Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-17T06:00:20.864Z Has data issue: false hasContentIssue false

14 - Mixing in stellar radiation zones

Published online by Cambridge University Press:  11 November 2009

Jean-paul Zahn
Affiliation:
Observatoire de Paris, 92195 Meudon, France
Michael J. Thompson
Affiliation:
Imperial College of Science, Technology and Medicine, London
Jørgen Christensen-Dalsgaard
Affiliation:
Aarhus Universitet, Denmark
Get access

Summary

Stars undergo some mild mixing in their radiation zones, which is due to a thermally driven large scale circulation, and presumably to turbulence caused by shear instabilities. It is the rotation of the star which is responsible for these motions, and therefore the transport of angular momentum must be described in time and space when modeling stellar evolution. We review the present state of the problem and discuss briefly the open questions.

The observational evidence

At first sight, there seems to be no mixing at all in stellar radiation zones, since a thoroughly mixed and therefore homogeneous star would not evolve to the red giant stage. This is why such mixing is ignored in the standard modeling of stellar evolution. However there are several signs that at least some partial mixing occurs in radiative interiors, and that this may have an impact on the later phases of stellar evolution.

Let us start by reviewing briefly the observational evidence pointing to such mixing.

  • Models of built by pretending that there is no mixing in the radiation zones do not agree well with the observed global properties of stars, such as their luminosity and radius (or effective temperature). This is apparent when comparing theoretical isochrones with their observed counterpart in the Hertzsprung-Russel diagram, for stars with more than about 2 solar masses. The situation improves if one allows for some extra mixing beyond the convective core.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×