Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-25T13:08:57.220Z Has data issue: false hasContentIssue false

10 - Cloaking

Published online by Cambridge University Press:  01 June 2011

Christopher C. Davis
Affiliation:
University of Maryland, College Park, MD 20742, USA
Igor I. Smolyaninov
Affiliation:
University of Maryland, College Park, MD 20742, USA
Alexei A. Maradudin
Affiliation:
University of California, Irvine
Get access

Summary

Introduction, general background, and history

Cloaking is the ability to make a region of space, and everything in it, invisible to an external observer. It has been the dream of fantasy writers for decades. In 2009, John Mullan [1] of The Guardian newspaper summarized the ten most important works that use the theme: The Invisible Man by H. G. Wells, The Republic by Plato, The Lord of the Rings by J. R. R. Tolkien, the Harry Potter books by J. K. Rowling, Theogony by Hesiod, Dr Faustus by Christopher Marlowe, The Tempest by William Shakespeare, The Voyage of the Dawn Treader by C. S. Lewis, The Emperor's New Clothes by Hans Christian Andersen, and The Hitchhiker's Guide to the Galaxy by Douglas Adams. A true cloak allows the clear observation of the space behind the cloaked region, and the cloaked region casts no shadow and produces no wavefront changes in the light that has passed through the cloaked region. It is not possible to build a perfect invisibility cloak, as was perceptively observed in the Star Trek series in which cloaked Romulan and Klingon spaceships could be detected by the subtle disturbances of space that the cloak produced.

Interest in making real cloaking devices can be traced to two seminal articles, one by John Pendry and his co-workers [2], and the other by Ulf Leonhardt [3]. Their approach can be called the transformational optics approach to cloaking, which will be discussed in more detail later.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Mullan, J., The Guardian, September 9 (2009).
[2] Pendry, J. B., Schurig, D., and Smith, D. R., “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).CrossRefGoogle ScholarPubMed
[3] Leonhardt, U., “Optical conformal mapping,” Science 312, 1777–1780 (2006).CrossRefGoogle ScholarPubMed
[4] Moore, J. H., Davis, C. C., and Coplan, M. A., Building Scientific Apparatus, 4th edn. (Cambridge: Cambridge University Press, 2009).CrossRefGoogle Scholar
[5] Yang, Z., Ci, L., Bur, J. A., Lin, S. Y., and Ajayan, P. M., “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8, 446–451 (2008).CrossRefGoogle ScholarPubMed
[6] Ritchie, R. H., “Surface plasmons in solids,” Surf. Sci. 34, 1–19 (1973).CrossRefGoogle Scholar
[7] Fleischmann, M., Hendra, P. J., and McQuillan, A. J., “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26, 163–166 (1974).CrossRefGoogle Scholar
[8] Moskovits, M., “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985).CrossRefGoogle Scholar
[9] Raether, H., Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Berlin: Springer-Verlag, 1988).CrossRefGoogle Scholar
[10] Drude, P., “Zur ionen-theorie der metalle,” Phys. Z. 1, 161–165 (1900).Google Scholar
[11] Drude, P., “Zur elektronentheorie der metalle; II. Teil. galvanomagnetische und thermomagnetische effecte,” Ann. Phys. Lpz. 308 369–402 (1900).CrossRefGoogle Scholar
[12] Drude, P., “Zur elektronentheorie der metalle,” Ann. Phys. Lpz. 306, 566–613 (1900).CrossRefGoogle Scholar
[13] Veselago, V. G., “The electrodynamics of substances with simultaneously negative values of ε and µ.” Sov. Phys. Uspekhi 10, 509–514 (1968).CrossRefGoogle Scholar
[14] Ramo, S., Whinnery, J. R., and Duzer, T. van, Fields and Waves in Communication Electronics, 1st edn (New York: Wiley, 1967).Google Scholar
[15] Valentine, J., Zhuang, S., Zentgraf, T., Ulin-Avila, E., Denov, D. A., Bartal, G., and Zhang, X., “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).CrossRefGoogle ScholarPubMed
[16] Paul, T., Rockstuhl, C., Menzel, C., and Lederer, F., “Anomalous refraction, diffraction, and imaging in metamaterials,” Phys. Rev. B 79, 115430(1-11) (2009).CrossRefGoogle Scholar
[17] Ward, A. J. and Pendry, J. B., “Refraction and geometry in Maxwell's equations,” J. Mod. Opt. 43, 773–793 (1996).CrossRefGoogle Scholar
[18] Margenau, H. and Murphy, G. M., The Mathematics of Physics and Chemistry, 2nd edn (Princeton, NJ: Van Nostrand, 1956).Google Scholar
[19] Schurig, D., Pendry, J. B., and Smith, D. R., “Calculation of material properties and ray tracing in transformation media,” Opt. Express 14, 9794–9804 (2006).CrossRefGoogle ScholarPubMed
[20] Rahm, M., Schurig, D., Roberts, D. A., Cummer, S. A., Smith, D. R., and Pendry, J. B., “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell's equations,” Photon. Nanostruct. 6, 87–95 (2008).CrossRefGoogle Scholar
[21] Ma, J-J., Cao, X-Y, Yu, K-M., and Liu, T., “Determination the material parameters for arbitrary cloak based on Poisson's equation,” Prog. Electromag. Res. 9, 177–184 (2009).CrossRefGoogle Scholar
[22] Qiu, C.-W., Novitsky, A., and Gao, L., “Inverse design mechanism of cylindrical cloaks without knowledge of the required coordinate transformation,” J. Opt. Soc. Am. A 27, 1079–1082 (2010).CrossRefGoogle ScholarPubMed
[23] Post, E. J., Formal Structure of Electromagnetics (New York: Wiley, 1962).Google Scholar
[24] Bérenger, J.-P, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).CrossRefGoogle Scholar
[25] Mittra, R. and Pekel, Ü, “A new look at the perfectly matched layer (PML) concept for the reflectionless absorption of electromagnetic waves,” IEEE Microwave Guided Wave Lett. 5, 84–86 (1995).CrossRefGoogle Scholar
[26] Sun, J., Zhou, J., and Kang, L., “Homogeneous isotropic invisible cloak based on geometrical optics,” Opt. Express 16, 17768–17773 (2008).CrossRefGoogle Scholar
[27] Cummer, S. A., Popa, B-I., Schurig, D., Smith, D. R., and Pendry, J., “Full-wave simulations of electromagnetic cloaking structures,” Phys Rev. E 74, 036621(1-5) (2006).CrossRefGoogle ScholarPubMed
[28] Xiang, W., Cui, T. J., Yang, X. M., Cheng, Q., Liu, R., and Smith, D. R., “Invisibility cloak without singularity,” Appl. Phys. Lett. 93, 194102(1-3) (2008).Google Scholar
[29] Ma, H., Qu, S., Xu, Z., Zhang, J., Chen, B., and Wang, J., “Material parameter equation for elliptical cylindrical cloaks,” Phys. Rev. A 77, 013825(1-3) (2008).CrossRefGoogle Scholar
[30] Kwon, D.-H. and Werner, D. H., “Two-dimensional eccentric elliptic electromagnetic cloaks,” Appl. Phys. Lett. 82, 013505(1-3) (2008).Google Scholar
[31] Luo, Y.. Zhang, J., Wu, B.-I., and Chen, H., “Interaction of an electromagnetic wave with a cone-shaped invisibility cloak and polarization rotator,” Phys. Rev. B 78, 125108(1-9) (2008).CrossRefGoogle Scholar
[32] Zhang, J., Luo, Y., Chen, H., and Wu, B.-I., “Cloak of arbitrary shape,” J. Opt. Soc. Am. 25, 1776–1779 (2009).CrossRefGoogle Scholar
[33] Qiu, C.-W., Hu, Li, Zhang, B., Wu, B.-I., Johnson, S. G., and Joannopoulos, J. D., “Spherical cloaking using nonlinear transformations for improved segmentation into concentric isotropic coating,” Opt. Express 17 13467–13478 (2009).CrossRefGoogle Scholar
[34] Chen, H. C., Theory of Electromagnetic Fields: A Coordinate Free Approach (New York: McGraw-Hill, 1985).Google Scholar
[35] Born, M. and Wolf, E., Principles of Optics, 7th edn (Cambridge: Cambridge University Press, 1999).CrossRefGoogle Scholar
[36] Hamilton, W. R., “On a general method of expressing the paths of light, and of the planets, by the coefficients of a characteristic function,” Dublin Univ. Rev. Quart. Mag. 1, 795–826 (1833).Google Scholar
[37] Evans, J. and Rosenquist, M., “F=ma optics,” Am. J. Phys. 54, 876–883 (1986).CrossRefGoogle Scholar
[38] Sekiguchi, T. and Wolf, K. B., “The Hamiltonian formulation of optics,” Am. J. Phys. 55, 830–835 (1987).CrossRefGoogle Scholar
[39] Evans, J., “The ray form of Newton's law of motion,” Am. J. Phys. 61, 347–350 (1993).CrossRefGoogle Scholar
[40] Reyes, J. A., “Ray propagation in anisotropic inhomogeneous media,” J. Phys. A: Math. Gen. 32, 3409–3419 (1999).CrossRefGoogle Scholar
[41] Dragt, A. J., “Lie algebraic theory of geometrical optics and optical aberrations,” J. Opt. Soc. Am. 72, 372–379 (1982).CrossRefGoogle Scholar
[42] Leonhardt, U., “Momentum in an uncertain light,” Nature 444, 823–824 (2006).CrossRefGoogle Scholar
[43] She, W., Yu, J., and Feng, R., “Observation of a push force on the end of a nanometer silica filament exerted by outgoing light,” Phys. Rev. Lett. 101, 234601(1-4) (2008).CrossRefGoogle ScholarPubMed
[44] Barnett, S. M.Resolution of the Abraham–Minkowski dilemma,” Phys. Rev. Lett. 104, 070401(1-4) (2010).CrossRefGoogle ScholarPubMed
[45] Jacob, Z. and Narimanov, E. E., “Semiclassical description of non magnetic cloaking,” Opt. Express 16, 4597–4604 (2008).CrossRefGoogle ScholarPubMed
[46] Cai, W., Chettiar, U. K., Kildishev, A. V., and Shalaev, V. M., “Optical cloaking with metamaterials,” Nature Photon. 1, 224–227 (2007).CrossRefGoogle Scholar
[47] Cai, W., Chettiar, U. K., Kildishev, A. V., Shalaev, V. M., and Milton, G. W., “Nonmagnetic cloak with minimized scattering,” Appl. Phys. Lett. 91, 111105(1-3) (2007).CrossRefGoogle Scholar
[48] Leonhardt, U., “Notes on conformal invisibility devices,” New J. Phys. 8, 118(1-16) (2006).CrossRefGoogle Scholar
[49] Luneburg, R. K. (1944). Mathematical Theory of Optics (Providence, RI: Brown University, 1944).Google Scholar
[50] Eaton, J. E., “On spherically symmetric lenses,” IRE Trans. Antennas Propag. AP-4, 66–71 (1952).CrossRefGoogle Scholar
[51] Lock, J. A., “Scattering of an electromagnetic plane wave by a Luneburg lens. I. Ray theory,” J. Opt. Soc. Am. A 25, 2971–2979 (2008).CrossRefGoogle ScholarPubMed
[52] Hannay, J. H. and Haeusser, T. M., “Retroreflection by refraction,” J. Mod. Opt. 40, 1437–1442 (1993).CrossRefGoogle Scholar
[53] Tyc, T. and Leonhardt, U., “Transmutation of singularities in optical instruments,” New J. Phys. 10, 115038(1-8) (2008).CrossRefGoogle Scholar
[54] Ochial, T., Leonhardt, U., and Nacher, J. N., “A novel design of dielectric invisibility devices,” J. Math. Phys. 49, 032903(1-13) (2008).Google Scholar
[55] Leonhardt, U. and Tyc, T., “Broadband invisibility by non-Euclidean cloaking,” Science 323, 110–112 (2009).CrossRefGoogle ScholarPubMed
[56] Jacob, Z., Alekseyev, L. V., and Narimanov, E., “Semiclassical theory of the hyperlens,” J. Opt. Soc. Am. A 24, 52–59 (2007).CrossRefGoogle ScholarPubMed
[57] Landau, L. D., Lifshitz, E. M., and Pitaevskii, L. P., Electrodynamics of Continuous Media, Landau and Lifshitz Course of Theoretical Physics, vol 8, 2nd edn (Amsterdam: Elsevier, 1984).Google Scholar
[58] Schurig, D., Mock, J. J., Justice, B. J., Cummer, S. A., Pendry, J. B., Starr, A. F., and Smith, D. R., “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).CrossRefGoogle ScholarPubMed
[59] Greenleaf, A., Lassas, M., and Uhlmann, G., “The Calderon problem for conormal potentials – I: Global uniqueness and reconstruction,” Commun. Pure Appl. Math. 56, 328–352 (2003).CrossRefGoogle Scholar
[60] Alú, A. and Engheta, N., “Plasmonic materials in transparency and cloaking problems: mechanism, robustness, and physical insights,” Opt. Express 15, 3318–3331 (2007).CrossRefGoogle ScholarPubMed
[61] Alú, A. and Engheta, N., “Cloaking and transparency for collections of particles with metamaterial and plasmonic covers,” Opt. Express 15, 7578–7590 (2007).CrossRefGoogle ScholarPubMed
[62] Smolyaninov, I. I., Hung, Y. J., and Davis, C. C., “Magnifying superlens in the visible frequency range,” Science 315, 1699–1701 (2007).CrossRefGoogle ScholarPubMed
[63] Smolyaninov, I. I., Hung, Y. J., and Davis, C. C., “Imaging and focusing properties of plasmonic metamaterial devices,” Phys. Rev. B 76, 205424(1-7) (2007).CrossRefGoogle Scholar
[64] Smolyaninov, I. I., “Two-dimensional plasmonic metamaterials,” Proc. SPIE 6638, 663803(1-12) (2007).CrossRefGoogle Scholar
[65] Smolyaninov, I. I., Hung, Y. J., and Davis, C. C., “Two-dimensional metamaterial structure exhibiting reduced visibility at 500 nm,” Opt. Lett. 33, 1342–1344 (2008).CrossRefGoogle ScholarPubMed
[66] Zayats, A. V., Smolyaninov, I. I., and Maradudin, A. A., “Nano-optics of surface plasmon-polaritons,” Phys. Rep. 408, 131–314 (2005).CrossRefGoogle Scholar
[67] Alú, A. and Engheta, N., “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev E. 72, 016623(1-9) (2005).CrossRefGoogle ScholarPubMed
[68] Alú, A. and Engeta, N.Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett. 100, 113901(1-4) (2008).CrossRefGoogle ScholarPubMed
[69] Silveirinha, M. G., Alú, A. and Engheta, N., “Parallel-plate metamaterials for cloaking structures,” Phys. Rev. E 75, 036603(1-16) (2007).CrossRefGoogle ScholarPubMed
[70] Baumeier, B., Leskova, T. A., and Maradudin, A. A., “Cloaking from surface plasmon polaritons by a circular array of point scatterers,” Phys. Rev. Lett. 103, 24603(1-4) (2009).CrossRefGoogle ScholarPubMed
[71] Alú, A., “Mantle cloak: invisibility induced by a surface,” Phys. Rev. B 80, 245115(1-5) (2009).CrossRefGoogle Scholar
[72] Edwards, B., Alú, A., Silveirinha, M. G., and Engheta, N., “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103, 153901(1-4) (2009).CrossRefGoogle ScholarPubMed
[73] Milton, G. W. and Nicorovici, N.-A. P., “On the cloaking effects associated with anomalous localized resonance,” Proc. Roy. Soc. Lon. Ser. A. Math. Phys. Sci. 462, 3027–3059 (2006).CrossRefGoogle Scholar
[74] Milton, G. W., Nicorovici, N.-A. P., McPhedran, R. C., Cherednichenko, K., and Jacob, Z., “Solutions in folded geometries, and associated cloaking due to anomalous resonance,” New J. Phys. 10, 115(1-21) (2008).CrossRefGoogle Scholar
[75] Nicorovici, N.-A. P., Milton, G. W., McPhedran, R. C., and Botten, L. C., “Quasistatic cloaking of two-dimensional polarizable discrete systems by anomalous resonance,” Opt. Express 15, 6314–6323 (2007).CrossRefGoogle ScholarPubMed
[76] Li, J. and Pendry, J. B., “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101, 203901(1-4) (2008).CrossRefGoogle ScholarPubMed
[77] Liu, R., Ji, C., Mock, J. J., Chin, J. Y., Cui, T. J., and Smith, D. R., “Broadband groundplane cloak,” Science 323, 366–369 (2009).CrossRefGoogle Scholar
[78] Xu, X., Feng, Y., Hao, Y., Zhao, J., and Jiang, T., “Infrared carpet cloak designed with uniform silicon grating structure,” Appl. Phys. Lett. 95, 184102(1-3) (2009).CrossRefGoogle Scholar
[79] Kallos, E., Argyropoulos, C., and Hao, Y., “Ground-plane quasicloaking for free space,” Phys. Rev. A 79, 063825(1-5) (2009).CrossRefGoogle Scholar
[80] Kildishev, A. V., Cai, W., Chettiar, U. K., and Shalaev, V. M., “Transformation optics: approaching broadband electromagnetic cloaking,” New J. Phys. 10, 115029(1-14) (2008).CrossRefGoogle Scholar
[81] Smolyaninov, I. I., Smolyaninova, V. N., Kildishev, A. V., and Shalaev, V. M., “Anisotropic metamaterials emulated by tapered waveguides: application to optical cloaking,” Phys. Rev. Lett. 102, 213901(1-4) (2009).CrossRefGoogle ScholarPubMed
[82] Landau, L. D. and Lifshitz, E. M, Quantum Mechanics (Oxford: Reed, 1988).Google Scholar
[83] Newton, I., “A letter of Mr. Isaac Newton, Professor of the Mathematicks in the University of Cambridge; containing his new theory about light and colors,” Phil. Trans. Royal Soc. 80, 3075–3087 (1671).CrossRefGoogle Scholar
[84] Tsakmakidis, K. L., Boardman, A. D., and Hess, O., “Trapped rainbow storage of light in metamaterials,” Nature 450, 397–401 (2007).CrossRefGoogle ScholarPubMed
[85] Stockman, M. I., “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404(1-4) (2004).CrossRefGoogle ScholarPubMed
[86] Gan, Q., Ding, Y. J., and Bartoli, F. J., “Rainbow trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102, 056801(1-4) (2009).CrossRefGoogle ScholarPubMed
[87] Hau, L. V., Harris, S. E., Dutton, Z., and Behroozi, C. H., “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).CrossRefGoogle Scholar
[88] Vlasov, Y. A., O'Boyle, M., Hamann, H. F., and McNab, S. J., “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).CrossRefGoogle ScholarPubMed
[89] Smolyaninova, V. N., Smolyaninov, I. I., Kildishev, A. V., and Shalaev, V. M., Appl. Phys. Lett. 96, 211121(1-3) (2010).CrossRef
[90] Nachman, A. I., “Reconstructions from boundary measurements,” Ann. Math. 128, 531–576 (1988).CrossRefGoogle Scholar
[91] Wolf, E. and Habashy, T., “Invisible bodies and uniqueness of the inverse scattering problem,” J. Mod. Opt. 40, 785–792 (1993).CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Cloaking
  • Edited by Alexei A. Maradudin, University of California, Irvine
  • Book: Structured Surfaces as Optical Metamaterials
  • Online publication: 01 June 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511921261.011
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Cloaking
  • Edited by Alexei A. Maradudin, University of California, Irvine
  • Book: Structured Surfaces as Optical Metamaterials
  • Online publication: 01 June 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511921261.011
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Cloaking
  • Edited by Alexei A. Maradudin, University of California, Irvine
  • Book: Structured Surfaces as Optical Metamaterials
  • Online publication: 01 June 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511921261.011
Available formats
×