces: Theory and Design (New York: Wiley, 2000).CrossRefGoogle Scholar
[10] Ulrich, R. and Tacke, M., “Submillimeter waveguiding on periodic metal structure,” Appl. Phys. Lett. 22, 251–253 (1973).CrossRefGoogle Scholar
[11] Pendry, J. B., Martín-Moreno, L., and García-Vidal, F. J., “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).CrossRefGoogle ScholarPubMed
[12] Martín-Moreno, L., García-Vidal, F. J., Lezec, H. J., Pellerin, K. M., Thio, T., Pendry, J. B., and Ebbesen, T. W., “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).CrossRefGoogle ScholarPubMed
[13] Bravo-Abad, J., García-Vidal, F. J., and Martín-Moreno, L., “Resonant transmission of light through finite chains of subwavelength holes in a metallic film,” Phys. Rev. Lett. 93, 227401(1-4) (2004).CrossRefGoogle Scholar
[14] Mary, A., Rodrigo, S. G., García-Vidal, F. J., and Martín-Moreno, L., “Theory of negative-refractive-index response of double-fishnet structures,” Phys. Rev. Lett. 101, 103902(1-4) (2008).CrossRefGoogle ScholarPubMed
[15] Qiu, M., “Photonic band structures for surface waves on structured metal surfaces,” Opt. Express 13, 7583–7588 (2005)CrossRefGoogle ScholarPubMed
[16] Abajo, F. J. García and Saenz, J. J., “Electromagnetic surface modes in structured perfect-conductor surfaces,” Phys. Rev. Lett. 95, 233901(1-4) (2005).Google ScholarPubMed
[17] Hendry, E., Hibbins, A. P., and Sambles, J. R., “Importance of diffraction in determining the dispersion of designer surface plasmons,” Phys. Rev. B 78, 235426(1-10) (2008).CrossRefGoogle Scholar
[18] Jackson, J. D., Classical Electrodynamics, 3rd edn (New York: John Wiley & Sons, 1999).Google Scholar
[19] Morse, P. M. and Feshbach, H., Methods of Theoretical Physics (New York: McGraw-Hill, 1953).Google Scholar
[20] Roberts, A., “Electromagnetic theory of diffraction by a circular aperture in a thick, perfectly conducting screen,” J. Opt. Soc. Am. A 4, 1970–1983 (1987).CrossRefGoogle Scholar
[21] García-Vidal, F. J., Martín-Moreno, L., and Pendry, J. B., “Surface with holes in them: new plasmonic metamaterials,” J. Opt. A: Pure Appl. Opt. 7, S97–S101 (2005).CrossRefGoogle Scholar
[22] Shen, L., Chen, X., and Yang, T.-J., “Terahertz surface plasmon polaritons on periodically corrugated metal surfaces,” Opt. Express 16, 3326–3333 (2008).CrossRefGoogle ScholarPubMed
[23] Gan, Q., Fu, Z., Ding, Y. J., and Bartoli, F. J., “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100, 256803(1-4) (2008).CrossRefGoogle ScholarPubMed
[24] Song, K. and Mazumder, P., “Active terahertz spoof surface plasmon polariton switch comprising the perfect conductor metamaterial,” IEEE Trans. Electron. Dev. 56, 2792–2799 (2009).CrossRefGoogle Scholar
[25] Williams, C. R., Andrews, S. R., Maier, S. A., Fernández-Domínguez, A. I., Martín-Moreno, L., and García-Vidal, F. J., “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nature Photon. 2, 175–179 (2008).CrossRefGoogle Scholar
[26] Shen, J. T., Catrysse, P. B., and Fan, S., “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett. 94, 197401(1-4) (2005).CrossRefGoogle ScholarPubMed
[27] Shin, J., Shen, J. T., Catrysse, P. B., and Fan, S., “Cut-through metal slit array as an anisotropic metamaterial film,” IEEE J. Sel. Topics Quant. Electron. 12, 1116–1122 (2006).CrossRefGoogle Scholar
[28] Shin, Y. M., So, J. K., Won, J. H., and Park, G. S., “Frequency-dependent refractive index of one-dimensionally structured thick metal film,” Appl. Phys. Lett. 91, 031102(1-3) (2007).CrossRefGoogle Scholar
[29] Zhang, X. F., Shen, L. F., and Ran, L. X., “Low-frequency surface plasmon polaritons propagating along a metal film with periodic cut-through slits in symmetric and asymmetric environments,” J. Appl. Phys. 105, 013704(1-7) (2009).Google Scholar
[30] Economou, E. N., “Surface plasmons in thin films,” Phys. Rev. 182, 539–554 (1969).CrossRefGoogle Scholar
[31] Collin, S., Sauvan, C., Billaudeau, C., Pardo, F., Rodier, J. C., Pelouard, J. L., and Lalanne, P., “Surface modes on nanostructured metallic surfaces,” Phys. Rev. B 79, 165405(1-7) (2009).CrossRefGoogle Scholar
[32] Hibbins, A. P., Evans, B. R., and Sambles, J. R., “Experimental verification of designer surface plasmons,” Science 308, 670–672 (2005).CrossRefGoogle ScholarPubMed
[33] Hibbins, A. P., Hendry, E., Lockyear, M. J., and Sambles, J. R., “Prism coupling to ‘designer’ surface plasmons,” Opt. Express 16, 20441–20447 (2008).CrossRefGoogle ScholarPubMed
[34] Agrawal, A., Vardeny, Z. V., and Nahata, A., “Engineering the dielectric function of plasmonic lattices,” Opt. Express 16, 9601–9613 (2008).CrossRefGoogle ScholarPubMed
[35] Zhu, W., Agrawal, A., and Nahata, A., “Planar plasmonic terahertz guided-wave devices,” Opt. Express 16, 6216–6226 (2008).CrossRefGoogle ScholarPubMed
[36] Lan, Y. C. and Chern, R. L., “Surface plasmon-like modes on structured perfectly conducting surfaces,” Opt. Express 14, 11339–11347 (2006).CrossRefGoogle ScholarPubMed
[37] Ruan, Z. C. and Qiu, M., “Slow electromagnetic wave guided in subwavelength regions along one-dimensional periodically structured metal surface,” Appl. Phys. Lett. 90, 201906(1-3) (2007).CrossRefGoogle Scholar
[38] Lockyear, M. J., Hibbins, A. P., and Sambles, J. R., “Microwave surface-plasmon-like modes on thin metamaterials,” Phys. Rev. Lett. 102, 073901(1-4) (2009).CrossRefGoogle ScholarPubMed
[39] Navarro-Cía, M., Beruete, M., Agrafiotis, S., Falcone, F., Sorolla, M., and Maier, S. A., “Broadband spoof plasmons and subwavelength electromagnetic energy confinement on ultrathin metafilms,” Opt. Express, 17, 18184–18195 (2009).CrossRefGoogle ScholarPubMed
[40] Williams, C. R., Misra, M., Andrews, S. R., Maier, S. A., Palacios, S. Carretero, Rodrigo, S. G., Garcia-Vidal, F. J., and Martin-Moreno, L., “Dual band terahertz waveguidng on a planar metal surface patterned with annular holes,” Appl. Phys. Lett. 96, 011101(1-3) (2010).CrossRefGoogle Scholar
[41] Maier, S. A. and Andrews, S. R., “Terahertz pulse propagation using plasmonpolariton-like surface modes on structured conductive surfaces,” Appl. Phys. Lett. 88, 251120(1-3) (2006).CrossRefGoogle Scholar
[42] Juluri, B. K., Lin, S.-C. S., Walker, T. R., Jensen, L., and Huang, T. J., “Propagation of designer surface plasmons in structured conductor surfaces with parabolic gradient index,” Opt. Express 17, 2997–3006 (2009).CrossRefGoogle ScholarPubMed
[43] Wang, K. and Mittleman, D. M., “Metal wires for terahertz waveguiding,” Nature 432, 376–379 (2004).CrossRefGoogle Scholar
[44] Jeon, T.-I., Zhang, J., and Grischkowsky, D., “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86, 161904(1-3) (2005).CrossRefGoogle Scholar
[45] Piefke, G., “The transmission characteristics of a corrugated wire,” IRE Trans. Antennas Propag. 7, 183–190 (1959).CrossRefGoogle Scholar
[46] Maier, S. A., Andrews, S. R., Martín-Moreno, L., and García-Vidal, F. J., “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805(1-4) (2006).CrossRefGoogle ScholarPubMed
[47] Chen, Y., Song, Z., Li, Y., Hu, M., Xing, Q., Zhang, Z., Chai, L., and Wang, C.-Y., “Effective surface plasmon polaritons on the metal wire with arrays of subwavelength grooves,” Opt. Express 14, 13021–13029 (2006).CrossRefGoogle ScholarPubMed
[48] Arfken, G. B. and Weber, H. J., Mathematical Methods for Physicists, 5th edn (London: Harcourt Academic Press, 2001).Google Scholar
[49] Ferguson, B. F. and Zhang, X.-C., “Materials for terahertz science and technology,” Nature Mater. 1, 26–33 (2002).CrossRefGoogle ScholarPubMed
[50] Tonouchi, M., “Cutting-edge terahertz technology,” Nature Photon. 1, 97–105 (2007).CrossRefGoogle Scholar
[51] Fernández-Domínguez, A. I., Martín-Moreno, L., García-Vidal, F. J., Andrews, S. R., and Maier, S. A., “Spoof surface plasmon polariton modes propagating along periodically corrugated wires,” IEEE J. Sel. Top. Quant. Electron. 14, 1515–1521 (2008).CrossRefGoogle Scholar
[52] Fernández-Domínguez, A. I., Williams, C. R., Martín-Moreno, L., García-Vidal, F. J., Andrews, S. R., and Maier, S. A., “Terahertz surface plasmon polaritons on a helically grooved wire,” Appl. Phys. Lett. 93, 141109(1-3) (2008).CrossRefGoogle Scholar
[53] Crepeau, P. J. and McIsaac, P. R., “Consequences of symmetry in periodic structures,” Proc. IEEE 52, 33–43 (1964).CrossRefGoogle Scholar
[54] Novikov, I. V. and Maradudin, A. A., “Channel polaritons,” Phys. Rev. B 66, 035403(1-13) (2002).CrossRefGoogle Scholar
[55] Bozhevolnyi, S. I., Volkov, V. S., Devaux, E., Laluet, J.-Y., and Ebbesen, T. W., “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).CrossRefGoogle ScholarPubMed
[56] Fernández-Domínguez, A. I., Moreno, E., Martín-Moreno, L., and García-Vidal, F. J., “Guiding terahertz waves along subwavelength channels,” Phys. Rev. B 79, 233104(1-4) (2009).CrossRefGoogle Scholar
[57] Moreno, E., García-Vidal, F. J., Rodrigo, S. G., Martín-Moreno, L., and Bozhevolnyi, S. I., “Channel plasmon-polaritons: modal shape, dispersion, and losses,” Opt. Lett. 31, 3447–3449 (2006).CrossRefGoogle ScholarPubMed
[58] Fernández-Domínguez, A. I., Moreno, E., Martín-Moreno, L., and García-Vidal, F. J., “Terahertz wedge plasmon polaritons,” Opt. Lett. 34, 2063–2065 (2009).CrossRefGoogle ScholarPubMed
[59] Pile, D. F. P. and Gramotnev, D. K., “Channel plasmon-polariton in a triangular groove on a metal surface,” Opt. Lett. 29, 1069–1071 (2004).CrossRefGoogle Scholar
[60] Moreno, E., Rodrigo, S. G., Bozhevolnyi, S. I., Martín-Moreno, L., and García-Vidal, F. J., “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901(1-4) (2008).CrossRefGoogle ScholarPubMed
[61] Martin-Cano, D., Nesterov, M. L., Fernández-Domínguez, A. I., García-Vidal, F. J., Martín-Moreno, L., and Moreno, E., “Domino plasmons for subwavelength terahertz circuitry,” Opt. Express 18, 754–764 (2010).CrossRefGoogle ScholarPubMed
[62] Nesterov, M. L., Martin-Cano, D., Fernandez-Dominguez, A. I., Moreno, E., Martin-Moreno, L., and García-Vidal, F. J., “Geometrically-induced modification of surface plasmons in the optical and telecom regimes,” Opt. Lett. 35, 423–425 (2010).CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×