Skip to main content Accessibility help
×
Home
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 4
  • Print publication year: 2012
  • Online publication date: August 2012

Chapter 42 - Borderzone infarcts

from Section 2 - Vascular topographic syndromes

Summary

The basal ganglia (BG) including the caudate nucleus are well known for their motor functions. The BG nuclei are anatomically and functionally associated with each of the frontal-striatal-thalamic-frontal circuits or loops. The caudate nucleus assumes the shape of a comet, curving along the lateral wall of the lateral ventricle. The caudate nucleus receives its blood supply mainly through the deep penetrators arising from the anterior cerebral arteries (ACAs) and middle cerebral arteries (MCAs) although there are individual differences. The major risk factors for caudate nucleus infarcts are: hypertension, hypercholesterolemia, diabetes mellitus, previous myocardial infarct, and cigarette smoking. As caudate nucleus infarcts can develop from any stroke mechanisms including lipohyalinosis, branch atheromatous disease, large artery atherothrombosis, or embolism, treatment of patients with caudate nucleus infarcts depends on the underlying stroke mechanism. Caudate nucleus hemorrhages account for approximately 7% of all intracerebral hemorrhages (ICH) and are caused by rupture of penetrating arteries.

References

1. ZülchKJ, BehrendRCH.The pathogenesis and topography of anoxia, hypoxia and ischemia of the brain in man. In: GastautH, MeyerJS, eds. Cerebral Anoxia and the Electroencephalogram. Springfield, IL: Thomas, 1961 ;144–163.
2. MohrJP.Distal field infarction. Neurology 1969; 19: 279.
3. AngeloniU, BozzaoL, FantozziL, et al. Internal boder zone infarction following acute middle cerebral artery occlusion. Neurology 1990; 40: 1196–1198.
4. BladinCF, ChambersBR.Clinical features, pathogenesis, and computed tomographic characteristics of internal watershed infarction. Stroke 1993; 24: 1925–1932.
5. TorvikA, SkullerudK.Watershed infarcts in the brain caused by microemboli. Clin Neuropathol 1982; 1: 99–105.
6. MasudaJ, YutaniC, OgataJ, KuriyamaY, YamaguchiT.Atheromatous embolism in the brain: a clinicopathologic analysis of 15 autopsy cases. Neurology 1994; 44: 1231–1237.
7. PollanenMS, DeckJH.The mechanism of embolic watershed infarction: experimental studies. Can J Neurol Sci 1990 ;17: 395–398.
8. CaplanLR, HennericiM.Impaired clearance of emboli (washout) is an important link between hypoperfusion, embolism, and ischemic stroke. Arch Neurol 1998; 55: 1475–1482.
9. Momjian-MayorI, BaronJC.The pathophysiology of watershed infarction in internal carotid artery disease: review of cerebral perfusion studies. Stroke 2005; 36: 567–577.
10. SchneiderM.Hypoxie und Anoxie. Ther Woche 1956; 6: 217–221.
11. Denny-BrownD.The treatment of recurrent cerebrovascular symptoms and the question of vasospasm. Med Clin North Am 1951; 35: 1457–1464.
12. MillikanCH, SiekertRG.Studies in cerebrovascular disease. I. The syndrome of intermittent insufficiency of the basilar arterial disease. Mayo Clin Proc 1955; 30: 61–68.
13. ZülchKJ.Die Pathogenese von Massenblutung und Erweichung unter besonderer Berücksichtigung klinischer Gesichtspunkte. Acta Neurol Chir 2961; 7: 51–117.
14. EastcottHHG, PickeringGW, RobCG.Reconstruction of internal carotid artery in a patient with intermittent attacks of hemiplegia. Lancet 1954 ;2: 994–996.
15. De BakeyME, CrawfordES, MorrisGC, CooleyDA.Arterial reconstructive operations for cerebrovascular insufficiency due to extracranial arterial occlusive disease. J Cardiovasc Surg 1962; 3: 12–25.
16. FisherCM.Occlusion of the carotid arteries. Further experiences. Arch Neurol Psychiatry 1954; 72: 187–204.
17. FisherCM.Concerning recurrent transient cerebral ischemic attacks. J Can Med Assoc 1962; 86: 1091–1099.
18. FisherCM.Lacunes: small deep cerebral infarcts. Neurology 1965; 15: 774–784.
19. PokrasR, DykenML.Dramatic changes in the performance of endarterectomy for diseases of the extracranial arteries of the head. Stroke 1988; 19: 1289–1290.
20. NaylorAR, GainesPA, RothwellPM.Who benefits most from intervention for asymptomatic carotid stenosis: patients or professionals. Eur J Vasc Endovasc Surg 2009; 37: 625–632.
21. RingelsteinEB, SieversC, EckerS, SchneiderPA, OtisSM.Noninvasive assessment of CO2-induced cerebral vasomotor response in normal individuals and patients with internal carotid artery occlusions. Stroke 1988; 19: 963–969.
22. ProvincialiL, CeravoloM, MinciottiP.A transcranial doppler study of vasomotor reactivity in symptomatic carotid occlusion. Cerebrovasc Dis 1993; 3: 27–32.
23. DettmersC, SolymosiL, HartmannA, BuermannJ, HagendorffA.Confirmation of CT criteria to distinguish pathophysiologic subtypes of cerebral infarction. AJNR Am J Neuroradiol 1997; 18: 335–342.
24. DetreJA, AlsopDC, VivesLR, et al. Noninvasive MRI evaluation of cerebral blood flow in cerebrovascular disease. Neurology 1998; 50: 633–641.
25. ChavesCJ, SilverB, SchlaugG, et al. Diffusion- and perfusion-weighted MRI patterns in borderzone infarcts. Stroke 2000; 31: 1090–1096.
26. SzaboK, KernR, GassA, HirschJ, HennericiM.Acute stroke patterns in patients with internal carotid artery disease: a diffusion-weighted magnetic resonance imaging study. Stroke 2001; 32: 1323–1329.
27. HendrikseJ, PetersenET, ChèzeA, et al. Relation between cerebral perfusion territories and location of cerebral infarcts. Stroke 2009; 40: 1617–1622.
28. YamauchiH, FukuyamaH, HaradaK, et al. White matter hyperintensities may correspond to areas of increased blood volume: correlative MR and PET observations. J Comput Assist Tomogr 1990; 14: 905–908.
29. YamauchiH, FukuyamaH, YamaguchiS, et al. High-intensity area in the deep white matter indicating hemodynamic compromise in internal carotid artery occlusive disorders. Arch Neurol 1991; 48: 1067–1071.
30. YamauchiH, FukuyamaH, NagahamaY, et al. Significance of increased oxygen extraction fraction in five-year prognosis of major cerebral arterial occlusive diseases. J Nucl Med 1999; 40: 1992–1998.
31. DerdeynCP, SimmonsNR, VideenTO, et al. Absence of selective deep white matter ischemia in chronic carotid disease: a positron emission tomographic study of regional oxygen extraction. AJNR Am J Neuroradiol 2000; 21: 631–638.
32. RingelsteinEB, ZeumerH, AngelouD.The pathogenesis of strokes from internal carotid artery occlusion. Diagnostic and therapeutical implications. Stroke 1983; 14: 867–875.
33. CholletF, RollandY, AlbucherJF, et al. Recurrent right hemiplegia associated with progressive ipsilateral carotid artery stenosis. Stroke 1996; 27: 753–755.
34. MoriwakiH, MatsumotoM, HashikawaK, et al. Hemodynamic aspect of cerebral watershed infarction: assessment of perfusion reserve using Jodine-123-Iodoamphetamine SPECT. J Nucl Med 1997; 38: 1556–1562.
35. HendrikseJ, PetersenET, van LaarPJ,GolayX.Cerebral border zones between distal end branches of intracranial arteries: MR Imaging. Radiology 2008; 246: 572–580.
36. YamauchiH, NishiiR, HigashiT, KagawaS, FukuyamaH.Hemodynamic compromise as a cause of internal border-zone infarction and cortical neuronal damage in atherosclerotic middle cerebral artery disease. Stroke 2009; 40: 3730–3735.
37. EC/IC-Bypass Study Group. Failure of extracranial/intracranial arterial bypass to reduce the risk of ischemic stroke. Results of an international randomized trial. N Engl J Med 1985; 313: 1191–1200.
38. TorvikA.The pathogenesis of watershed infarcts in the brain. Stroke 1984; 15: 221–223.
39. BogousslavskyJ, RegliF.Borderzone infarctions distal to internal carotid artery occlusion: prognostic implications. Ann Neurol 1986; 20: 346–350.
40. HuppertsRMM, LodderJ, Heuts-van RaakEPM, WilminkJT, KesselsAGH.Boder zone brain infarcts on CT taking into account the variability in vascular supply areas. Cerebrovasc Dis 1996; 6: 294–300.
41. GandolfoC, Del SetteM, FinocchiC, CalauttiC, LoebC.Internal border zone in patients with ischemic stroke. Cerebrovasc Dis 1998; 8: 255–258.
42. WaterstonJA, BrownMM, ButlerP, SwashM.Small deep cerebral infarcts associated with occlusive internal carotid artery disease. Arch Neurol 1990; 47: 953–957.
43. YongSW, BangOY, LeePH, LiWY.Internal and cortical border-zone infarction. Clinical and diffusion-weighted imaging features. Stroke 2006; 37: 841–846.
44. JorgensenL, Torvik A. Ischaemic cerebrovascular diseases in an autopsy series. 2. Prevalence, location, pathogenesis, and clinical course of cerebral infarcts. J Neurol Sci 1969; 9: 285–320.
45. WeillerC, MüllgesW, RingelsteinEB, BuellU, ReicheW.Patterns of brain infarctions in internal carotid artery dissections. Neurosurg Rev 1991; 14: 111–113.
46. BenningerDH, GeorgiadisD, KremerC, et al. Mechanism of ischemic infarct in spontaneous carotid dissection. Stroke 2004; 35: 482–485.
47. RingelsteinEB, Berg-DammerE, ZeumerH.The so-called atheromatous pseudoocclusion of the internal carotid artery. A diagnostic and therapeutical challenge. Neuroradiology 1983; 25: 147–155.
48. CaplanLR, WongKS, GaoS, HennericiMG.Is hypoperfusion an important cause of strokes? If so, how?Cerebrovasc Dis 2006; 21: 145–153.
49. YoungLH, UppenRE.Ischemic oculopathy: a manifestation of carotid artery disease. Arch Neurol 1981; 38: 358–361.
50. KellerH, MeierW, YonekawaY, KumpeD.Noninvasive angiography for the diagnosis of carotid artery disease using Doppler ultrasound (carotid artery Doppler). Stroke 1976; 7: 354–363.
51. HennericiMG, Neuerburg-HeuslerD.Vascular Diagnosis with Ultrasound. Stuttgart: Thieme, 2006; 1–366.
52. CaplanLR, SergayS.Positional cerebral ischemia. J Neurol Neurosurg Psychiatry 1976; 39: 385–391.
53. NorvingB, NilsonB, RiisbergJ.rCBF in patients with carotid occlusion. Resting and hypercapnic flow related to collateral pattern. Stroke 1982; 13: 155–162.
54. WidderB, PaulatK, HackspacherJ, MayrE.Transcranial Doppler CO2 test for the detection of hemodynamically critical carotid artery stenoses and occlusions. Eur Arch Psychiatry Neurol Sci 1986; 236: 162–168.
55. PowersWJ, PressGA, GrubbRL Jr, GadoM, RaichleME.The effect of hemodynamically significant carotid artery disease on the hemodynamic status of the cerebral circulation. Ann Intern Med 1987; 106: 27–35.
56. RingelsteinEB, Van EyckS, MertensI.Evaluation of cerebral vasomotor reactivity by various vasodilating stimuli: comparison of CO2 to acetazolamide. J Cereb Blood Flow Metab 1992; 12: 162–168.
57. MustafaRR, Izquierdo-GarciaD, JonesS, et al. Watershed infarcts in transient ischemic attack/minor stroke with ≥50% carotid stenosis. Hemodynamic or embolic?Stroke 2010; 41: 1410–1416.
58. RingelsteinEB, WeillerC, WeckesserM, WeckesserS.Cerebral vasomotor reactivity is significantly reduced in low-flow as compared to thromboembolic infarctions: the key role of the circle of Willis. J Neurol Sci 1994; 121: 103–109.
59. IsakaY, NaganoK, NaritaM, AshidaK, ImaizumiM.High signal intensity on T2-weighted magnetic resonance imaging and cerebral hemodynamic reserve in carotid occlusive disease. Stroke 1997 ;28: 354–357.
60. KrapfH, WidderB, SkalejM.Small rosarylike infarctions in the centrum ovale suggest hemodynamic failure. AJNR Am J Neuroradiol 1998 ;19: 1479–1484.
61. YamauchiH, FukuyamaH, NagahamaY, et al. Evidence of misery perfusion and risk for recurrent stroke in major cerebral arterial occlusive diseases from PET. J Neurol Neurosurg Psychiatry 1996 ;61: 18–25.
62. DerdeynCP, KhoslaA, VideenTO, et al. Severe hemodynamic impairment and border zone-region infarction. Radiology 2001; 220: 195–201.
63. ArakawaS, MinematsuK, HiranoT, et al. Topographic distribution of misery perfusion in relation to internal and superficial borderzones. AJNR Am J Neuroradiol 2003; 24: 427–435.
64. BisschopsRH, KlijnCJ, KappelleLJ, van HuffelenAC, van der GrondJ.Association between impaired carbon dioxide reactivity and ischemic lesions in arterial border zone territories in patients with unilateral internal carotid artery occlusion. Arch Neurol 2003; 60: 229–233.
65. LeblancR, YamamotoYL, TylerJL, DiksicM, HakimA.Boderzone ischemia. Ann Neurol 1987; 22: 707–713.
66. KrayenbühlH, YasargilMG.Zerebrale Angiographie für Klinik und Praxis. 3rd edn. Stuttgart: Thieme, 1979; 68–76.
67. YasargilMG, YonekawaY.Results of microsurgical extracranial/intracranial arterial bypass in the treatment of cerebral ischemia. Neurosurgery 1977; 1: 22–24.
68. TullekenCAF, DierenA, van VerdaasdonkRM, BehrendsenW.End-to-side anastomoses of small vessels using the neodynium YAG-laser with a hemispherical contact probe. J Neurosurg 1992; 76: 546–549.
69. SundtTM Jr. Was the international randomized trial of extracranial/intracranial arterial bypass representative of the population at risk?N Engl J Med 1987; 316: 814–816.
70. AdamsHP Jr, PowersWJ, GrubbRL Jr, ClarkeWR, WoolsonRF.Preview of a new trial of extracranial-to-intracranial arterial anastomosis: the carotid occlusion surgery study. Neurosurg Clin N Am 2001; 12: 613–624.
71. PowersWJ, ClarkWR, GrubbRL Jr., et al. For the COSS investigators. Extracranial-intracranial bypass surgery for stroke prevention in hemodynamic cerebral ischemia. The Carotid Occlusion Surgery Study randomized trial. JAMA 2011; 306: 1983–1992.
72. BaquisGD, PessinMS, ScottRM.Limb shaking – a carotid TIA. Stroke 1985; 16: 444–448.
73. YanagiharaT, PiepgrasDG, KlassDW.Repetitive involuntary movement associated with episodic cerebral ischemia. Ann Neurol 1985; 18: 244–250.
74. BogousslavskyJ, RegliF.Centrum ovale infarcts: subcortical infarction in the superficial territory of the middle cerebral artery. Neurology 1992; 42: 1992–1998.
75. AdamsJH, BrierleyJB, ConnorRC, TreipCS.The effects of systemic hypotension upon the human brain. Clinical and neuropathological observations in 11 cases. Brain 1966; 89: 235–268.
76. AdamsJH, GrahamDI.Twelve cases of fatal cerebral infarction due to arterial occlusion in the absence of atheromatous stenosis or embolism. J Neurol Neurosurg Psychiatry 1967; 30: 479–488.
77. FisherM, McQuillenJB.Bilateral cortical borderzone infarction. A pseudobrainstem stroke. Arch Neurol 1981; 38: 62–63.
78. CarterJW.Chronic ocular ischemia and carotid vascular disease. Stroke 1985; 16: 721–728.
79. CopettoJR, WandM, BearL, SciarraR.Neovascular glaucoma and carotid artery obstructive disease. Am J Ophthalmol 1985; 99: 567–570.
80. TatemichiTK, YoungWL, ProhovnikI, et al. Perfusion insufficiency in limb-shaking transient ischemic attacks. Stroke 1990; 21: 341–347.
81. AbbottAL, BladinCF, DonnanGA.Seizures and stroke. In: BogousslavskyJ, CaplanLR, eds. Stroke Syndromes. Cambridge: Cambridge University Press, 2001.
82. ChatrianGE, Cheng-MeiS, LeffmanH.The significance of periodic lateralized epileptiform discharges in EEG: an elctrographic, clinical and pathological study. Electroencephalogr Clin Neurophsiol 1964; 17: 177–193.
83. MarkandON, DalyDD.Pseudoperiodic lateralized paroxysmal discharges in electroencephalography. Neurology 1971; 21: 975–981.
84. WestmorelandBF, KlassDW, SharbroughFW.Chronic periodic lateralized epileptiform discharges. Arch Neurol 1986; 43: 494–496.
85. BerlitP, BühlerB, KrauseKH.EEG findings in borderline infarcts. Electroencephalogr Clin Neurophysiol 1988; 69: 4P.
86. GastautH, NaquetR, VigourouxRA.The vascular syndrome of the parieto-temporo-occipital “triangle”based on 18 cases. In: ZülchKJ, ed. Cerebral circulation and stroke. New York, NY: Springer, 1971; 82–92.
87. KarbowskiK.Fokale periodische Spitzenpotentiale bei extraterritorialer, zerebraler Ischämie. Z EEG-EMG 1975; 6: 27–31.
88. GastautH, NaquetR.Étude electroencephalographique de l’insuffisance circulation cérébrale. In: Symposium Internationale sur la Circulation Cérébrale. Paris: Editions Sandoz, 1996; 163–191.
89. WeillerC, RingelsteinEB, ReicheW, BüllU.Clinical and hemodynamic aspects of low-flow infarcts. Stroke 1991; 22: 1117–1123.
90. CobbW.Evidence on the periodic mechanism in herpes encephalitis. Electroencephalogr Clin Neurophysiol 1979; 46: 345–350.
91. FisherCM.Facial pulses in internal carotid artery occlusion. Neurology 1970; 20: 476–478.
92. CaplanLR.The frontal artery sign: a bedside indicator of internal carotid occlusive disease. N Engl J Med 1973; 288: 1008–1009.
93. CaplanLR.Hypoxic-ischemic encephalopathy, cardiac arrests, and cardiac encephalopathy. In: CaplanLR, ed. Caplan’s Stroke. A Clinical Approach. 4th edn. Philadelphia, PA: Saunders-Elsevier, 2009; 375–388.
94. GrubbRL Jr, DerdeynCP, FritschSM, et al. Importance of hemodynamic factors in the prognosis of symptomatic carotid occlusion. JAMA 1998 ;280: 1055–1060.
95. KurodaS, HoukinK, KamiyamaH, et al. Long-term prognosis of medically treated patients with internal carotid or middle cerebral artery occlusion: can acetazolamide test predict it?Stroke 2001; 32: 2110–2116.
96. MarkusH, CullinaneM.Severely impaired cerebrovascular reactivity predicts stroke and TIA risk in patients with carotid artery stenosis and occlusion. Brain 2001; 124: 457–467.
97. OgasawaraK, OgawaA, YoshimotoT.Cerebrovascular reactivity to acetazolamide and outcome in patients with symptomatic internal carotid or middle cerebral artery occlusion: a xenon-133 single-photon emission computed tomography study. Stroke 2002 ;33: 1857–1862.
98. BogousslavskyJ, RegliF.Unilateral watershed infarcts. Neurology 1986; 36: 373–377.
99. RingelsteinEB, OtisSM.Physiological testing of vasomotor reserve. In: NewellDW, AaslidR, eds. Transcranial Doppler. New York, NY: Raven, 1992; 83–99.
100. WidderB, KleiserB, KrapfH.Course of cerebrovascular reactivity in patients with carotid artery occlusions. Stroke 1994; 25: 1963–1967.
101. HasegawaY, YamaguchiT, TsuchiyaT, MinematsuK, NishimuraT.Sequential change of hemodynamic reserve in patients with major cerebral artery occlusion or severe stenoses. Neuroradiology 1992; 34: 15–21.
102. KleiserB, WidderB, HachspacherJ, SchmidP.Course of carotid artery occlusions with impaired cerebrovascular reactivity. Stroke 1992; 23: 171–174.
103. BlaserT, HofmannK, BuergerT, et al. Risk of stroke, transient ischemic attack, and vessel occlusion before endarterectomy in patients with symptomatic severe carotid stenosis. Stroke 2002; 33: 1057–1062.
104. WeimarC, MieckT, BuchthalJ, et al. Neurologic worsening during the acute phase of ischemic stroke. Arch Neurol 2005; 62: 393–397.
105. BaronJC, BousserMG, ReyA, et al. Reversal of focal “misery-perfusion syndrome” by extra-intracranial arterial bypass in hemodynamic cerebral ischemia. A case study with 150 positron emission tomography. Stroke 1981; 12: 454–459.
106. GibbsJM, LeendersKL, WiseRJ, JonesT.Evaluation of cerebral perfusion reserve in patients with carotid-artery occlusion. Lancet 1984; 1: 182–186.
107. PowersWJ, RaichleME, GrubbRL Jr. Positron emission tomography to assess cerebral perfusion. Lancet 1985; 1: 102–103.
108. VorstrupS, BoysenG, BrunB, EngellHC.Evaluation of the regional cerebral vasodilatory capacity before carotid endarterectomy by the acetazolamide test. Neurol Res 1987; 9: 10–18.
109. YonasH, GurD, GoodBC, et al. Stable xenon CT blood flow mapping for evaluation of patients with extracranial-intracranial bypass surgery. J Neurosurg 1985; 62: 324–333.
110. Ley-PozoJ, WillmesK, RingelsteinEB.Relationship between pulsatility indices of Doppler flow signals and CO2 reactivity within the middle cerebral artery in extracranial occlusive disease. Ultrasound Med Biol 1990; 8: 763–772.
111. KleiserB, KrapfH, WidderB.Carbon dioxide reactivity and patterns of cerebral infarction in patients with carotid artery occlusion. J Neurol 1991; 238: 392–394.
112. SteinkeW, KloetzschC, HennericiM.Carotid artery disease assessed by color Doppler flow imaging: correlation with standard Doppler sonography and angiography. AJNR Am J Neuroradiol 1990; 11: 259–266.
113. BlakeleyDD, OddoneEZ, HasselbladV, SimelDL, MatcharDB.Noninvasive carotid artery testing: a meta-analytic review. Ann Intern Med 1995; 122: 360–367.
114. HetzelA, EckenweberB, TrummerB, et al. Colour-coded duplex sonography of preocclusive carotid stenoses. Eur J Ultrasound 1998; 8: 183–191.
115. FürstG, SalehA, WenserskiF, et al. Reliability and validity of noninvasive imaging of internal carotid artery pseudo-occlusion. Stroke 1999; 30: 1444–1449.
116. AndersonGB, AshforthR, SteinkeDE, FerdinandyR, FindlayJM.CT angiography for the detection and characterization of carotid artery bifurcation disease. Stroke 2000; 31: 2168–2174.
117. EcksteinHH, WinterR, EichbaumM, et al. Grading of internal carotid artery stenosis: validation of Doppler/duplex ultrasound criteria and angiography against endarterectomy specimen. Eur J Vasc Endovasc Surg 2001; 21: 301–310.
118. KoelemayMJ, NederkoornPJ, ReitsmaJB, MajoieCB.Systematic review of computed tomographic angiography for assessment of carotid artery disease. Stroke 2004; 35: 2306–2312.
119. ClevertDA, JohnsonT, MichaelyH, .High-grade stenoses of the internal carotid artery: comparison of high-resolution contrast enhanced 3D MRA, duplex sonography and power Doppler imaging. Eur J Radiol 2006; 60: 379–386.
120. BartlettES, WaltersTD, SymonsSP, FoxAJ.Quantification of carotid stenosis on CT angiography. AJNR Am J Neuroradiol 2006; 27: 13–19.
121. DebreySM, YuH, LynchJK, et al. Diagnostic accuracy of magnetic resonance angiography for internal carotid artery disease: a systematic review and meta-analysis. Stroke 2008; 39: 2237–2248.
122. TadaK, NukadaT, YonedaS, KuriyamaY, AbeH.Assessment of the capacity of cerebral collateral circulation using ultrasonic Doppler technique. J Neurol Neurosurg Psychiatry 1975; 38: 1068–1075.
123. KnopJ, ThieA, FuchsC, SiepmannG, ZeumerH.99mTc-HMPAO-SPECT with acetazolamide challenge to detect hemodynamic compromise in occlusive cerebrovascular disease. Stroke 1992; 23: 1733–1742.
124. RingelsteinEB, Berg-DammerE, ZeumerH.The so-called atheromatous pseudoocclusion of the internal carotid artery. Neuroradiology 1983; 25: 147–155.
125. GörtlerM, NiethammerR, WidderB.Differentiating subtotal carotid artery stenoses from occlusions by colour-coded Duplex sonography. J Neurol 1994; 241: 301–305.
126. RingelsteinEB.Echo-enhanced ultrasound for diagnosis and management in stroke patients. Eur J Ultrasound 1998; 7: 3–15.
127. EricksonSJ, MewissenMW, FoleyWD, et al. Stenosis of the internal carotid artery: assessment using color Doppler imaging compared with angiography. AJR Am J Roentgenol 1989; 152: 1299–1305.
128. El-SadenSM, GrantEG, HathoutGM, et al. Imaging of the internal carotid artery: the dilemma of total versus near total occlusion. Radiology 2001; 221: 301–308.
129. KeunenRWM, AckerstaffRGA, StegemanDF, SchulteBPM.The impact of internal carotid artery occlusion and the integrity of the circle of Willis on cerebral vasomotor reactivity – a transcranial Doppler study. In: MeyerJS, et al., eds. Cerebral Vascular Disease. Amsterdam: Elsevier Science, 1989; 85–88.
130. RoddaRA.The arterial patterns associated with internal carotid disease and cerebral infarcts. Stroke 1986; 17: 69–75.
131. MirallesM, DolzJL, CotillaJ, et al. The role of the circle of Willis in carotid occlusion: assessment with phase contrast MR angiography and transcranial duplex. Eur J Vasc Endovasc Surg 1995: 10: 424–430.
132. MullM, SchwarzM, ThronA.Cerebral hemispheric low-flow infarcts in arterial occlusive disease. Lesion patterns and angiomorphological conditions. Stroke 1997; 28: 118–123.
133. VernieriF, PasqualettiP, PassarelliF, RossiniPM, SilvestriniM.Outcome of carotid artery occlusion is predicted by cerebrovascular reactivity. Stroke 1999; 30: 593–598.
134. HendrikseJ, HartkampMJ, HillenB, MaliWPTM, van der GrondJ.Collateral ability of the circle of Willis in patients with unilateral internal carotid artery occlusion. Border zone infarcts and clinical symptoms. Stroke 2001; 32: 2768–2773.
135. DeckerK, HippE.Morphologie und Angiographie. Anat Anz 1963; 105: 100–116.
136. BladinCF, ChambersBR.Frequency and pathogenesis of hemodynamic stroke. Stroke 1994; 25: 2179–2182.
137. YonasH, GurD, LatchawRE, WolfsonSK Jr. Xe-computed tomographic blood flow mapping. In: WoodJH, ed. Cerebral Blood Flow. Physiologic and Clinical Aspects. New York, NY: McGraw-Hill, 1987 ;220–242.
138. BüllU, BraunH, FerbertA et al. Combined SPECT imaging of regional cerebral blood flow (99m-Tc-hexamethyl-propyleneamine oxime, HMPAO) and blood volume (99m-Tc-RBC) to assess regional cerebral perfusion reserve in patients with cerebrovascular disease. Nucl Med 1988; 27: 51–56.
139. CholletF, CelsisP, ClanetM, et al. SPECT-study of cerebral blood flow reactivity after acetazolamide in patients with transient ischemic attacks. Stroke 1989; 20: 458–464.
140. Van der ZwanA, HillenB, TullekenCAF, DujovnyM, DragovicL.Variability of the territories of the major cerebral arteries. J Neurosurg 1992;77: 927–940.
141. Van LaarPJ, HendrikseJ, GolayX, et al. In vivo flow territory mapping of major brain feeding arteries. Neuroimage 2006; 29: 136–144.
142. Van der ZwanA, HillenB.Confusing stroke terminology: watershed or borderzone infarction? Response. Stroke 1993; 24: 477–478.
143. YamauchiH, KudohT, KishibeY, IwasakiJ, KagawaS.Selective neuronal damage and borderzone infarction in carotid artery occlusive disease: A 11C-Flumazenil PET Study. J Nucl Med 2005; 46: 1973–1979.
144. SuzukiJ, KodamaN.Moyamoya disease – a review. Stroke 1983; 14: 104–109.
145. KuwabaraY, IchiyaY, OtsukaM, et al. Cerebral hemodynamic change in the child and the adult with Moyamoya disease. Stroke 1990; 21: 272–277.
146. WeillerC, MüllgesW, LeiboldM, et al. Infarctions and non-invasive diagnosis in Moyamoya disease: two case reports. Neurosurg Rev 1991; 47: 1085–1091.
147. KrapfH, WidderB.MRI characteristics in hemodynamic infarctions. 8th International Symposium on Cerebral Hemodynamics, M Münster, Germany, September 25–27, 1994. Cerebrovasc Dis 1994; 4: 24.
148. IwanagaT, ArakawaS, SirithoS, et al. Paracentral strip infarcts of the middle cerebral artery: borderzone ischaemia or cortical artery occlusion?Cerebrovasc Dis 2009; 27: 215–222.
149. DerdeynCP, YundtKD, VideenTO, et al. Increased oxygen extraction fraction is associated with prior ischemic events in patients with carotid occlusion. Stroke 1998; 29: 754–758.
150. GraeberMC, JordanJE, MishraSK, NadeauSE.Watershed infarction on computed tomographic scan. Arch Neurol 1992; 49: 311–313.
151. WodarzR.Watershed infarction and computed tomography. A topographical study in cases with stenosis or occlusion of the carotid artery. Neuroradiology 1980; 19: 245–248.
152. BladinPF, BerkovicsSF.Striatocapsular infarcts: large infarcts in the lenticulostriate artery territory. Neurology 1984; 34: 1423–1430.
153. RingelsteinEB, KoschorkeS, HollingA, et al. Computed tomographic patterns of proven embolic brain infarctions. Ann Neurol 1989; 26: 759–765.
154. WeillerC, RingelsteinEB, ReicheW, ThronA, BuellU.The large striatocapsular infarction: a clinical and pathophysiological entity. Arch Neurol 1990; 47: 1085–1091.
155. YonasH, SmithHA, DurhamSR, PenthenySL, JohnsonDW.Increased stroke risk predicted by compromised cerebral blood flow reactivity. J Neurosurg 1993; 79: 483–489.
156. AndersonDE, McLaineMP, ReichmanOH, OrigitanoTC.Improved cerebral blood flow and CO2 reactivity after microvascular anastomoses in patients at high risk for recurrent stroke. Neurosurgery 1994; 31: 26–34.
157. VorstrupS, LassenNA, HenriksenL, et al. CBF before and after extracranial/intracranial bypass surgery in patients with ischemic cerebrovascular disease studied with 133 Xe-inhalation tomography. Stroke 1985; 16: 616–626.
158. KrulJMJ, van GijnJ, AckerstaffRGA, et al. Site and pathogenesis of infarcts associated with carotid endarterectomy. Stroke 1989; 20: 324–328.
159. HiseJH, NipperML, SchnitkerJC.Stroke associated with coronary artery bypass surgery. Am J Neuroradiol 1991; 12: 811–814.
160. RankinJM, SilbertPL, YadavaOP, HankeyGJ, Stewart-WynneEG.Mechanism of stroke complicating cardiopulmonary bypass surgery. Aust NZ J Med 1994; 24: 154–160.
161. KlijnCJ, KappelleLJ, van SchooneveldMJ, et al. Venous stasis retinopathy in symptomatic carotid artery occlusion: prevalence, cause, and outcome. Stroke 2002; 33: 695–701.
162. KimJM, LeeSH, RohJK.Changing ischaemic lesion patterns in adult moyamoya disease. J Neurol Neurosurg Psychiatry 2009; 80: 36–40.
163. ChoHJ, JungYH, KimYD, et al. The different infarct patterns between adulthood-onset and childhood-onset moyamoya disease. J Neurol Neurosurg Psychiatry 2011; 82: 38–40.
164. MatsushimaT, InoueT, SuzukiSO, et al. Surgical treatment of Moyamoya disease in pediatric patients. Comparison between the results of indirect and direct revascularization procedures. Neurosurgery 1992; 31: 401–405.
165. KinugasaK, MandaiS, KamataI, SugiuK, OhmotoT.Surgical treatment of Moyamoya disease: operative technique for encephalo-duro-arterio-myo-synangiosis, its follow-up, clinical results, and angiograms. Neurosurgery 1993; 32: 527–531.
166. OkadaY, ShimaT, NishidaM, et al. Effectiveness of superficial temporal artery-middle cerebral artery anastomosis in adult moyamoya disease: cerebral hemodynamics and clinical course in ischemic and hemorrhagic varieties. Stroke 1998; 29: 625–630.
167. KikutaK, TakagiY, FushimiY, et al. “Target bypass”: a method for preoperative targeting of a recipient artery in superficial temporal artery-to-middle cerebral artery anastomoses. Neurosurgery 2008; 62: 1434–1441.
168. KawashimaA, KawamataT, YamaguchiK, HoriT, OkadaY.Successful superficial temporal artery-anterior cerebral artery direct bypass using a long graft for moyamoya disease: technical note. Neurosurgery 2010; 67: 145–149; discussion 149.
169. RordorfG, KoroshetzWJ, EzzeddineMA, SegalAZ, BuonannoFS.A pilot study of drug-induced hypertension for treatment of acute stroke. Neurology 2001; 56: 1210–1213.
170. ChalelaJA, DunnB, ToddJW, WarachS.Induced hypertension improves cerebral blood flow in acute ischemic stroke. Neurology 2005; 64: 1979.
171. ShinHK, NishimuraM, JonesPB, et al. Mild induced hypertension improves blood flow and oxygen metabolism in transient focal cerebral ischemia. Stroke 2008; 39: 1548–1555.
172. PollanenMS, DeckJHN.Directed embolisation is an alternate cause of cerebral watershed infarction. Arch Pathol Lab Med 1989; 113: 1139–1141.