Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-p2v8j Total loading time: 0 Render date: 2024-05-13T05:54:48.714Z Has data issue: false hasContentIssue false

7 - Applications of structural nanomaterials

Published online by Cambridge University Press:  04 December 2009

Carl C. Koch
Affiliation:
North Carolina State University
Ilya A. Ovid'ko
Affiliation:
Russian Academy of Sciences, Moscow
Sudipta Seal
Affiliation:
University of Central Florida
Stan Veprek
Affiliation:
Technische Universität München
Get access

Summary

Introduction

The very early application of nanomaterials is utilized in systems where nanopowders are used in their free form, without consolidation or blending. For a simple example, nanoscale titanium dioxide and zinc oxide powders are now commonly used by cosmetics manufacturers for facial base creams and sunscreen lotions for UV protection. Nanoscale iron oxide powder is now being used as a base material for rouge and lipstick. Paints with reflective properties are also being manufactured using nanoscale titanium dioxide particles. Figure 7.1 lists some of the common current and future applications of nanomaterials. The list is not complete, however; it is a current summary and the view of the present authors.

Nanostructured wear-resistant coatings for cutting tools and engineering components have been in use for several years. Nanostructured cemented carbide coatings are used on some Navy ships for their increased durability. Recently, more sophisticated uses of nanoscale materials have been realized. Nanostructured materials are in wide use in the area of information technology, integrated into complex products such as the hard disk drives that provide faster communication in today's world.

Many uses of nanoscale particles have already appeared in specialty markets, such as defense applications, and in markets for scientific and technical equipment. Producers of optical materials and electronics substrates such as silicon and gallium arsenide have embraced the use of nanosize particles for chemomechanical polishing of these substrates for chip manufacturing.

Type
Chapter
Information
Structural Nanocrystalline Materials
Fundamentals and Applications
, pp. 341 - 361
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bhattacharya, V., and Chattopadhyay, K. (2001). Scripta Mater., 44, 1677.CrossRef
Buchholz, K. (2003). Nanocomposite debuts on GM vehicles. Automotive Engineering International Online, April 30, 2003. http://www.sae.org/automag/material/10-2001/index.htm
Carlson, J. D., Matthis, W., and Toscano, J. R. (2001). Industrial and commercial applications of smart structures technologies (Lord Corporation), ed. Anna-Maria R. McGowan. Proceedings of SPIE, 4332, 308.
Cselle, T., Morstein, M., Coddet, O., Geisser, L., Holubar, P., Julik, M., Sima, M., and Janak, M. (2003). Werkzeug Technik, 77 (March 2003), 1. (Accessible at www.shm-cz.cz and www.platit.com)
Choudhary, P. (2003). Advanced Materials and Processes, ASM International Journal, July 2003, 8.
Current nanotechnology applications. (2003). Nanotechnology Now, May 1, 2003. http://nanotech-now.com/current-uses.htm
Dong, S. R., Tu, J. P., and Zhang, X. B. (2001). Mater. Sci. Eng., A313, 83.CrossRef
Ferkel, H., and Mordike, B. L. (2001). Mater. Sci. Eng., A298, 193.CrossRef
El-Eskandarany, S. M. (1998). J. Alloys Compd., 279, 263.CrossRef
Flink, A., Larsson, T., Sjölén, J., Karlsson, L., and Hultman, L. (2006). Surf. Coat. Technol., 200, 1535.CrossRef
Gilbert, B., Feng, H., Zhang, H., Waychunas, G. A., and Banfield, J. F., (2004). Science, 305, 651.CrossRef
Hitachi Tool Engineering, Ltd., Narita Works (2005). http://www.hitachi-tool.co.jp
Holubar, P., Jilek, M., and Sima, M. (1999). Surf. Coat. Technol., 120–121, 184.CrossRef
Holubar, P., Jilek, M., and Sima, M. (2000). Surf. Coat. Technol., 133–134, 145.CrossRef
Hurt, M. K., and Wereley, N. M. (1996). AIAA-96–1294-CP, AIAA/ASME/AHS Adaptive Structures Forum, Salt Lake City, UT, Apr. 18, 19, 1996, Technical Papers (A96–27071 06–39), 247.
Jilek, M., Holubar, P., Veprek-Heijman, M. G. J., and Veprek, S. (2003). Mater. Res. Soc. Symp. Proc., 697, 393.
Jilek, M., Cselle, T., Holubar, P., Morstein, M., Veprek-Heijman, M. G. J., and Veprek, S. (2004). Plasma Chem. Plasma Process., 24, 493.CrossRef
Kawabe, A., et al. (1999). J. Jpn. Inst. Met., 149.CrossRef
Kuzumaki, T., Uj, O. iie, Ichinose, H., and Ito, K. (2000). Adv. Eng. Mater., 2, 416.3.0.CO;2-Y>CrossRef
Law, M., Sirbuly, D. J., Johnnson, J. C., Goldberger, J., Saykally, R. J., and Yang, P. (2004). Science, 305, 1269.CrossRef
Liu, H., et al. (1997). Mater. Manuf. Processes., 12, 831.CrossRef
Münz, W.-D. (2003). MRS Bulletin, 28, 173.CrossRef
Münz, W.-D., Lewis, D. B., Hovsepian, P. Eh., Schönjahn, C., Ehiasarian, A., and Smith, I. J. (2001). Surf. Engineering, 17, 15.CrossRef
Palumbo, G., Gonzalez, F., Brennenstuhl, A. M., Erb, U., Shmayda, W., and Lichtenberger, P. C. (1997). NanoStructured Mater., 9, 737.CrossRef
Palumbo, G., Erb, U., McCrea, J. L., Hibbard, G. D., Brooks, I., and Gonzalez, F. (2002). AESF SUR/Fin Proc. Q, 204.
Palumbo, G., McCrea, J. L., and Erb, U. (2004). In Encyclopedia of Nanoscience and Nanotechnology, ed. Nalwa, H. S.American Scientific, Publishing, pp. 89–99.Google Scholar
Pickrell, D. (2005), Advanced Materials and Processes, ASM International Journal, March issue, 11.
Rohatgi, P. K., and Asthana, R. (1986). Int. Mat. Rev. 31, 115.CrossRef
Takagi, M., Ohta, H., Imura, T., Kawamura, Y., and Inoue, A. (2001), Scripta Mater., 44, 2145.CrossRef
Tanaka, Y., Ichimiya, N., Onischi, Y., and Yamada, Y. (2001). Surf. Coat. Technol., 146–147, 215.CrossRef
Tanaka, Y., Kondo, A., and Maeda, K. (2004). Invited lecture at the International Conference on Metallurgical Coatings and Thin Films, Session B, San Diego, April/May 2003 (unpublished).
Veprek, S., Veprek-Heijman., Karvankova, P., and Prochazka, J. (2005a). Thin Solid Films, 476, 1–29.CrossRef
Veprek, S., Männling, H.-D., Karvankova, P., and Prochazka, J. (2006). Surf. Coat. Technol., 200, 3876.CrossRef
Veprek, S., and Reiprich, S. (1995). Thin Solid Films, 268, 64–71.CrossRef
Wang, X., Padture, N. P., and Tanaka, H. (2004). Nat. Mater., 3, 539.CrossRef
Wei, Q., Ramesh, K. T., Ma, E., Keskes, L. J., Dowding, R. J., Kazykanov, V. U., and Valiev, R. Z. (2005) Appl. Phys. Lett., 86, 101907.CrossRef
Xu, C. L., Wei, B. Q., Ma, R. Z., Liang, J., Ma, X. K., and Wu, D. H. (1999). Carbon, 37, 855.CrossRef
Ying, D. Y., and Zhang, D. L. (2000). Mater. Sci. Eng., 286, 152.CrossRef
Zhong, L. W. (2004). Advanced Materials and Processes, ASM International Journal, Jan. issue, 22.
Zindulka, O. (2003). Unpublished.

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×