Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-24T13:08:37.408Z Has data issue: false hasContentIssue false

Chapter 27 - Adenocarcinoma of the lung

Published online by Cambridge University Press:  05 June 2014

Philip Hasleton
Affiliation:
University of Manchester
Douglas B. Flieder
Affiliation:
Fox Chase Cancer Center, Philadelphia
Get access

Summary

Introduction

Adenocarcinoma is the commonest histological subtype of lung cancer in most of the world and accounts for almost half of all lung cancers. Over the past 20 years it has become clear that this general category of carcinoma is not nearly as monolithic as once thought. Major advances in epidemiological, radiological, histological, immunohistochemical and molecular research paint a very complex picture. These suggest a wide spectrum of different entities, when viewed from different perspectives. All agree, however, that adenocarcinoma is a malignant epithelial tumor with glandular differentiation and/or mucin production. In light of recent therapeutic advances affecting particular subgroups of adenocarcinoma, histopathologists must be aware of subtle morphological and molecular distinctions. This chapter aims to present the current level of understanding within our traditional morphological framework.

Classification and cell of origin

Tumor classifications dating back to the first World Health Organization in 1967 and progressing through to the 2004 document were conceived by and for pathologists to ensure uniform tumor reporting and to aid clinical trials. Adenocarcinoma subclassification was expanded from three entities in 1967 to five major subtypes and five variants in 2004 (Table 1). This development illustrates increased interest in this tumor and the deluge of information shaping our understanding of the carcinoma. The 2004 classification was the first to include relevant clinical and genetic information.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Curado, MP, Edwards, B, Shin, HR, et al. Cancer Incidence in Five Continents, vol. IX. Lyon: IARC Scientific Publications, 2007.Google Scholar
Kreyberg, L, Liebow, AA, Uehlinger, EA.Histological Typing of Lung Tumours, 1st ed. Geneva: World Health Organization, 1967.Google Scholar
Histological Typing of Lung Tumours, 2nd ed. Geneva: World Health Organization, 1981.
Travis, WD, Colby, TV, Corrin, B, Shimosato, Y, Brambilla, E.Histological Typing of Lung and Pleural Tumours, 3rd ed. Berlin: Springer-Verlag, 1999.CrossRefGoogle Scholar
Travis, WD, Brambilla, E, Muller-Hermelink, HK, Harris, CC.Pathology and Genetics of Tumours of the Lung, Pleura, Thymus and Heart. Lyon: IARC Press, 2004.Google Scholar
Travis, WD, Brambilla, E, Noguchi, M, et al. International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society international multidisciplinary classification of lung adenocarcinoma. J Thorac Oncol 2011;6:244–85.CrossRefGoogle Scholar
Borczuk, AC, Qian, F, Kazeros, A, et al. Invasive size is an independent predictor of survival in pulmonary adenocarcinoma. Am J Surg Pathol 2009;33:462–9.CrossRefGoogle ScholarPubMed
Clayton, F.Bronchioloalveolar carcinomas. Cell types, patterns of growth, and prognostic correlates. Cancer 1986;57:1555–64.3.0.CO;2-N>CrossRefGoogle ScholarPubMed
Daly, RC, Trastek, VF, Pairolero, PC, et al. Bronchoalveolar carcinoma: factors affecting survival. Ann Thorac Surg 1991;51:368–76; discussion 376–7.CrossRefGoogle ScholarPubMed
Goldstein, NS, Mani, A, Chmielewski, G, Welsh, R, Pursel, S.Prognostic factors in T1 NO MO adenocarcinomas and bronchioloalveolar carcinomas of the lung. Am J Clin Pathol 1999;112:391–402.CrossRefGoogle ScholarPubMed
Manning, JT Jr, Spjut, HJ, Tschen, JA.Bronchioloalveolar carcinoma: The significance of two histopathologic types. Cancer 1984;54:525–34.3.0.CO;2-X>CrossRefGoogle ScholarPubMed
Noguchi, M, Morikawa, A, Kawasaki, M, et al. Small adenocarcinoma of the lung. Histologic characteristics and prognosis. Cancer 1995;75:2844–52.3.0.CO;2-#>CrossRefGoogle ScholarPubMed
Riquet, M, Foucault, C, Berna, P, et al. Prognostic value of histology in resected lung cancer with emphasis on the relevance of the adenocarcinoma subtyping. Ann Thorac Surg 2006;81:1988–95.CrossRefGoogle ScholarPubMed
Yim, J, Zhu, LC, Chiriboga, L, et al. Histologic features are important prognostic indicators in early stages lung adenocarcinomas. Mod Pathol 2007;20:233–41.CrossRefGoogle ScholarPubMed
Auerbach, O.Pathogenesis of lung cancer. Compr Ther 1981;7:11–21.Google ScholarPubMed
Dermer, GB.Autoradiography of cellular glycoproteins reveals histogenesis of bronchogenic adenocarcinomas. Cancer 1981;47:2000–6.3.0.CO;2-J>CrossRefGoogle ScholarPubMed
Dermer, GB.Origin of bronchioloalveolar carcinoma and peripheral bronchial adenocarcinoma. Cancer 1982;49:881–7.3.0.CO;2-7>CrossRefGoogle ScholarPubMed
Takeuchi, T, Tomida, S, Yatabe, Y, et al. Expression profile-defined classification of lung adenocarcinoma shows close relationship with underlying major genetic changes and clinicopathologic behaviors. J Clin Oncol 2006;24:1679–88.CrossRefGoogle ScholarPubMed
Weir, BA, Woo, MS, Getz, G, et al. Characterizing the cancer genome in lung adenocarcinoma. Nature 2007;450:893–8.CrossRefGoogle ScholarPubMed
Testa, JR, Liu, Z, Feder, M, et al. Advances in the analysis of chromosome alterations in human lung carcinomas. Cancer Genet Cytogenet 1997;95:20–32.CrossRefGoogle ScholarPubMed
Balsara, BR, Testa, JR.Chromosomal imbalances in human lung cancer. Oncogene 2002;21:6877–83.CrossRefGoogle ScholarPubMed
Choi, JS, Zheng, LT, Ha, E, et al. Comparative genomic hybridization array analysis and real-time PCR reveals genomic copy number alteration for lung adenocarcinomas. Lung 2006;184:355–62.CrossRefGoogle ScholarPubMed
Kang, JU, Koo, SH, Kwon, KC, Park, JW, Kim, JM.Gain at chromosomal region 5p15.33, containing TERT, is the most frequent genetic event in early stages of non-small cell lung cancer. Cancer Genet Cytogenet 2008;182:1–11.CrossRefGoogle ScholarPubMed
Mertens, F, Johansson, B, Hoglund, M, Mitelman, F.Chromosomal imbalance maps of malignant solid tumors: a cytogenetic survey of 3185 neoplasms. Cancer Res 1997;57:2765–80.Google ScholarPubMed
Wong, MP, Fung, LF, Wang, E, et al. Chromosomal aberrations of primary lung adenocarcinomas in nonsmokers. Cancer 2003;97:1263–70.CrossRefGoogle ScholarPubMed
Bhattacharjee, A, Richards, WG, Staunton, J, et al. Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc Natl Acad Sci USA 2001;98:13790–5.CrossRefGoogle ScholarPubMed
Garber, ME, Troyanskaya, OG, Schluens, K, et al. Diversity of gene expression in adenocarcinoma of the lung. Proc Natl Acad Sci USA 2001;98:13784–9.CrossRefGoogle ScholarPubMed
Hayes, DN, Monti, S, Parmigiani, G, et al. Gene expression profiling reveals reproducible human lung adenocarcinoma subtypes in multiple independent patient cohorts. J Clin Oncol 2006;24:5079–90.CrossRefGoogle ScholarPubMed
Tomida, S, Koshikawa, K, Yatabe, Y, et al. Gene expression-based, individualized outcome prediction for surgically treated lung cancer patients. Oncogene 2004;23:5360–70.CrossRefGoogle ScholarPubMed
Virtanen, C, Ishikawa, Y, Honjoh, D, et al. Integrated classification of lung tumors and cell lines by expression profiling. Proc Natl Acad Sci USA 2002;99:12357–62.CrossRefGoogle ScholarPubMed
Tomida, S, Yatabe, Y, Yanagisawa, K, Mitsudomi, T, Takahashi, T.Throwing new light on lung cancer pathogenesis: updates on three recent topics. Cancer Sci 2005;96:63–8.CrossRefGoogle ScholarPubMed
Yatabe, Y, Kosaka, T, Takahashi, T, Mitsudomi, T.EGFR mutation is specific for terminal respiratory unit type adenocarcinoma. Am J Surg Pathol 2005;29:633–9.CrossRefGoogle ScholarPubMed
Cagle, PT, Allen, TC, Dacic, S, et al. Revolution in lung cancer: new challenges for the surgical pathologist. Arch Pathol Lab Med 2011;135:110–6.Google ScholarPubMed
Choi, JH, Chung, HC, Yoo, NC, et al. Changing trends in histologic types of lung cancer during the last decade (1981–1990) in Korea: a hospital-based study. Lung Cancer 1994;10:287–96.CrossRefGoogle ScholarPubMed
Limsila, T, Mitacek, EJ, Caplan, LS, Brunnemann, KD.Histology and smoking history of lung cancer cases and implications for prevention in Thailand. Prev Med 1994;23:249–52.CrossRefGoogle ScholarPubMed
Muscat, JE, Wynder, EL.Lung cancer pathology in smokers, ex-smokers and never smokers. Cancer Lett 1995;88:1–5.CrossRefGoogle ScholarPubMed
Travis, WD, Travis, LB, Devesa, SS.Lung cancer. Cancer 1995;75:191–202.3.0.CO;2-Y>CrossRefGoogle ScholarPubMed
Tse, LA, Mang, OW, Yu, IT, et al. Cigarette smoking and changing trends of lung cancer incidence by histological subtype among Chinese male population. Lung Cancer 2009;66:22–7.CrossRefGoogle ScholarPubMed
Thun, MJ, Lally, CA, Flannery, JT, et al. Cigarette smoking and changes in the histopathology of lung cancer. J Natl Cancer Inst 1997;89:1580–6.CrossRefGoogle ScholarPubMed
Egleston, BL, Meireles, SI, Flieder, DB, Clapper, ML.Population-based trends in lung cancer incidence in women. Semin Oncol 2009;36:506–15.CrossRefGoogle ScholarPubMed
Ernster, VL.The epidemiology of lung cancer in women. Ann Epidemiol 1994;4:102–10.CrossRefGoogle ScholarPubMed
Gabrielson, E.Worldwide trends in lung cancer pathology. Respirology 2006;11:533–8.CrossRefGoogle ScholarPubMed
Levi, F, Franceschi, S, La Vecchia, C, Randimbison, L, Te VC. Lung carcinoma trends by histologic type in Vaud and Neuchatel, Switzerland, 1974–1994. Cancer 1997;79:906–14.3.0.CO;2-9>CrossRefGoogle Scholar
Shields, PG.Molecular epidemiology of smoking and lung cancer. Oncogene 2002;21:6870–6.CrossRefGoogle ScholarPubMed
Stratton, K, Shetty, P, Wallace, R, Bondurant, S.Clearing the smoke: the science base for tobacco harm reduction – executive summary. Tob Control 2001;10:189–95.CrossRefGoogle ScholarPubMed
Jedrychowski, W, Becher, H, Wahrendorf, J, Basa-Cierpialek, Z, Gomola, K.Effect of tobacco smoking on various histological types of lung cancer. J Cancer Res Clin Oncol 1992;118:276–82.CrossRefGoogle ScholarPubMed
Lubin, JH, Blot, WJ.Assessment of lung cancer risk factors by histologic category. J Natl Cancer Inst 1984;73:383–9.CrossRefGoogle ScholarPubMed
Parkin, DM, Bray, F, Ferlay, J, Pisani, P.Global cancer statistics, 2002. CA Cancer J Clin 2005;55:74–108.CrossRefGoogle ScholarPubMed
Vastag, B.Attention turns to lung cancer in nonsmokers. J Natl Cancer Inst 2006;98:664–5.CrossRefGoogle ScholarPubMed
Wakelee, HA, Chang, ET, Gomez, SL, et al. Lung cancer incidence in never smokers. J Clin Oncol 2007;25:472–8.CrossRefGoogle ScholarPubMed
Freedman, ND, Leitzmann, MF, Hollenbeck, AR, Schatzkin, A, Abnet, CC.Cigarette smoking and subsequent risk of lung cancer in men and women: analysis of a prospective cohort study. Lancet Oncol 2008;9:649–56.CrossRefGoogle ScholarPubMed
Sun, S, Schiller, JH, Gazdar, AF.Lung cancer in never smokers – a different disease. Nat Rev Cancer 2007;7:778–90.CrossRefGoogle ScholarPubMed
Fanucchi, O, Ambrogi, MC, Dini, P, et al. Surgical treatment of non-small cell lung cancer in octogenarians. Interact Cardiovasc Thorac Surg 2011;12:749–53.CrossRefGoogle ScholarPubMed
Port, JL, Kent, M, Korst, RJ, et al. Surgical resection for lung cancer in the octogenarian. Chest 2004;126:733–8.CrossRefGoogle ScholarPubMed
McDuffie, HH, Klaassen, DJ, Dosman, JA.Characteristics of patients with primary lung cancer diagnosed at age of 50 years or younger. Chest 1989;96:1298–301.CrossRefGoogle ScholarPubMed
Mizushima, Y, Yokoyama, A, Ito, M, et al. Lung carcinoma in patients age younger than 30 years. Cancer 1999;85:1730–3.3.0.CO;2-G>CrossRefGoogle ScholarPubMed
Ramalingam, S, Pawlish, K, Gadgeel, S, Demers, R, Kalemkerian, GP.Lung cancer in young patients: analysis of a Surveillance, Epidemiology, and End Results database. J Clin Oncol 1998;16:651–7.CrossRefGoogle ScholarPubMed
Tian, DL, Liu, HX, Zhang, L, et al. Surgery for young patients with lung cancer. Lung Cancer 2003;42:215–20.CrossRefGoogle ScholarPubMed
Whooley, BP, Urschel, JD, Antkowiak, JG, Takita, H.Bronchogenic carcinoma in patients age 30 and younger. Ann Thorac Cardiovasc Surg 2000;6:86–8.Google ScholarPubMed
Benjamin, DR, Cahill, JL.Bronchioloalveolar carcinoma of the lung and congenital cystic adenomatoid malformation. Am J Clin Pathol 1991;95:889–92.CrossRefGoogle ScholarPubMed
Granata, C, Gambini, C, Balducci, T, et al. Bronchioloalveolar carcinoma arising in congenital cystic adenomatoid malformation in a child: a case report and review on malignancies originating in congenital cystic adenomatoid malformation. Pediatr Pulmonol 1998;25:62–6.3.0.CO;2-Q>CrossRefGoogle Scholar
Kaslovsky, RA, Purdy, S, Dangman, BC, et al. Bronchioloalveolar carcinoma in a child with congenital cystic adenomatoid malformation. Chest 1997;112:548–51.CrossRefGoogle Scholar
Lantuejoul, S, Ferretti, GR, Goldstraw, P, et al. Metastases from bronchioloalveolar carcinomas associated with long-standing type 1 congenital cystic adenomatoid malformations. A report of two cases. Histopathology 2006;48:204–6.CrossRefGoogle ScholarPubMed
Lantuejoul, S, Nicholson, AG, Sartori, G, et al. Mucinous cells in type 1 pulmonary congenital cystic adenomatoid malformation as mucinous bronchioloalveolar carcinoma precursors. Am J Surg Pathol 2007;31:961–9.CrossRefGoogle ScholarPubMed
MacSweeney, F, Papagiannopoulos, K, Goldstraw, P, et al. An assessment of the expanded classification of congenital cystic adenomatoid malformations and their relationship to malignant transformation. Am J Surg Pathol 2003;27:1139–46.CrossRefGoogle ScholarPubMed
Papagiannopoulos, K, Hughes, S, Nicholson, AG, Goldstraw, P.Cystic lung lesions in the pediatric and adult population: surgical experience at the Brompton Hospital. Ann Thorac Surg 2002;73:1594–8.CrossRefGoogle ScholarPubMed
West, D, Nicholson, AG, Colquhoun, I, Pollock, J.Bronchioloalveolar carcinoma in congenital cystic adenomatoid malformation of lung. Ann Thorac Surg 2007;83:687–9.CrossRefGoogle ScholarPubMed
Kayton, ML, He, M, Zakowski, MF, et al. Primary lung adenocarcinomas in children and adolescents treated for pediatric malignancies. J Thorac Oncol 2010;5:1764–71.CrossRefGoogle ScholarPubMed
Travis, WD, Linnoila, RI, Horowitz, M, et al. Pulmonary nodules resembling bronchioloalveolar carcinoma in adolescent cancer patients. Mod Pathol 1988;1:372–7.Google ScholarPubMed
Beckles, MA, Spiro, SG, Colice, GL, Rudd, RM.Initial evaluation of the patient with lung cancer: symptoms, signs, laboratory tests, and paraneoplastic syndromes. Chest 2003;123:97S–104S.CrossRefGoogle ScholarPubMed
Patel, AM, Peters, SG.Clinical manifestations of lung cancer. Mayo Clin Proc 1993;68:273–7.CrossRefGoogle ScholarPubMed
Bennani-Baiti, N, Davis, MP.Cytokines and cancer anorexia cachexia syndrome. Am J Hosp Palliat Care 2008;25:407–11.CrossRefGoogle ScholarPubMed
Fortunati, N, Manti, R, Birocco, N, et al. Pro-inflammatory cytokines and oxidative stress/antioxidant parameters characterize the bio-humoral profile of early cachexia in lung cancer patients. Oncol Rep 2007;18:1521–7.Google ScholarPubMed
Laviano, A, Meguid, MM, Inui, A, Muscaritoli, M, Rossi-Fanelli, F.Therapy insight: cancer anorexia-cachexia syndrome – when all you can eat is yourself. Nat Clin Pract Oncol 2005;2:158–65.CrossRefGoogle ScholarPubMed
Plata-Salaman, CR.Central nervous system mechanisms contributing to the cachexia-anorexia syndrome. Nutrition 2000;16:1009–12.CrossRefGoogle ScholarPubMed
Chute, CG, Greenberg, ER, Baron, J, et al. Presenting conditions of 1539 population-based lung cancer patients by cell type and stage in New Hampshire and Vermont. Cancer 1985;56:2107–11.3.0.CO;2-T>CrossRefGoogle ScholarPubMed
Tammemagi, CM, Neslund-Dudas, C, Simoff, M, Kvale, P.Lung carcinoma symptoms – an independent predictor of survival and an important mediator of African-American disparity in survival. Cancer 2004;101:1655–63.CrossRefGoogle ScholarPubMed
Lisa, JR, Trinidad, S, Rosenblatt, MB.Site of origin, histogenesis, and cytostructure of bronchogenic carcinoma. Am J Clin Pathol 1965;44:375–84.CrossRefGoogle ScholarPubMed
Anderson, TM, Moy, PM, Holmes, EC.Factors affecting survival in superior sulcus tumors. J Clin Oncol 1986;4:1598–603.CrossRefGoogle ScholarPubMed
Quinn, D, Gianlupi, A, Broste, S.The changing radiographic presentation of bronchogenic carcinoma with reference to cell types. Chest 1996;110:1474–9.CrossRefGoogle ScholarPubMed
Shahian, DM, Neptune, WB, Ellis, FH Jr.Pancoast tumors: improved survival with preoperative and postoperative radiotherapy. Ann Thorac Surg 1987;43:32–8.CrossRefGoogle ScholarPubMed
Stanford, W, Barnes, RP, Tucker, AR.Influence of staging in superior sulcus (Pancoast) tumors of the lung. Ann Thorac Surg 1980;29:406–9.CrossRefGoogle ScholarPubMed
Lehar, TJ, Carr, DT, Miller, WE, Payne, WS, Woolner, LB.Roentgenographic appearance of bronchogenic adenocarcinoma. Am Rev Respir Dis 1967;96:245–8.Google ScholarPubMed
Woodring, JH, Stelling, CB.Adenocarcinoma of the lung: a tumor with a changing pleomorphic character. AJR Am J Roentgenol 1983;140:657–64.CrossRefGoogle ScholarPubMed
Byrd, RB, Carr, DT, Miller, WE, Payne, WS, Woolner, LB.Radiographic abnormalities in carcinoma of the lung as related to histological cell type. Thorax 1969;24:573–5.CrossRefGoogle ScholarPubMed
Garland, LH.The rate of growth and natural duration of primary bronchial cancer. Am J Roentgenol Radium Ther Nucl Med 1966;96:604–11.CrossRefGoogle ScholarPubMed
Schraufnagel, D, Peloquin, A, Pare, JA, Wang, NS.Differentiating bronchioloalveolar carcinoma from adenocarcinoma. Am Rev Respir Dis 1982;125:74–9.Google ScholarPubMed
Schraufnagel, DE, Peloquin, A, Pare, JA, Wang, NS.Radiographic differences between two subtypes of bronchioloalveolar carcinoma. J Can Assoc Radiol 1985;36:244–7.Google ScholarPubMed
Siegelman, SS, Khouri, NF, Leo, FP, et al. Solitary pulmonary nodules: CT assessment. Radiology 1986;160:307–12.CrossRefGoogle ScholarPubMed
Zerhouni, EA, Stitik, FP, Siegelman, SS, et al. CT of the pulmonary nodule: a cooperative study. Radiology 1986;160:319–27.CrossRefGoogle ScholarPubMed
Zwirewich, CV, Vedal, S, Miller, RR, Müller, NL.Solitary pulmonary nodule: high-resolution CT and radiologic-pathologic correlation. Radiology 1991;179:469–76.CrossRefGoogle ScholarPubMed
Hill, CA.“Tail” signs associated with pulmonary lesions: critical reappraisal. AJR Am J Roentgenol 1982;139:311–6.CrossRefGoogle ScholarPubMed
Webb, WR.The pleural tail sign. Radiology 1978;127:309–13.CrossRefGoogle ScholarPubMed
Cohen, S, Hossain, SA.Primary carcinoma of the lung. A review of 417 histologically proved cases. Dis Chest 1966;49:67–74.CrossRefGoogle Scholar
Kundel, HL.Predictive value and threshold detectability of lung tumors. Radiology 1981;139:25–9.CrossRefGoogle ScholarPubMed
Godoy, MC, Naidich, DP.Subsolid pulmonary nodules and the spectrum of peripheral adenocarcinomas of the lung: recommended interim guidelines for assessment and management. Radiology 2009;253:606–22.CrossRefGoogle ScholarPubMed
Hansell, DM, Bankier, AA, MacMahon, H, et al. Fleischner Society: glossary of terms for thoracic imaging. Radiology 2008;246:697–722.CrossRefGoogle ScholarPubMed
Lee, HY, Goo, JM, Lee, HJ, et al. Usefulness of concurrent reading using thin-section and thick-section CT images in subcentimetre solitary pulmonary nodules. Clin Radiol 2009;64:127–32.CrossRefGoogle ScholarPubMed
Aoki, T, Tomoda, Y, Watanabe, H, et al. Peripheral lung adenocarcinoma: correlation of thin-section CT findings with histologic prognostic factors and survival. Radiology 2001;220:803–9.CrossRefGoogle Scholar
Choi, JA, Kim, JH, Hong, KT, Kim, HS, Oh, YW, Kang, EY. et al. CT bronchus sign in malignant solitary pulmonary lesions: value in the prediction of cell type. Eur Radiol 2000;10:1304–9.CrossRefGoogle ScholarPubMed
Ishikawa, H, Koizumi, N, Morita, T, et al. Ultrasmall pulmonary opacities on multidetector-row high-resolution computed tomography: a prospective radiologic-pathologic examination. J Comput Assist Tomogr 2005;29:621–5.CrossRefGoogle ScholarPubMed
Kim, HY, Shim, YM, Lee, KS, et al. Persistent pulmonary nodular ground-glass opacity at thin-section CT: histopathologic comparisons. Radiology 2007;245:267–75.CrossRefGoogle ScholarPubMed
Kim, TJ, Goo, JM, Lee, KW, Park, CM, Lee, HJ.Clinical, pathological and thin-section CT features of persistent multiple ground-glass opacity nodules: comparison with solitary ground-glass opacity nodule. Lung Cancer 2009;64:171–8.CrossRefGoogle ScholarPubMed
Kishi, K, Homma, S, Kurosaki, A, et al. Small lung tumors with the size of 1cm or less in diameter: clinical, radiological, and histopathological characteristics. Lung Cancer 2004;44:43–51.CrossRefGoogle ScholarPubMed
Nakazono, T, Sakao, Y, Yamaguchi, K, et al. Subtypes of peripheral adenocarcinoma of the lung: differentiation by thin-section CT. Eur Radiol 2005;15:1563–8.CrossRefGoogle ScholarPubMed
Suzuki, K, Asamura, H, Kusumoto, M, Kondo, H, Tsuchiya, R.“Early” peripheral lung cancer: prognostic significance of ground glass opacity on thin-section computed tomographic scan. Ann Thorac Surg 2002;74:1635–9.CrossRefGoogle ScholarPubMed
Takashima, S, Maruyama, Y, Hasegawa, M, et al. CT findings and progression of small peripheral lung neoplasms having a replacement growth pattern. AJR Am J Roentgenol 2003;180:817–26.CrossRefGoogle ScholarPubMed
Takashima, S, Sone, S, Li, F, et al. Small solitary pulmonary nodules (< or =1 cm) detected at population-based CT screening for lung cancer: Reliable high-resolution CT features of benign lesions. AJR Am J Roentgenol 2003;180:955–64.CrossRefGoogle ScholarPubMed
Travis, WD, Garg, K, Franklin, WA, et al. Evolving concepts in the pathology and computed tomography imaging of lung adenocarcinoma and bronchioloalveolar carcinoma. J Clin Oncol 2005;23:3279–87.CrossRefGoogle ScholarPubMed
Kodama, K, Higashiyama, M, Yokouchi, H, et al. Natural history of pure ground-glass opacity after long-term follow-up of more than 2 years. Ann Thorac Surg 2002;73:386–92; discussion 92–3.CrossRefGoogle ScholarPubMed
Hiramatsu, M, Inagaki, T, Inagaki, T, et al. Pulmonary ground-glass opacity (GGO) lesions-large size and a history of lung cancer are risk factors for growth. J Thorac Oncol 2008;3:1245–50.CrossRefGoogle Scholar
Saito, H, Yamada, K, Hamanaka, N, et al. Initial findings and progression of lung adenocarcinoma on serial computed tomography scans. J Comput Assist Tomogr 2009;33:42–8.CrossRefGoogle ScholarPubMed
Takashima, S, Maruyama, Y, Hasegawa, M, et al. Prognostic significance of high-resolution CT findings in small peripheral adenocarcinoma of the lung: a retrospective study on 64 patients. Lung Cancer 2002;36:289–95.CrossRefGoogle ScholarPubMed
Yang, ZG, Sone, S, Takashima, S, et al. High-resolution CT analysis of small peripheral lung adenocarcinomas revealed on screening helical CT. AJR Am J Roentgenol 2001;176:1399–407.CrossRefGoogle ScholarPubMed
Diederich, S.Pulmonary nodules: do we need a separate algorithm for non-solid lesions?Cancer Imaging 2009;9 Spec No A:S126–8.CrossRefGoogle Scholar
MacMahon, H.Compliance with Fleischner Society guidelines for management of lung nodules: lessons and opportunities. Radiology 2010;255:14–5.CrossRefGoogle ScholarPubMed
MacMahon, H, Austin, JH, Gamsu, G, et al. Guidelines for management of small pulmonary nodules detected on CT scans: a statement from the Fleischner Society. Radiology 2005;237:395–400.CrossRefGoogle ScholarPubMed
Tateishi, U, Uno, H, Yonemori, K, et al. Prediction of lung adenocarcinoma without vessel invasion: a CT scan volumetric analysis. Chest 2005;128:3276–83.CrossRefGoogle ScholarPubMed
Yoshino, I, Nakanishi, R, Kodate, M, et al. Pleural retraction and intra-tumoral air-bronchogram as prognostic factors for stage I pulmonary adenocarcinoma following complete resection. Int Surg 2000;85:105–12.Google Scholar
Hashizume, T, Yamada, K, Okamoto, N, et al. Prognostic significance of thin-section CT scan findings in small-sized lung adenocarcinoma. Chest 2008;133:441–7.CrossRefGoogle ScholarPubMed
Matsuguma, H, Yokoi, K, Anraku, M, et al. Proportion of ground-glass opacity on high-resolution computed tomography in clinical T1 N0 M0 adenocarcinoma of the lung: a predictor of lymph node metastasis. J Thorac Cardiovasc Surg 2002;124:278–84.CrossRefGoogle ScholarPubMed
Okada, M, Nishio, W, Sakamoto, T, et al. Correlation between computed tomographic findings, bronchioloalveolar carcinoma component, and biologic behavior of small-sized lung adenocarcinomas. J Thorac Cardiovasc Surg 2004;127:857–61.CrossRefGoogle ScholarPubMed
Glynn, C, Zakowski, MF, Ginsberg, MS.Are there imaging characteristics associated with epidermal growth factor receptor and KRAS mutations in patients with adenocarcinoma of the lung with bronchioloalveolar features?J Thorac Oncol 2010;5:344–8.CrossRefGoogle ScholarPubMed
Berghmans, T, Dusart, M, Paesmans, M, et al. Primary tumor standardized uptake value (SUVmax) measured on fluorodeoxyglucose positron emission tomography (FDG-PET) is of prognostic value for survival in non-small cell lung cancer (NSCLC): a systematic review and meta-analysis (MA) by the European Lung Cancer Working Party for the IASLC Lung Cancer Staging Project. J Thorac Oncol 2008;3:6–12.CrossRefGoogle ScholarPubMed
Mak, RH, Digumarthy, SR, Muzikansky, A, et al. Role of 18F-fluorodeoxyglucose positron emission tomography in predicting epidermal growth factor receptor mutations in non-small cell lung cancer. Oncologist 2011;16:319–26.CrossRefGoogle ScholarPubMed
Pastorino, U, Landoni, C, Marchiano, A, et al. Fluorodeoxyglucose uptake measured by positron emission tomography and standardized uptake value predicts long-term survival of CT screening detected lung cancer in heavy smokers. J Thorac Oncol 2009;4:1352–6.CrossRefGoogle ScholarPubMed
Sun, JS, Park, KJ, Sheen, SS, et al. Clinical usefulness of the fluorodeoxyglucose (FDG)-PET maximal standardized uptake value (SUV) in combination with CT features for the differentiation of adenocarcinoma with a bronchioloalveolar carcinoma from other subtypes of non-small cell lung cancers. Lung Cancer 2009;66:205–10.CrossRefGoogle ScholarPubMed
Um, SW, Kim, H, Koh, WJ, et al. Prognostic value of 18F-FDG uptake on positron emission tomography in patients with pathologic stage I non-small cell lung cancer. J Thorac Oncol 2009;4:1331–6.CrossRefGoogle ScholarPubMed
Heyneman, LE, Patz, EF.PET imaging in patients with bronchioloalveolar cell carcinoma. Lung Cancer 2002;38:261–6.CrossRefGoogle ScholarPubMed
Lee, HY, Lee, KS, Han, J, et al. Mucinous versus nonmucinous solitary pulmonary nodular bronchioloalveolar carcinoma: CT and FDG PET findings and pathologic comparisons. Lung Cancer 2009;65:170–5.CrossRefGoogle ScholarPubMed
Nakamura, H, Hirata, T, Kitamura, H, Nishikawa, J.Correlation of the standardized uptake value in FDG-PET with the expression level of cell-cycle-related molecular biomarkers in resected non-small cell lung cancers. Ann Thorac Cardiovasc Surg 2009;15:304–10.Google ScholarPubMed
Watanabe, K, Nomori, H, Ohtsuka, T, et al. [F-18]Fluorodeoxyglucose positron emission tomography can predict pathological tumor stage and proliferative activity determined by Ki-67 in clinical stage IA lung adenocarcinomas. Jpn J Clin Oncol 2006;36:403–9.CrossRefGoogle ScholarPubMed
Edwards, CW.Pulmonary adenocarcinoma: review of 106 cases and proposed new classification. J Clin Pathol 1987;40:125–35.CrossRefGoogle ScholarPubMed
Hirata, H, Noguchi, M, Shimosato, Y, Uei, Y, Goya, T.Clinicopathologic and immunohistochemical characteristics of bronchial gland cell type adenocarcinoma of the lung. Am J Clin Pathol 1990;93:20–5.CrossRefGoogle ScholarPubMed
Hishida, T, Ishii, G, Kodama, T, et al. Centrally located adenocarcinoma with endobronchial polypoid growth: clinicopathological analysis of five cases. Pathol Int 2011;61:73–9.CrossRefGoogle ScholarPubMed
Iyoda, A, Hiroshima, K, Toyozaki, T, et al. Clear cell adenocarcinoma with endobronchial polypoid growth. Pathol Int 2000;50:979–83.CrossRefGoogle ScholarPubMed
Kodama, T, Shimosato, Y, Koide, T, Watanabe, S, Yoneyama, T.Endobronchial polypoid adenocarcinoma of the lung. Histological and ultrastructural studies of five cases. Am J Surg Pathol 1984;8:845–54.CrossRefGoogle ScholarPubMed
Flieder, DB, Vazquez, M, Carter, D, et al. Pathologic findings of lung tumors diagnosed on baseline CT screening. Am J Surg Pathol 2006;30:606–13.CrossRefGoogle ScholarPubMed
Zell, JA, Ou, SH, Ziogas, A, Anton-Culver, H.Epidemiology of bronchioloalveolar carcinoma: improvement in survival after release of the 1999 WHO classification of lung tumors. J Clin Oncol 2005;23:8396–405.CrossRefGoogle ScholarPubMed
Aida, S, Shimazaki, H, Sato, K, et al. Prognostic significance of frequent acidophilic nuclear inclusions in adenocarcinoma of the lung with immunohistochemical and ultrastructural studies. Cancer 2001;91:1896–904.3.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Mizutani, Y, Nakajima, T, Morinaga, S, et al. Immunohistochemical localization of pulmonary surfactant apoproteins in various lung tumors. Special reference to nonmucus producing lung adenocarcinomas. Cancer 1988;61:532–7.3.0.CO;2-8>CrossRefGoogle ScholarPubMed
Axiotis, CA, Jennings, TA.Observations on bronchiolo-alveolar carcinomas with special emphasis on localized lesions. A clinicopathological, ultrastructural, and immunohistochemical study of 11 cases. Am J Surg Pathol 1988;12:918–31.CrossRefGoogle ScholarPubMed
Terasaki, H, Niki, T, Matsuno, Y, et al. Lung adenocarcinoma with mixed bronchioloalveolar and invasive components: clinicopathological features, subclassification by extent of invasive foci, and immunohistochemical characterization. Am J Surg Pathol 2003;27:937–51.CrossRefGoogle ScholarPubMed
Dacic, S, Shuai, Y, Yousem, S, Ohori, P, Nikiforova, M.Clinicopathological predictors of EGFR/KRAS mutational status in primary lung adenocarcinomas. Mod Pathol 2010;23:159–68.CrossRefGoogle ScholarPubMed
De Oliveira, Duarte Achcar R, Nikiforova, MN, Yousem, SA.Micropapillary lung adenocarcinoma: EGFR, K-ras, and BRAF mutational profile. Am J Clin Pathol 2009;131:694–700.CrossRefGoogle Scholar
Ding, L, Getz, G, Wheeler, DA, et al. Somatic mutations affect key pathways in lung adenocarcinoma. Nature 2008;455:1069–75.CrossRefGoogle ScholarPubMed
Motoi, N, Szoke, J, Riely, GJ, et al. Lung adenocarcinoma: modification of the 2004 WHO mixed subtype to include the major histologic subtype suggests correlations between papillary and micropapillary adenocarcinoma subtypes, EGFR mutations and gene expression analysis. Am J Surg Pathol 2008;32:810–27.CrossRefGoogle ScholarPubMed
Sica, G, Yoshizawa, A, Sima, CS, et al. A grading system of lung adenocarcinomas based on histologic pattern is predictive of disease recurrence in stage I tumors. Am J Surg Pathol 2010;34:1155–62.CrossRefGoogle ScholarPubMed
Yoshizawa, A, Motoi, N, Riely, GJ, et al. Impact of proposed IASLC/ATS/ERS classification of lung adenocarcinoma: prognostic subgroups and implications for further revision of staging based on analysis of 514 stage I cases. Mod Pathol 2011;24:653–64.CrossRefGoogle ScholarPubMed
Solis, LM, Raso, MG, Kalhor, N, et al. Primary oncocytic adenocarcinomas of the lung: a clinicopathologic, immunohistochemical, and molecular biologic analysis of 16 cases. Am J Clin Pathol 2010;133:133–40.CrossRefGoogle ScholarPubMed
Nakamura, S, Koshikawa, T, Sato, T, Hayashi, K, Suchi, T.Extremely well differentiated papillary adenocarcinoma of the lung with prominent cilia formation. Acta Pathol Jpn 1992;42:745–50.Google ScholarPubMed
Usami, N, Yoshioka, H, Mori, S, et al. Primary lung adenocarcinoma with heterotopic bone formation. Jpn J Thorac Cardiovasc Surg 2005;53:102–5.CrossRefGoogle ScholarPubMed
Okudela, K, Woo, T, Mitsui, H, et al. Proposal of an improved histological sub-typing system for lung adenocarcinoma – significant prognostic values for stage I disease. Int J Clin Exp Pathol 2010;3:348–66.Google ScholarPubMed
Sorensen, JB, Hirsch, FR, Olsen, J.The prognostic implication of histopathologic subtyping of pulmonary adenocarcinoma according to the classification of the World Health Organization. An analysis of 259 consecutive patients with advanced disease. Cancer 1988;62:361–7.3.0.CO;2-M>CrossRefGoogle ScholarPubMed
Sorensen, JB, Olsen, JE.Prognostic implications of histopathologic subtyping in patients with surgically treated stage I or II adenocarcinoma of the lung. J Thorac Cardiovasc Surg 1989;97:245–51.Google ScholarPubMed
Moran, CA, Jagirdar, J, Suster, S.Papillary lung carcinoma with prominent “morular” component. Am J Clin Pathol 2004;122:106–9.CrossRefGoogle ScholarPubMed
Salisbury, JR, Darby, AJ, Whimster, WF.Papillary adenocarcinoma of lung with psammoma bodies: report of a case derived from type II pneumocytes. Histopathology 1986;10:877–84.CrossRefGoogle ScholarPubMed
Amin, MB, Tamboli, P, Merchant, SH, et al. Micropapillary component in lung adenocarcinoma: a distinctive histologic feature with possible prognostic significance. Am J Surg Pathol 2002;26:358–64.CrossRefGoogle ScholarPubMed
Kamiya, K, Hayashi, Y, Douguchi, J, et al. Histopathological features and prognostic significance of the micropapillary pattern in lung adenocarcinoma. Mod Pathol 2008;21:992–1001.CrossRefGoogle ScholarPubMed
Kuroda, N, Hamaguchi, N, Takeuchi, E, et al. Lung adenocarcinoma with a micropapillary pattern: a clinicopathological study of 25 cases. APMIS 2006;114:381–5.CrossRefGoogle ScholarPubMed
Miyoshi, T, Satoh, Y, Okumura, S, et al. Early-stage lung adenocarcinomas with a micropapillary pattern, a distinct pathologic marker for a significantly poor prognosis. Am J Surg Pathol 2003;27:101–9.CrossRefGoogle ScholarPubMed
Sanchez-Mora, N, Presmanes, MC, Monroy, V, et al. Micropapillary lung adenocarcinoma: a distinctive histologic subtype with prognostic significance. Case series. Hum Pathol 2008;39:324–30.CrossRefGoogle ScholarPubMed
Yamaguchi, Y, Ishii, G, Kojima, M, et al. Histopathologic features of the tumor budding in adenocarcinoma of the lung: tumor budding as an index to predict the potential aggressiveness. J Thorac Oncol 2010;5:1361–8.CrossRefGoogle ScholarPubMed
Roh, MS, Lee, JI, Choi, PJ, Hong, YS.Relationship between micropapillary component and micrometastasis in the regional lymph nodes of patients with stage I lung adenocarcinoma. Histopathology 2004;45:580–6.CrossRefGoogle ScholarPubMed
Chung, CK, Zaino, R, Stryker, JA, O'Neill, M Jr, DeMuth, WE Jr.Carcinoma of the lung: evaluation of histological grade and factors influencing prognosis. Ann Thorac Surg 1982;33:599–604.CrossRefGoogle ScholarPubMed
Kobayashi, N, Toyooka, S, Soh, J, et al. Risk factors for recurrence and unfavorable prognosis in patients with stage I non-small cell lung cancer and a tumor diameter of 20 mm or less. J Thorac Oncol 2007;2:808–12.CrossRefGoogle ScholarPubMed
Maeshima, AM, Tochigi, N, Yoshida, A, et al. Histological scoring for small lung adenocarcinomas 2 cm or less in diameter: a reliable prognostic indicator. J Thorac Oncol 2010;5:333–9.CrossRefGoogle ScholarPubMed
Nakazato, Y, Minami, Y, Kobayashi, H, et al. Nuclear grading of primary pulmonary adenocarcinomas: correlation between nuclear size and prognosis. Cancer 2010;116:2011–9.CrossRefGoogle ScholarPubMed
Petersen, I, Kotb, WF, Friedrich, KH, et al. Core classification of lung cancer: correlating nuclear size and mitoses with ploidy and clinicopathological parameters. Lung Cancer 2009;65:312–8.CrossRefGoogle ScholarPubMed
Papanicolaou, GN.Atlas of Exfoliative Cytology. Cambridge, MA: Harvard University Press. Commonwealth Fund, 1954.Google Scholar
Vazquez, MF, Koizumi, JH, Henschke, CI, Yankelevitz, DF.Reliability of cytologic diagnosis of early lung cancer. Cancer 2007;111:252–8.CrossRefGoogle ScholarPubMed
Gupta, RK.Value of sputum cytology in the differential diagnosis of alveolar cell carcinoma from bronchogenic adenocarcinoma. Acta Cytol 1981;25:255–8.Google ScholarPubMed
Raz, DJ, Zell, JA, Karnezis, AN, et al. Misclassification of bronchioloalveolar carcinoma with cytologic diagnosis of lung cancer. J Thorac Oncol 2006;1:943–8.CrossRefGoogle ScholarPubMed
Roger, V, Nasiell, M, Linden, M, Enstad, I.Cytologic differential diagnosis of bronchiolo-alveolar carcinoma and bronchogenic adenocarcinoma. Acta Cytol 1976;20:303–7.Google ScholarPubMed
Smith, JH, Frable, WJ.Adenocarcinoma of the lung cytologic correlation with histologic types. Acta Cytol 1974;18:316–20.Google ScholarPubMed
Elson, CE, Moore, SP, Johnston, WW.Morphologic and immunocytochemical studies of bronchioloalveolar carcinoma at Duke University Medical Center, 1968–1986. Anal Quant Cytol Histol 1989;11:261–74.Google ScholarPubMed
Chen, KT.Psammoma bodies in fine-needle aspiration cytology of papillary adenocarcinoma of the lung. Diagn Cytopathol 1990;6:271–4.CrossRefGoogle ScholarPubMed
Imai, T, Suga, M, Kaimori, M, et al. Peripheral pulmonary papillary adenocarcinoma with prominent cilia: report of a rare case that was difficult to diagnose preoperatively. Acta Cytol 2010;54:949–57.Google ScholarPubMed
Barbazza, R, Toniolo, L, Pinarello, A, et al. Accuracy of bronchial aspiration cytology in typing operable (stage I-II) pulmonary carcinomas. Diagn Cytopathol 1992;8:3–7.CrossRefGoogle ScholarPubMed
Foot, NC.The identification of types of pulmonary cancer in cytologic smears. Am J Pathol 1952;28:963–83.Google ScholarPubMed
Suprun, H, Pedio, G, Ruttner, JR.The diagnostic reliability of cytologic typing in primary lung cancer with a review of the literature. Acta Cytol 1980;24:494–500.Google ScholarPubMed
Tanaka, T, Yamamoto, M, Tamura, T, et al. Cytologic and histologic correlation in primary lung cancer. A study of 154 cases with resectable tumors. Acta Cytol 1985;29:49–56.Google ScholarPubMed
Yilmaz, A, Uskul, TB, Bayramgurler, B, Baran, R.Cell type accuracy of transthoracic fine needle aspiration material in primary lung cancer. Respirology 2001;6:91–4.CrossRefGoogle ScholarPubMed
Rekhtman, N, Brandt, SM, Sigel, CS, et al. Suitability of thoracic cytology for new therapeutic paradigms in non-small cell lung carcinoma: high accuracy of tumor subtyping and feasibility of EGFR and KRAS molecular testing. J Thorac Oncol 2011;6:451–8.CrossRefGoogle ScholarPubMed
Billah, S, Stewart, J, Staerkel, G, et al. EGFR and KRAS mutations in lung carcinoma: Molecular testing by using cytology specimens. Cancer Cytopathol 2011;119:111–7.CrossRefGoogle ScholarPubMed
Boldrini, L, Gisfredi, S, Ursino, S, et al. Mutational analysis in cytological specimens of advanced lung adenocarcinoma: a sensitive method for molecular diagnosis. J Thorac Oncol 2007;2:1086–90.CrossRefGoogle ScholarPubMed
Khayyata, S, Yun, S, Pasha, T, et al. Value of P63 and CK5/6 in distinguishing squamous cell carcinoma from adenocarcinoma in lung fine-needle aspiration specimens. Diagn Cytopathol 2009;37:178–83.CrossRefGoogle ScholarPubMed
Nicholson, AG, Gonzalez, D, Shah, P, et al. Refining the diagnosis and EGFR status of non-small cell lung carcinoma in biopsy and cytologic material, using a panel of mucin staining, TTF-1, cytokeratin 5/6, and P63, and EGFR mutation analysis. J Thorac Oncol 2010;5:436–41.CrossRefGoogle ScholarPubMed
Righi, L, Graziano, P, Fornari, A, et al. Immunohistochemical subtyping of nonsmall cell lung cancer not otherwise specified in fine-needle aspiration cytology: A retrospective study of 103 cases with surgical correlation. Cancer 2011;117:3416–23.CrossRefGoogle Scholar
Schuurbiers, OC, Looijen-Salamon, MG, Ligtenberg, MJ, van der Heijden, HF.A brief retrospective report on the feasibility of epidermal growth factor receptor and KRAS mutation analysis in transesophageal ultrasound- and endobronchial ultrasound-guided fine needle cytological aspirates. J Thorac Oncol 2010;5:1664–7.CrossRefGoogle ScholarPubMed
Bishop, JA, Sharma, R, Illei, PB.Napsin A and thyroid transcription factor-1 expression in carcinomas of the lung, breast, pancreas, colon, kidney, thyroid, and malignant mesothelioma. Hum Pathol 2010;41:20–5.CrossRefGoogle ScholarPubMed
Yang, M, Nonaka, D.A study of immunohistochemical differential expression in pulmonary and mammary carcinomas. Mod Pathol 2010;23:654–61.CrossRefGoogle ScholarPubMed
Bejarano, PA, Baughman, RP, Biddinger, PW, et al. Surfactant proteins and thyroid transcription factor-1 in pulmonary and breast carcinomas. Modern Pathol 1996;9:445–52.Google ScholarPubMed
Mukhopadhyay, S, Katzenstein, AL.Subclassification of non-small cell lung carcinomas lacking morphologic differentiation on biopsy specimens: Utility of an immunohistochemical panel containing TTF-1, napsin A, p63, and CK5/6. Am J Surg Pathol 2011;35:15–25.CrossRefGoogle Scholar
Nicholson, AG, McCormick, CJ, Shimosato, Y, Butcher, DN, Sheppard, MN.The value of PE-10, a monoclonal antibody against pulmonary surfactant, in distinguishing primary and metastatic lung tumours. Histopathology 1995;27:57–60.CrossRefGoogle ScholarPubMed
Au, NH, Gown, AM, Cheang, M, et al. P63 expression in lung carcinoma: a tissue microarray study of 408 cases. Appl Immunohistochem Mol Morphol 2004;12:240–7.CrossRefGoogle ScholarPubMed
Bakshi, N, Kunju, LP, Giordano, T, Shah, RB.Expression of renal cell carcinoma antigen (RCC) in renal epithelial and nonrenal tumors: diagnostic Implications. Appl Immunohistochem Mol Morphol 2007;15:310–5.CrossRefGoogle ScholarPubMed
Butnor, KJ, Burchette, JL, Sporn, TA, Hammar, SP, Roggli, VL.The spectrum of Kit (CD117) immunoreactivity in lung and pleural tumors: a study of 96 cases using a single-source antibody with a review of the literature. Arch Pathol Lab Med 2004;128:538–43.Google ScholarPubMed
Fan, Z, van de Rijn, M, Montgomery, K, Rouse, RV.Hep par 1 antibody stain for the differential diagnosis of hepatocellular carcinoma: 676 tumors tested using tissue microarrays and conventional tissue sections. Mod Pathol 2003;16:137–44.CrossRefGoogle Scholar
Striebel, JM, Dacic, S, Yousem, SA.Gross cystic disease fluid protein-(GCDFP-15): expression in primary lung adenocarcinoma. Am J Surg Pathol 2008;32:426–32.CrossRefGoogle ScholarPubMed
Tan, J, Sidhu, G, Greco, MA, Ballard, H, Wieczorek, R.Villin, cytokeratin 7, and cytokeratin 20 expression in pulmonary adenocarcinoma with ultrastructural evidence of microvilli with rootlets. Hum Pathol 1998;29:390–6.CrossRefGoogle ScholarPubMed
Wang, LJ, Greaves, WO, Sabo, E, et al. GCDFP-15 positive and TTF-1 negative primary lung neoplasms: a tissue microarray study of 381 primary lung tumors. Appl Immunohistochem Mol Morphol 2009;17:505–11.CrossRefGoogle ScholarPubMed
Yatabe, Y, Koga, T, Mitsudomi, T, Takahashi, T.CK20 expression, CDX2 expression, K-ras mutation, and goblet cell morphology in a subset of lung adenocarcinomas. J Pathol 2004;203:645–52.CrossRefGoogle Scholar
Howe, MC, Chapman, A, Kerr, K, et al. Neuroendocrine differentiation in non-small cell lung cancer and its relation to prognosis and therapy. Histopathology 2005;46:195–201.CrossRefGoogle ScholarPubMed
Ionescu, DN, Treaba, D, Gilks, CB, et al. Nonsmall cell lung carcinoma with neuroendocrine differentiation – an entity of no clinical or prognostic significance. Am J Surg Pathol 2007;31:26–32.CrossRefGoogle ScholarPubMed
Loo, PS, Thomas, SC, Nicolson, MC, Fyfe, MN, Kerr, KM.Subtyping of undifferentiated non-small cell carcinomas in bronchial biopsy specimens. J Thorac Oncol 2010;5:442–7.CrossRefGoogle ScholarPubMed
Ring, BZ, Seitz, RS, Beck, RA, et al. A novel five-antibody immunohistochemical test for subclassification of lung carcinoma. Mod Pathol 2009;22:1032–43.CrossRefGoogle ScholarPubMed
Rossi, G, Pelosi, G, Graziano, P, Barbareschi, M, Papotti, M.A reevaluation of the clinical significance of histological subtyping of non – small-cell lung carcinoma: diagnostic algorithms in the era of personalized treatments. Int J Surg Pathol 2009;17:206–18.CrossRefGoogle ScholarPubMed
Travis, WD, Rekhtman, N, Riley, GJ, et al. Pathologic diagnosis of advanced lung cancer based on small biopsies and cytology: a paradigm shift. J Thorac Oncol 2010;5:411–4.CrossRefGoogle ScholarPubMed
Yanagita, E, Imagawa, N, Ohbayashi, C, Itoh, T.Rapid multiplex immunohistochemistry using the 4-antibody cocktail YANA-4 in differentiating primary adenocarcinoma from squamous cell carcinoma of the lung. Appl Immunohistochem Mol Morphol 2011;19:509–13.CrossRefGoogle ScholarPubMed
Terry, J, Leung, S, Laskin, J, et al. Optimal immunohistochemical markers for distinguishing lung adenocarcinomas from squamous cell carcinomas in small tumor samples. Am J Surg Pathol 2010;34:1805–11.CrossRefGoogle ScholarPubMed
Fatima, N, Cohen, C, Lawson, D, Siddiqui, MT.TTF-1 and Napsin A double stain: A useful marker for diagnosing lung adenocarcinoma on fine-needle aspiration cell blocks. Cancer Cytopathol 2011;119:127–33. .CrossRefGoogle ScholarPubMed
Chu, PG, Weiss, LM.Expression of cytokeratin 5/6 in epithelial neoplasms: an immunohistochemical study of 509 cases. Modern Pathol 2002;15:6–10.CrossRefGoogle ScholarPubMed
Downey, P, Cummins, R, Moran, M, Gulmann, C.If it's not CK5/6 positive, TTF-1 negative it's not a squamous cell carcinoma of lung. Apmis 2008;116:526–9.CrossRefGoogle Scholar
Rekhtman, N, Ang, DC, Sima, CS, Travis, WD, Moreira, AL.Immunohistochemical algorithm for differentiation of lung adenocarcinoma and squamous cell carcinoma based on large series of whole-tissue sections with validation in small specimens. Mod Pathol 2011;24:1348–59.CrossRefGoogle ScholarPubMed
Sigel, CS, Friedlander, MA, Zakowski, MF, et al. Subtyping of non-small cell lung carcinoma: comparison of cytology and small biopsy specimens. Mod Pathol 2010;23:414A.Google Scholar
Bedrossian, CW, Weilbaecher, DG, Bentinck, DC, Greenberg, SD.Ultrastructure of human bronchiolo-alveolar cell carcinoma. Cancer 1975;36:1399–413.3.0.CO;2-S>CrossRefGoogle ScholarPubMed
Hammar, S.Adenocarcinoma and large cell undifferentiated carcinoma of the lung. Ultrastruct Pathol 1987;11:263–91.CrossRefGoogle ScholarPubMed
Hammar, S.The use of electron microscopy and immunohistochemistry in the diagnosis and understanding of lung neoplasms. Clin Lab Med 1987;7:1–30.Google ScholarPubMed
Bombi, JA, Martinez, A, Ramirez, J, et al. Ultrastructural and molecular heterogeneity in non-small cell lung carcinomas: study of 110 cases and review of the literature. Ultrastruct Pathol 2002;26:211–8.CrossRefGoogle ScholarPubMed
Hammar, S, Bockus, D, Remington, F, Cooper, L.The unusual spectrum of neuroendocrine lung neoplasms. Ultrastruct Pathol 1989;13:515–60.CrossRefGoogle ScholarPubMed
Sorhaug, S, Steinshamn, S, Haaverstad, R, et al. Expression of neuroendocrine markers in non-small cell lung cancer. APMIS 2007;115:152–63.CrossRefGoogle ScholarPubMed
McGregor, DH, Dixon, AY, McGregor, DK.Adenocarcinoma of the lung: a comparative diagnostic study using light and electron microscopy. Hum Pathol 1988;19:910–3.CrossRefGoogle ScholarPubMed
Sidhu, GS, Forrester, EM.Glycogen-rich Clara cell-type bronchiolo-alveolar carcinoma: light and electron microscopic study. Cancer 1977;40:2209–15.3.0.CO;2-C>CrossRefGoogle ScholarPubMed
Hiroshima, K, Toyozaki, T, Iyoda, A, et al. Ultrastructural study of intranuclear inclusion bodies of pulmonary adenocarcinoma. Ultrastruct Pathol 1999;23:383–9.CrossRefGoogle ScholarPubMed
Lu, SH, Ohtsuki, Y, Nonami, Y, et al. Ultrastructural study of nuclear inclusions immunohistochemically positive for surfactant protein A in pulmonary adenocarcinoma with special reference to their morphogenesis. Med Mol Morphol 2006;39:214–20.CrossRefGoogle ScholarPubMed
Tsumuraya, M, Kodama, T, Kameya, T, et al. Light and electron microscopic analysis of intranuclear inclusions in papillary adenocarcinoma of the lung. Acta Cytol 1981;25:523–32.Google ScholarPubMed
Caruso, RA.Intranuclear and intranucleolar tubular inclusions in gastric adenocarcinoma cells. Ultrastruct Pathol 1991;15:139–48.CrossRefGoogle ScholarPubMed
Lynch, TJ, Bell, DW, Sordella, R, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 2004;350:2129–39.CrossRefGoogle ScholarPubMed
Paez, JG, Janne, PA, Lee, JC, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 2004;304:1497–500.CrossRefGoogle ScholarPubMed
Dacic, S.EGFR assays in lung cancer. Adv Anat Pathol 2008;15:241–7.CrossRefGoogle ScholarPubMed
Pao, W, Miller, V, Zakowski, M, et al. EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci USA 2004;101:13306–11.CrossRefGoogle ScholarPubMed
Toyooka, S, Takano, T, Kosaka, T, et al. Epidermal growth factor receptor mutation, but not sex and smoking, is independently associated with favorable prognosis of gefitinib-treated patients with lung adenocarcinoma. Cancer Sci 2008;99:303–8.CrossRefGoogle Scholar
Takano, T, Fukui, T, Ohe, Y, et al. EGFR mutations predict survival benefit from gefitinib in patients with advanced lung adenocarcinoma: a historical comparison of patients treated before and after gefitinib approval in Japan. J Clin Oncol 2008;26:5589–95.CrossRefGoogle ScholarPubMed
Bell, DW, Lynch, TJ, Haserlat, SM, et al. Epidermal growth factor receptor mutations and gene amplification in non-small-cell lung cancer: molecular analysis of the IDEAL/INTACT gefitinib trials. J Clin Oncol 2005;23:8081–92.CrossRefGoogle ScholarPubMed
Tam, IY, Chung, LP, Suen, WS, et al. Distinct epidermal growth factor receptor and KRAS mutation patterns in non-small cell lung cancer patients with different tobacco exposure and clinicopathologic features. Clin Cancer Res 2006;12:1647–53.CrossRefGoogle ScholarPubMed
D'Angelo, SP, Park, B, Azzoli, CG, et al. Reflex testing of resected stage I through III lung adenocarcinomas for EGFR and KRAS mutation: report on initial experience and clinical utility at a single center. J Thorac Cardiovasc Surg 2011;141:476–80.CrossRefGoogle Scholar
Herbst, RS, Prager, D, Hermann, R, et al. TRIBUTE: a phase III trial of erlotinib hydrochloride (OSI-774) combined with carboplatin and paclitaxel chemotherapy in advanced non-small-cell lung cancer. J Clin Oncol 2005;23:5892–9.CrossRefGoogle ScholarPubMed
Marks, JL, Broderick, S, Zhou, Q, et al. Prognostic and therapeutic implications of EGFR and KRAS mutations in resected lung adenocarcinoma. J Thorac Oncol 2008;3:111–6.CrossRefGoogle ScholarPubMed
Shigematsu, H, Lin, L, Takahashi, T, et al. Clinical and biological features associated with epidermal growth factor receptor gene mutations in lung cancers. J Natl Cancer Inst 2005;97:339–46.CrossRefGoogle ScholarPubMed
Miller, VA, Riely, GJ, Zakowski, MF, et al. Molecular characteristics of bronchioloalveolar carcinoma and adenocarcinoma, bronchioloalveolar carcinoma subtype, predict response to erlotinib. J Clin Oncol 2008;26:1472–8.CrossRefGoogle ScholarPubMed
Tamura, K, Okamoto, I, Kashii, T, et al. Multicentre prospective phase II trial of gefitinib for advanced non-small cell lung cancer with epidermal growth factor receptor mutations: results of the West Japan Thoracic Oncology Group trial (WJTOG0403). Br J Cancer 2008;98:907–14.CrossRefGoogle Scholar
Endo, K, Sasaki, H, Yano, M, et al. Evaluation of the epidermal growth factor receptor gene mutation and copy number in non-small cell lung cancer with gefitinib therapy. Oncol Rep 2006;16:533–41.Google ScholarPubMed
Sequist, LV, Martins, RG, Spigel, D, et al. First-line gefitinib in patients with advanced non-small-cell lung cancer harboring somatic EGFR mutations. J Clin Oncol 2008;26:2442–9.CrossRefGoogle ScholarPubMed
Rosell, R, Ichinose, Y, Taron, M, et al. Mutations in the tyrosine kinase domain of the EGFR gene associated with gefitinib response in non-small-cell lung cancer. Lung Cancer 2005;50:25–33.CrossRefGoogle ScholarPubMed
Yang, CH, Yu, CJ, Shih, JY, et al. Specific EGFR mutations predict treatment outcome of stage IIIB/IV patients with chemotherapy-naive non-small-cell lung cancer receiving first-line gefitinib monotherapy. J Clin Oncol 2008;26:2745–53.CrossRefGoogle ScholarPubMed
Mok, TS, Wu, YL, Thongprasert, S, et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med 2009;361:947–57.CrossRefGoogle ScholarPubMed
Taron, M, Ichinose, Y, Rosell, R, et al. Activating mutations in the tyrosine kinase domain of the epidermal growth factor receptor are associated with improved survival in gefitinib-treated chemorefractory lung adenocarcinomas. Clin Cancer Res 2005;11:5878–85.CrossRefGoogle ScholarPubMed
Bamford, S, Dawson, E, Forbes, S, et al. The COSMIC (Catalogue of Somatic Mutations in Cancer) database and website. Br J Cancer 2004;91:355–8.CrossRefGoogle ScholarPubMed
Kaira, K, Horie, Y, Ayabe, E, et al. Pulmonary pleomorphic carcinoma: a clinicopathological study including EGFR mutation analysis. J Thorac Oncol 2010;5:460–5.CrossRefGoogle ScholarPubMed
Kosaka, T, Yatabe, Y, Endoh, H, et al. Analysis of epidermal growth factor receptor gene mutation in patients with non-small cell lung cancer and acquired resistance to gefitinib. Clin Cancer Res 2006;12:5764–9.CrossRefGoogle ScholarPubMed
Bos, JL.The ras gene family and human carcinogenesis. Mutat Res 1988;195:255–71.CrossRefGoogle ScholarPubMed
Mills, NE, Fishman, CL, Rom, WN, Dubin, N, Jacobson, DR.Increased prevalence of K-ras oncogene mutations in lung adenocarcinoma. Cancer Res 1995;55:1444–7.Google ScholarPubMed
Pao, W, Wang, TY, Riely, GJ, et al. KRAS mutations and primary resistance of lung adenocarcinomas to gefitinib or erlotinib. PLoS Med 2005;2:e17.CrossRefGoogle ScholarPubMed
Riely, GJ, Kris, MG, Rosenbaum, D, et al. Frequency and distinctive spectrum of KRAS mutations in never smokers with lung adenocarcinoma. Clin Cancer Res 2008;14:5731–4.CrossRefGoogle ScholarPubMed
Han, SW, Kim, TY, Jeon, YK, et al. Optimization of patient selection for gefitinib in non-small cell lung cancer by combined analysis of epidermal growth factor receptor mutation, K-ras mutation, and Akt phosphorylation. Clin Cancer Res 2006;12:2538–44.CrossRefGoogle ScholarPubMed
Eberhard, DA, Johnson, BE, Amler, LC, et al. Mutations in the epidermal growth factor receptor and in KRAS are predictive and prognostic indicators in patients with non-small-cell lung cancer treated with chemotherapy alone and in combination with erlotinib. J Clin Oncol 2005;23:5900–9.CrossRefGoogle ScholarPubMed
Finberg, KE, Sequist, LV, Joshi, VA, et al. Mucinous differentiation correlates with absence of EGFR mutation and presence of KRAS mutation in lung adenocarcinomas with bronchioloalveolar features. J Mol Diagn 2007;9:320–6.CrossRefGoogle ScholarPubMed
Hata, A, Katakami, N, Fujita, S, et al. Frequency of EGFR and KRAS mutations in Japanese patients with lung adenocarcinoma with features of the mucinous subtype of bronchioloalveolar carcinoma. J Thorac Oncol 2010;5:1197–200.CrossRefGoogle ScholarPubMed
Graziano, SL, Gamble, GP, Newman, NB, et al. Prognostic significance of K-ras codon 12 mutations in patients with resected stage I and II non-small-cell lung cancer. J Clin Oncol 1999;17:668–75.CrossRefGoogle ScholarPubMed
Pelosi, G, Scarpa, A, Manzotti, M, et al. K-ras gene mutational analysis supports a monoclonal origin of biphasic pleomorphic carcinoma of the lung. Mod Pathol 2004;17:538–46.CrossRefGoogle ScholarPubMed
Italiano, A, Cortot, AB, Ilie, M, et al. EGFR and KRAS status of primary sarcomatoid carcinomas of the lung: implications for anti-EGFR treatment of a rare lung malignancy. Int J Cancer 2009;125:2479–82.CrossRefGoogle ScholarPubMed
Przygodzki, RM, Koss, MN, Moran, CA, et al. Pleomorphic (giant and spindle cell) carcinoma is genetically distinct from adenocarcinoma and squamous cell carcinoma by K-ras-2 and p53 analysis. Am J Clin Pathol 1996;106:487–92.CrossRefGoogle ScholarPubMed
Karapetis, CS, Khambata-Ford, S, Jonker, DJ, et al. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med 2008;359:1757–65.CrossRefGoogle ScholarPubMed
Soda, M, Choi, YL, Enomoto, M, et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 2007;448:561–6.CrossRefGoogle ScholarPubMed
Choi, YL, Soda, M, Yamashita, Y, et al. EML4-ALK mutations in lung cancer that confer resistance to ALK inhibitors. N Engl J Med 2010;363:1734–9.CrossRefGoogle ScholarPubMed
Inamura, K, Takeuchi, K, Togashi, Y, et al. EML4-ALK fusion is linked to histological characteristics in a subset of lung cancers. J Thorac Oncol 2008;3:13–7.CrossRefGoogle Scholar
Wong, DW, Leung, EL, So, KK, et al. The EML4-ALK fusion gene is involved in various histologic types of lung cancers from nonsmokers with wild-type EGFR and KRAS. Cancer 2009;115:1723–33.CrossRefGoogle ScholarPubMed
Rodig, SJ, Mino-Kenudson, M, Dacic, S, et al. Unique clinicopathologic features characterize ALK-rearranged lung adenocarcinoma in the western population. Clin Cancer Res 2009;15:5216–23.CrossRefGoogle ScholarPubMed
Davies, H, Bignell, GR, Cox, C, et al. Mutations of the BRAF gene in human cancer. Nature 2002;417:949–54.CrossRefGoogle ScholarPubMed
Paik, PK, Arcila, ME, Fara, M, et al. Clinical characteristics of patients with lung adenocarcinomas harboring BRAF mutations. J Clin Oncol 2011;29:2046–51.CrossRefGoogle ScholarPubMed
Yousem, SA, Nikiforova, M, Nikiforov, Y.The histopathology of BRAF-V600E-mutated lung adenocarcinoma. Am J Surg Pathol 2008;32:1317–21.CrossRefGoogle ScholarPubMed
Whittaker, S, Menard, D, Kirk, R, et al. A novel, selective, and efficacious nanomolar pyridopyrazinone inhibitor of V600EBRAF. Cancer Res 2010;70:8036–44.CrossRefGoogle ScholarPubMed
Hemminki, A, Markie, D, Tomlinson, I, et al. A serine/threonine kinase gene defective in Peutz-Jeghers syndrome. Nature 1998;391:184–7.CrossRefGoogle ScholarPubMed
Okudela, K, Suzuki, M, Kageyama, S, et al. PIK3CA mutation and amplification in human lung cancer. Pathol Int 2007;57:664–71.CrossRefGoogle ScholarPubMed
Samuels, Y, Wang, Z, Bardelli, A, et al. High frequency of mutations of the PIK3CA gene in human cancers. Science 2004;304:554.CrossRefGoogle ScholarPubMed
Ludovini, V, Bianconi, F, Pistola, L, et al. Phosphoinositide-3-Kinase catalytic alpha and KRAS mutations are important predictors of resistance to therapy with epidermal growth factor receptor tyrosine kinase inhibitors in patients with advanced non-small cell lung cancer. J Thorac Oncol 2011;6:707–15.CrossRefGoogle ScholarPubMed
van Eijk, R, Licht, J, Schrumpf, M, et al. Rapid KRAS, EGFR, BRAF and PIK3CA mutation analysis of fine needle aspirates from non-small-cell lung cancer using allele-specific qPCR. PLoS One 2011;6:e17791.CrossRefGoogle ScholarPubMed
Marks, JL, Gong, Y, Chitale, D, et al. Novel MEK1 mutation identified by mutational analysis of epidermal growth factor receptor signaling pathway genes in lung adenocarcinoma. Cancer Res 2008;68:5524–8.CrossRefGoogle ScholarPubMed
Kwei, KA, Kim, YH, Girard, L, et al. Genomic profiling identifies TITF1 as a lineage-specific oncogene amplified in lung cancer. Oncogene 2008;27:3635–40.CrossRefGoogle ScholarPubMed
Kendall, J, Liu, Q, Bakleh, A, et al. Oncogenic cooperation and coamplification of developmental transcription factor genes in lung cancer. Proc Natl Acad Sci USA 2007;104:16663–8.CrossRefGoogle ScholarPubMed
Barletta, JA, Perner, S, Iafrate, AJ, et al. Clinical significance of TTF-1 protein expression and TTF-1 gene amplification in lung adenocarcinoma. J Cell Mol Med 2009;13:1977–86.CrossRefGoogle ScholarPubMed
Suda, K, Murakami, I, Katayama, T, et al. Reciprocal and complementary role of MET amplification and EGFR T790M mutation in acquired resistance to kinase inhibitors in lung cancer. Clin Cancer Res 2010;16:5489–98.CrossRefGoogle ScholarPubMed
Yano, S, Wang, W, Li, Q, et al. Hepatocyte growth factor induces gefitinib resistance of lung adenocarcinoma with epidermal growth factor receptor-activating mutations. Cancer Res 2008;68:9479–87.CrossRefGoogle ScholarPubMed
Goldstraw, P.Lung. In Edge, S, Byrd, D, Compton, C, eds. AJCC Cancer Staging Manual, 7th ed. New York: Springer-Verlag, 2010. pp. 252–70.Google Scholar
Maeda, R, Yoshida, J, Ishii, G, et al. Poor prognostic factors in patients with stage IB non-small cell lung cancer according to the seventh edition TNM classification. Chest 2011;139:855–61.
Dacic, S, Ionescu, DN, Finkelstein, S, Yousem, SA.Patterns of allelic loss of synchronous adenocarcinomas of the lung. Am J Surg Pathol 2005;29:897–902.CrossRefGoogle ScholarPubMed
Girard, N, Deshpande, C, Azzoli, CG, et al. Use of epidermal growth factor receptor/Kirsten rat sarcoma 2 viral oncogene homolog mutation testing to define clonal relationships among multiple lung adenocarcinomas: comparison with clinical guidelines. Chest 2010;137:46–52.CrossRefGoogle ScholarPubMed
Girard, N, Deshpande, C, Lau, C, et al. Comprehensive histologic assessment helps to differentiate multiple lung primary nonsmall cell carcinomas from metastases. Am J Surg Pathol 2009;33:1752–64.CrossRefGoogle ScholarPubMed
Girard, N, Ostrovnaya, I, Lau, C, et al. Genomic and mutational profiling to assess clonal relationships between multiple non-small cell lung cancers. Clin Cancer Res 2009;15:5184–90.CrossRefGoogle ScholarPubMed
Lau, DH, Yang, B, Hu, R, Benfield, JR.Clonal origin of multiple lung cancers: K-ras and p53 mutations determined by nonradioisotopic single-strand conformation polymorphism analysis. Diagn Mol Pathol 1997;6:179–84.CrossRefGoogle ScholarPubMed
Martini, N, Melamed, MR.Multiple primary lung cancers. J Thorac Cardiovasc Surg 1975;70:606–12.Google ScholarPubMed
Matsuzoe, D, Hideshima, T, Ohshima, K, et al. Discrimination of double primary lung cancer from intrapulmonary metastasis by p53 gene mutation. Br J Cancer 1999;79:1549–52.CrossRefGoogle ScholarPubMed
Nonami, Y, Ohtuki, Y, Sasaguri, S.Study of the diagnostic difference between the clinical diagnostic criteria and results of immunohistochemical staining of multiple primary lung cancers. J Cardiovasc Surg (Torino) 2003;44:661–5.Google ScholarPubMed
van Rens, MT, Eijken, EJ, Elbers, JR, et al. p53 mutation analysis for definite diagnosis of multiple primary lung carcinoma. Cancer 2002;94:188–96.CrossRefGoogle ScholarPubMed
Wang, X, Christiani, DC, Mark, EJ, et al. Carcinogen exposure, p53 alteration, and K-ras mutation in synchronous multiple primary lung carcinoma. Cancer 1999;85:1734–9.3.0.CO;2-1>CrossRefGoogle ScholarPubMed
Wang, X, Wang, M, MacLennan, GT, et al. Evidence for common clonal origin of multifocal lung cancers. J Natl Cancer Inst 2009;101:560–70.CrossRefGoogle ScholarPubMed
Minami, Y, Matsuno, Y, Iijima, T, et al. Prognostication of small-sized primary pulmonary adenocarcinomas by histopathological and karyometric analysis. Lung Cancer 2005;48:339–48.CrossRefGoogle ScholarPubMed
Casey, JJ, Stempel, BG, Scanlon, EF, Fry, WA.The solitary pulmonary nodule in the patient with breast cancer. Surgery 1984;96:801–5.Google ScholarPubMed
Park, SY, Kim, BH, Kim, JH, Lee, S, Kang, GH.Panels of immunohistochemical markers help determine primary sites of metastatic adenocarcinoma. Arch Pathol Lab Med 2007;131:1561–7.Google ScholarPubMed
Robens, J, Goldstein, L, Gown, AM, Schnitt, SJ.Thyroid transcription factor-1 expression in breast carcinomas. Am J Surg Pathol 2010;34:1881–5.CrossRefGoogle ScholarPubMed
Gomez-Fernandez, C, Mejias, A, Walker, G, Nadji, M.Immunohistochemical expression of estrogen receptor in adenocarcinomas of the lung: the antibody factor. Appl Immunohistochem Mol Morphol 2010;18:137–41.CrossRefGoogle ScholarPubMed
Goldstraw, P, Crowley, J, Chansky, K, et al. The IASLC Lung Cancer Staging Project: proposals for the revision of the TNM stage groupings in the forthcoming (seventh) edition of the TNM Classification of malignant tumours. J Thorac Oncol 2007;2:706–14.CrossRefGoogle ScholarPubMed
Schrump, DS, Giaccone, G, Kelsy, CR, et al. Non-small cell lung cancer. In DeVita, VT, Lawrence, TS, Rosenberg, S, eds. Principles and Practice of Oncology, 7th ed. Philadelphia: Wolters Kluwer; Lippincott, Williams & Wilkins, 2008. pp. 887–95.Google Scholar
Janjigian, YY, McDonnell, K, Kris, MG, et al. Pack-years of cigarette smoking as a prognostic factor in patients with stage IIIB/IV nonsmall cell lung cancer. Cancer 2010;116:670–5.CrossRefGoogle ScholarPubMed
Sakurai, H, Maeshima, A, Watanabe, S, et al. Grade of stromal invasion in small adenocarcinoma of the lung: histopathological minimal invasion and prognosis. Am J Surg Pathol 2004;28:198–206.CrossRefGoogle ScholarPubMed
Brechot, JM, Chevret, S, Charpentier, MC, et al. Blood vessel and lymphatic vessel invasion in resected nonsmall cell lung carcinoma. Correlation with TNM stage and disease free and overall survival. Cancer 1996;78:2111–8.3.0.CO;2-1>CrossRefGoogle ScholarPubMed
Hiraoka, K, Miyamoto, M, Cho, Y, et al. Concurrent infiltration by CD8+ T cells and CD4+ T cells is a favourable prognostic factor in non-small-cell lung carcinoma. Br J Cancer 2006;94:275–80.CrossRefGoogle ScholarPubMed
Roberts, TE, Hasleton, PS, Musgrove, C, Swindell, R, Lawson, RA.Vascular invasion in non-small cell lung carcinoma. J Clin Pathol 1992;45:591–3.CrossRefGoogle ScholarPubMed
Schuchert, MJ, Schumacher, L, Kilic, A, et al. Impact of angiolymphatic and pleural invasion on surgical outcomes for stage I non-small cell lung cancer. Ann Thorac Surg 2011;91:1059–65.CrossRefGoogle ScholarPubMed
Jokoji, R, Yamasaki, T, Minami, S, et al. Combination of morphological feature analysis and immunohistochemistry is useful for screening of EML4-ALK-positive lung adenocarcinoma. J Clin Pathol 2010;63:1066–70.CrossRefGoogle ScholarPubMed
Yoshida, A, Tsuta, K, Watanabe, SI, et al. Frequent ALK rearrangement and TTF-1/p63 co-expression in lung adenocarcinoma with signet-ring cell component. Lung Cancer 2011;72:309–15.CrossRefGoogle ScholarPubMed
Olaussen, KA, Dunant, A, Fouret, P, et al. DNA repair by ERCC1 in non-small-cell lung cancer and cisplatin-based adjuvant chemotherapy. N Engl J Med 2006;355:983–91.CrossRefGoogle ScholarPubMed
Inamura, K, Takeuchi, K, Togashi, Y, et al. EML4-ALK lung cancers are characterized by rare other mutations, a TTF-1 cell lineage, an acinar histology, and young onset. Modern Pathol 2009;22:508–15.CrossRefGoogle ScholarPubMed
Inoue, A, Kobayashi, K, Usui, K, et al. First-line gefitinib for patients with advanced non-small-cell lung cancer harboring epidermal growth factor receptor mutations without indication for chemotherapy. J Clin Oncol 2009;27:1394–400.CrossRefGoogle ScholarPubMed
Sequist, LV, Bell, DW, Lynch, TJ, Haber, DA.Molecular predictors of response to epidermal growth factor receptor antagonists in non-small-cell lung cancer. J Clin Oncol 2007;25:587–95.CrossRefGoogle ScholarPubMed
Shaw, AT, Yeap, BY, Mino-Kenudson, M, et al. Clinical features and outcome of patients with non-small-cell lung cancer who harbor EML4-ALK. J Clin Oncol 2009;27:4247–53.CrossRefGoogle ScholarPubMed
Takahashi, T, Sonobe, M, Kobayashi, M, et al. Clinicopathologic features of non-small-cell lung cancer with EML4-ALK fusion gene. Ann Surg Oncol 2010;17:889–97.CrossRefGoogle ScholarPubMed
Takeuchi, K, Choi, YL, Togashi, Y, et al. KIF5B-ALK, a novel fusion oncokinase identified by an immunohistochemistry-based diagnostic system for ALK-positive lung cancer. Clin Cancer Res 2009;15:3143–9.CrossRefGoogle ScholarPubMed
Cappuzzo, F, Janne, PA, Skokan, M, et al. MET increased gene copy number and primary resistance to gefitinib therapy in non-small-cell lung cancer patients. Ann Oncol 2009;20:298–304.CrossRefGoogle ScholarPubMed
Engelman, JA, Zejnullahu, K, Mitsudomi, T, et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 2007;316:1039–43.CrossRefGoogle ScholarPubMed
Nguyen, KS, Kobayashi, S, Costa, DB.Acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancers dependent on the epidermal growth factor receptor pathway. Clin Lung Cancer 2009;10:281–9.CrossRefGoogle ScholarPubMed
Pao, W, Miller, VA, Politi, KA, et al. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med 2005;2:e73.CrossRefGoogle ScholarPubMed
Tang, Z, Du, R, Jiang, S, et al. Dual MET-EGFR combinatorial inhibition against T790M-EGFR-mediated erlotinib-resistant lung cancer. Br J Cancer 2008;99:911–22.CrossRefGoogle ScholarPubMed
Saito, M, Schetter, AJ, Mollerup, S, et al. The association of microRNA expression with prognosis and progression in early-stage, non-small cell lung adenocarcinoma: a retrospective analysis of three cohorts. Clin Cancer Res 2011;17:1875–82.CrossRefGoogle ScholarPubMed
Cohen, PR, Yoshizawa, A, Motoi, N, et al. Signet ring cell features (SRCF) in lung adenocarcinoma: a cytologic change rather than a histologic subtype?Mod Pathol 2010;23:404A.Google Scholar
Deshpande, CG, Yoshizawa, AK, Motoi, N, et al. Clear cell change in lung adenocarcinoma: a cytologic change rather than a histologic variant. Mod Pathol 2009;22(S1):1595.Google Scholar
Barsky, SH, Cameron, R, Osann, KE, Tomita, D, Holmes, EC.Rising incidence of bronchioloalveolar lung carcinoma and its unique clinicopathologic features. Cancer 1994;73:1163–70.3.0.CO;2-J>CrossRefGoogle ScholarPubMed
Furak, J, Trojan, I, Szoke, T, et al. Bronchioloalveolar lung cancer: occurrence, surgical treatment and survival. Eur J Cardiothorac Surg 2003;23:818–23.CrossRefGoogle Scholar
Kimula, Y.A histochemical and ultrastructural study of adenocarcinoma of the lung. Am J Surg Pathol 1978;2:253–64.CrossRefGoogle ScholarPubMed
Ebbert, JO, Chhatwani, L, Aubry, MC, et al. Clinical features of bronchioloalveolar carcinoma with new histologic and staging definitions. J Thorac Oncol 2010;5:1213–20.CrossRefGoogle ScholarPubMed
Hidaka, N, Nagao, K.Bronchioloalveolar carcinoma accompanied by severe bronchorrhea. Chest 1996;110:281–2.CrossRefGoogle ScholarPubMed
Garfield, DH, Cadranel, JL, Wislez, M, Franklin, WA, Hirsch, FR.The bronchioloalveolar carcinoma and peripheral adenocarcinoma spectrum of diseases. J Thorac Oncol 2006;1:344–59.CrossRefGoogle ScholarPubMed
Akira, M, Atagi, S, Kawahara, M, Iuchi, K, Johkoh, T.High-resolution CT findings of diffuse bronchioloalveolar carcinoma in 38 patients. AJR Am J Roentgenol 1999;173:1623–9.CrossRefGoogle ScholarPubMed
Miyake, H, Matsumoto, A, Terada, A, et al. Mucin-producing tumor of the lung: CT findings. J Thorac Imaging 1995;10:96–8.CrossRefGoogle ScholarPubMed
Gaeta, M, Vinci, S, Minutoli, F, et al. CT and MRI findings of mucin-containing tumors and pseudotumors of the thorax: pictorial review. Eur Radiol 2002;12:181–9.CrossRefGoogle ScholarPubMed
Sica, GL, Yoshizawa, AL, Downey, RJ, et al. Reassessment of the histologic spectrum of mucinous bronchioloalveolar carcinoma (mBAC). Mod Pathol 2008;21:351A.Google Scholar
Mazziotta, RM, Borczuk, AC, Powell, CA, Mansukhani, M.CDX2 immunostaining as a gastrointestinal marker: expression in lung carcinomas is a potential pitfall. Appl Immunohistochem Mol Morphol 2005;13:55–60.CrossRefGoogle ScholarPubMed
Saad, RS, Cho, P, Silverman, JF, Liu, Y.Usefulness of Cdx2 in separating mucinous bronchioloalveolar adenocarcinoma of the lung from metastatic mucinous colorectal adenocarcinoma. Am J Clin Pathol 2004;122:421–7.CrossRefGoogle ScholarPubMed
Weidner, N.Pulmonary adenocarcinoma with intestinal-type differentiation. Ultrastruct Pathol 1992;16:7–10.CrossRefGoogle ScholarPubMed
Casali, C, Rossi, G, Marchioni, A, et al. A single institution-based retrospective study of surgically treated bronchioloalveolar adenocarcinoma of the lung: clinicopathologic analysis, molecular features, and possible pitfalls in routine practice. J Thorac Oncol 2010;5:830–6.CrossRefGoogle ScholarPubMed
Garfield, DH, Cadranel, J, West, HL.Bronchioloalveolar carcinoma: the case for two diseases. Clin Lung Cancer 2008;9:24–9.CrossRefGoogle ScholarPubMed
Maeshima, A, Miyagi, A, Hirai, T, Nakajima, T.Mucin-producing adenocarcinoma of the lung, with special reference to goblet cell type adenocarcinoma: immunohistochemical observation and Ki-ras gene mutation. Pathol Int 1997;47:454–60.CrossRefGoogle ScholarPubMed
Maeshima, A, Sakamoto, M, Hirohashi, S.Mixed mucinous-type and non-mucinous-type adenocarcinoma of the lung: immunohistochemical examination and K- ras gene mutation. Virchows Arch 2002;440:598–603.CrossRefGoogle ScholarPubMed
Marchetti, A, Buttitta, F, Pellegrini, S, et al. Bronchioloalveolar lung carcinomas: K-ras mutations are constant events in the mucinous subtype. J Pathol 1996;179:254–9.3.0.CO;2-J>CrossRefGoogle ScholarPubMed
Oka, S, Hanagiri, T, Uramoto, H, et al. Surgical resection for patients with mucinous bronchioloalveolar carcinoma. Asian J Surg 2010;33:89–93.CrossRefGoogle ScholarPubMed
Sakuma, Y, Matsukuma, S, Yoshihara, M, et al. Distinctive evaluation of nonmucinous and mucinous subtypes of bronchioloalveolar carcinomas in EGFR and K-ras gene-mutation analyses for Japanese lung adenocarcinomas: confirmation of the correlations with histologic subtypes and gene mutations. Am J Clin Pathol 2007;128:100–8.CrossRefGoogle ScholarPubMed
Kakegawa, S, Shimizu, K, Sugano, M, et al. Clinicopathological features of lung adenocarcinoma with KRAS mutations. Cancer 2011;117:4257–66.CrossRefGoogle ScholarPubMed
Lau, SK, Desrochers, MJ, Luthringer, DJ.Expression of thyroid transcription factor-1, cytokeratin 7, and cytokeratin 20 in bronchioloalveolar carcinomas: an immunohistochemical evaluation of 67 cases. Mod Pathol 2002;15:538–42.CrossRefGoogle ScholarPubMed
Shah, RN, Badve, S, Papreddy, K, et al. Expression of cytokeratin 20 in mucinous bronchioloalveolar carcinoma. Hum Pathol 2002;33:915–20.CrossRefGoogle ScholarPubMed
Goldstein, NS, Thomas, M.Mucinous and nonmucinous bronchioloalveolar adenocarcinomas have distinct staining patterns with thyroid transcription factor and cytokeratin 20 antibodies. Am J Clin Pathol 2001;116:319–25.CrossRefGoogle ScholarPubMed
Nakajima, T, Terashima, T, Nishida, J, Onoda, M, Koide, O.Treatment of bronchorrhea by corticosteroids in a case of bronchioloalveolar carcinoma producing CA19–9. Intern Med 2002;41:225–8.CrossRefGoogle Scholar
Barlesi, F, Doddoli, C, Thomas, P, et al. Bilateral bronchioloalveolar lung carcinoma: is there a place for palliative pneumonectomy?Eur J Cardiothorac Surg 2001;20:1113–6.CrossRefGoogle Scholar
Homma, S, Kawabata, M, Kishi, K, et al. Successful treatment of refractory bronchorrhea by inhaled indomethacin in two patients with bronchioloalveolar carcinoma. Chest 1999;115:1465–8.CrossRefGoogle ScholarPubMed
Tamaoki, J, Kohri, K, Isono, K, Nagai, A.Inhaled indomethacin in bronchorrhea in bronchioloalveolar carcinoma: role of cyclooxygenase. Chest 2000;117:1213–4.CrossRefGoogle ScholarPubMed
Jayaram, G, Yaccob, R, Liam, CK.Mucinous carcinoma (colloid carcinoma) of the lung diagnosed by fine needle aspiration cytology: a case report. Malays J Pathol 2003;25:63–8.Google ScholarPubMed
Moran, CA, Hochholzer, L, Fishback, N, Travis, WD, Koss, MN.Mucinous (so-called colloid) carcinomas of lung. Mod Pathol 1992;5:634–8.Google ScholarPubMed
Murai, T, Hara, M, Ozawa, Y, et al. Mucinous colloid adenocarcinoma of the lung with lymph node metastasis showing numerous punctate calcifications. Clin Imaging 2011;35:151–5.CrossRefGoogle ScholarPubMed
Maeda, R, Isowa, N, Onuma, H, Miura, H.Primary pulmonary mucinous (colloid) adenocarcinoma. Gen Thorac Cardiovasc Surg 2008;56:195–8.CrossRefGoogle ScholarPubMed
Okimasa, S, Kurimoto, N.Mucinous (colloid) adenocarcinoma. Jpn J Thorac Cardiovasc Surg 2005;53:305–8.CrossRefGoogle ScholarPubMed
Rossi, G, Murer, B, Cavazza, A, et al. Primary mucinous (so-called colloid) carcinomas of the lung: a clinicopathologic and immunohistochemical study with special reference to CDX-2 homeobox gene and MUC2 expression. Am J Surg Pathol 2004;28:442–52.CrossRefGoogle ScholarPubMed
Brownlee, NA, Mott, RT, Mahar, A, Roggli, VL.Mucinous (colloid) adenocarcinoma of the lung. Arch Pathol Lab Med 2005;129:121–2.Google ScholarPubMed
Yousem, SA.Pulmonary intestinal-type adenocarcinoma does not show enteric differentiation by immunohistochemical study. Mod Pathol 2005;18:816–21.CrossRefGoogle Scholar
Gao, ZH, Urbanski, SJ.The spectrum of pulmonary mucinous cystic neoplasia: a clinicopathologic and immunohistochemical study of ten cases and review of literature. Am J Clin Pathol 2005;124:62–70.CrossRefGoogle ScholarPubMed
Ishibashi, H, Moriya, T, Matsuda, Y, et al. Pulmonary mucinous cystadenocarcinoma: report of a case and review of the literature. Ann Thorac Surg 2003;76:1738–40.CrossRefGoogle ScholarPubMed
Roux, FJ, Lantuejoul, S, Brambilla, E, Brambilla, C.Mucinous cystadenoma of the lung. Cancer 1995;76:1540–4.3.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Traub, B.Mucinous cystadenoma of the lung. Arch Pathol Lab Med 1991;115:740–1.Google ScholarPubMed
Guimaraes, AR, Wain, JC, Mark, EJ, Wittram, C.Mucinous cystadenoma of the lung. AJR Am J Roentgenol 2004;183:282.CrossRefGoogle ScholarPubMed
Dixon, AY, Moran, JF, Wesselius, LJ, McGregor, DH.Pulmonary mucinous cystic tumor. Case report with review of the literature. Am J Surg Pathol 1993;17:722–8.CrossRefGoogle ScholarPubMed
Davison, AM, Lowe, JW, Da Costa, P.Adenocarcinoma arising in a mucinous cystadenoma of the lung. Thorax 1992;47:129–30.CrossRefGoogle Scholar
Graeme-Cook, F, Mark, EJ.Pulmonary mucinous cystic tumors of borderline malignancy. Hum Pathol 1991;22:185–90.CrossRefGoogle ScholarPubMed
Mann, GN, Wilczynski, SP, Sager, K, Grannis, FW Jr.Recurrence of pulmonary mucinous cystic tumor of borderline malignancy. Ann Thorac Surg 2001;71:696–7.CrossRefGoogle ScholarPubMed
Higashiyama, M, Doi, O, Kodama, K, Yokouchi, H, Tateishi, R.Cystic mucinous adenocarcinoma of the lung. Two cases of cystic variant of mucus-producing lung adenocarcinoma. Chest 1992;101:763–6.CrossRefGoogle ScholarPubMed
Kragel, PJ, Devaney, KO, Meth, BM, et al. Mucinous cystadenoma of the lung. A report of two cases with immunohistochemical and ultrastructural analysis. Arch Pathol Lab Med 1990;114:1053–6.Google Scholar
Matsuo, T, Yusuke, Kimura N, Takamori, S, Shirouzu, K.Recurrent pulmonary mucinous cystadenoma. Eur J Cardiothorac Surg 2005;28:176–7.CrossRefGoogle ScholarPubMed
Kradin, RL, Young, RH, Dickersin, GR, Kirkham, SE, Mark, EJ.Pulmonary blastoma with argyrophil cells and lacking sarcomatous features (pulmonary endodermal tumor resembling fetal lung). Am J Surg Pathol 1982;6:165–72.CrossRefGoogle Scholar
Kodama, T, Shimosato, Y, Watanabe, S, et al. Six cases of well-differentiated adenocarcinoma simulating fetal lung tubules in pseudoglandular stage. Comparison with pulmonary blastoma. Am J Surg Pathol 1984;8:735–44.CrossRefGoogle ScholarPubMed
Nakatani, Y, Kitamura, H, Inayama, Y, et al. Pulmonary adenocarcinomas of the fetal lung type: a clinicopathologic study indicating differences in histology, epidemiology, and natural history of low-grade and high-grade forms. Am J Surg Pathol 1998;22:399–411.CrossRefGoogle ScholarPubMed
Siegel, RJ, Bueso-Ramos, C, Cohen, C, Koss, M.Pulmonary blastoma with germ cell (yolk sac) differentiation: report of two cases. Mod Pathol 1991;4:566–70.Google ScholarPubMed
Wong, RP, Hwang, WS, Field, SK.Familial adenomatous polyposis and lung cancer. J Surg Oncol 1995;60:213–4.CrossRefGoogle ScholarPubMed
Nakatani, Y, Masudo, K, Miyagi, Y, et al. Aberrant nuclear localization and gene mutation of beta-catenin in low-grade adenocarcinoma of fetal lung type: up-regulation of the Wnt signaling pathway may be a common denominator for the development of tumors that form morules. Mod Pathol 2002;15:617–24.CrossRefGoogle ScholarPubMed
Koss, MN, Hochholzer, L, O'Leary, T.Pulmonary blastomas. Cancer 1991;67:2368–81.3.0.CO;2-G>CrossRefGoogle ScholarPubMed
Nakatani, Y, Dickersin, GR, Mark, EJ.Pulmonary endodermal tumor resembling fetal lung: a clinicopathologic study of five cases with immunohistochemical and ultrastructural characterization. Hum Pathol 1990;21:1097–107.CrossRefGoogle ScholarPubMed
DiFurio, MJ, Auerbach, A, Kaplan, KJ.Well-differentiated fetal adenocarcinoma: rare tumor in the pediatric population. Pediatr Dev Pathol 2003;6:564–7.CrossRefGoogle ScholarPubMed
Singh, SP, Besner, GE, Schauer, GM.Pulmonary endodermal tumor resembling fetal lung: report of a case in a 14-year-old girl. Pediatr Pathol Lab Med 1997;17:951–8.CrossRefGoogle Scholar
Longo, M, Levra, MG, Capelletto, E, et al. Fetal adenocarcinoma of the lung in a 25-year-old woman. J Thorac Oncol 2008;3:441–3.CrossRefGoogle Scholar
Paull, DE, Moezzi, J, Katz, N, Little, AG, Adebonojo, SA.Positron emission tomography in well differentiated fetal adenocarcinoma of the lung. Clin Nucl Med 2006;31:213–4.CrossRefGoogle ScholarPubMed
Sheehan, KM, Curran, J, Kay, EW, Broe, P, Grace, A.Well differentiated fetal adenocarcinoma of the lung in a 29 year old woman. J Clin Pathol 2003;56:478–9.CrossRefGoogle Scholar
Ito, T, Noguchi, Y, Udaka, N, Kitamura, H, Satoh, S.Glucose transporter expression in developing fetal lungs and lung neoplasms. Histol Histopathol 1999;14:895–904.Google ScholarPubMed
Babycos, PB, Daroca, PJ Jr.Polypoid pulmonary endodermal tumor resembling fetal lung: report of a case. Mod Pathol 1995;8:303–6.Google ScholarPubMed
Mardini, G, Pai, U, Chavez, AM, Tomashefski, JF Jr.Endobronchial adenocarcinoma with endometrioid features and prominent neuroendocrine differentiation. A variant of fetal adenocarcinoma. Cancer 1994;73:1383–9.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
Gamachi, A, Kashima, K, Daa, T, et al. Aberrant intranuclear localization of biotin, biotin-binding enzymes, and beta-catenin in pregnancy-related endometrium and morule-associated neoplastic lesions. Mod Pathol 2003;16:1124–31.CrossRefGoogle ScholarPubMed
Nakatani, Y, Kitamura, H, Inayama, Y, Ogawa, N.Pulmonary endodermal tumor resembling fetal lung. The optically clear nucleus is rich in biotin. Am J Surg Pathol 1994;18:637–42.CrossRefGoogle ScholarPubMed
Nakatani, Y, Masudo, K, Nozawa, A, et al. Biotin-rich, optically clear nuclei express estrogen receptor-beta: tumors with morules may develop under the influence of estrogen and aberrant beta-catenin expression. Hum Pathol 2004;35:869–74.CrossRefGoogle ScholarPubMed
Geisinger, KR, Travis, WD, Perkins, LA, Zakowski, MF.Aspiration cytomorphology of fetal adenocarcinoma of the lung. Am J Clin Pathol 2010;134:894–902.CrossRefGoogle ScholarPubMed
Kneafsey, P, Duggan, MA, McFadden, S.Fine needle aspiration cytology of pulmonary, well-differentiated fetal adenocarcinoma prepared by the ThinPrep method. Cytopathology 2003;14:87–90.CrossRefGoogle ScholarPubMed
Proctor, L, Folpe, AL, Esper, A, et al. Well-differentiated fetal adenocarcinoma of the lung: cytomorphologic features on fine-needle aspiration with emphasis on use of beta-catenin as a useful diagnostic marker. Diagn Cytopathol 2007;35:39–42.CrossRefGoogle ScholarPubMed
Garcia-Escudero, A, Gonzalez-Campora, R, Villar-Rodriguez, JL, Lag-Asturiano, E.Thyroid transcription factor-1 expression in pulmonary blastoma. Histopathology 2004;44:507–8.CrossRefGoogle ScholarPubMed
Mulamalla, K, Truskinovsky, AM, Dudek, AZ.Pulmonary blastoma with renal metastasis responds to sorafenib. J Thorac Oncol 2007;2:344–7.CrossRefGoogle ScholarPubMed
Yamazaki, K.Pulmonary well-differentiated fetal adenocarcinoma expressing lineage-specific transcription factors (TTF-1 and GATA-6) to respiratory epithelial differentiation: an immunohistochemical and ultrastructural study. Virchows Arch 2003;442:393–9.Google ScholarPubMed
Wani, Y, Notohara, K, Nakatani, Y, Matsuzaki, A.Aberrant nuclear Cdx2 expression in morule-forming tumours in different organs, accompanied by cytoplasmic reactivity. Histopathology 2009;55:465–8.CrossRefGoogle ScholarPubMed
Sekine, S, Shibata, T, Matsuno, Y, et al. Beta-catenin mutations in pulmonary blastomas: association with morule formation. J Pathol 2003;200:214–21.CrossRefGoogle ScholarPubMed
Shiojima, K, Hayakawa, K, Mitsuhashi, N, Nakajima, T, Niibe, H.An autopsy case of pulmonary adenocarcinoma of fetal type treated with radiation therapy. Radiat Med 1994;12:36–8.Google ScholarPubMed
Hatanaka, K, Tsuta, K, Watanabe, K, Sugino, K, Uekusa, T.Primary pulmonary adenocarcinoma with enteric differentiation resembling metastatic colorectal carcinoma: a report of the second case negative for cytokeratin 7. Pathol Res Pract 2011;207:188–91.CrossRefGoogle ScholarPubMed
Inamura, K, Satoh, Y, Okumura, S, et al. Pulmonary adenocarcinomas with enteric differentiation: histologic and immunohistochemical characteristics compared with metastatic colorectal cancers and usual pulmonary adenocarcinomas. Am J Surg Pathol 2005;29:660–5.CrossRefGoogle ScholarPubMed
Li, HC, Schmidt, L, Greenson, JK, Chang, AC, Myers, JL.Primary pulmonary adenocarcinoma with intestinal differentiation mimicking metastatic colorectal carcinoma: case report and review of literature. Am J Clin Pathol 2009;131:129–33.CrossRefGoogle ScholarPubMed
Maeda, R, Isowa, N, Onuma, H, Miura, H.Pulmonary intestinal-type adenocarcinoma. Interact Cardiovasc Thorac Surg 2008;7:349–51.CrossRefGoogle ScholarPubMed
Tsao, MS, Fraser, RS.Primary pulmonary adenocarcinoma with enteric differentiation. Cancer 1991;68:1754–7.3.0.CO;2-E>CrossRefGoogle ScholarPubMed
Colby, TV, Koss, MN, Travis, WD.Carcinoma of the lung: clinical and radiographic aspects, spread, staging, management, and prognosis. In Colby, TV, Koss, MN, Travis, WD, eds. Tumors of the Lower Respiratory Tract, 3rd ed. Washington DC: Armed Forces Institute of Pathology, 1995. pp. 107–34.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×