Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-18T22:57:30.643Z Has data issue: false hasContentIssue false

26 - Continuum equations for stellar dynamics

Published online by Cambridge University Press:  11 November 2009

Edward A. Spiegel
Affiliation:
Department of Astronomy Columbia University, New York, NY 10027, USA
Jean-luc Thiffeault
Affiliation:
Department of Applied Physics and Applied Mathematics Columbia University, New York, NY 10027, USA
Michael J. Thompson
Affiliation:
Imperial College of Science, Technology and Medicine, London
Jørgen Christensen-Dalsgaard
Affiliation:
Aarhus Universitet, Denmark
Get access

Summary

The description of a stellar system as a continuous fluid represents a convenient first approximation to stellar dynamics, and its derivation from the kinetic theory is standard. The challenge lies in providing adequate closure approximations for the higher-order moments of the phase-space density function that appear in the fluid dynamical equations. Such closure approximations may be found using representations of the phase-space density as embodied in the kinetic theory. In the classic approach of Chapman and Enskog, one is led to the Navier–Stokes equations, which are known to be inaccurate when the mean free paths of particles are long, as they are in many stellar systems. To improve on the fluid description, we derive here a modified closure relation using a Fokker–Planck collision operator. To illustrate the nature of our approximation, we apply it to the study of gravitational instability. The instability proceeds in a qualitative manner as given by the Navier–Stokes equations but, in our description, the damped modes are considerably closer to marginality, especially at small scales.

A kinetic equation

If we have a system of N stars, with N very large, and wish to study its large-scale dynamics, we have to choose the level of detail we can profitably treat. Even if we could know the positions and velocities of all N stars for all times, we would be mainly interested in the global properties that are implied by this information.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×