Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-25T09:39:16.079Z Has data issue: false hasContentIssue false

15 - Temporal patterns in diversification rates

Published online by Cambridge University Press:  05 June 2012

Andy Purvis
Affiliation:
Division of Biology, Imperial College London
C. David L. Orme
Affiliation:
Division of Biology, Imperial College London
Nicola H. Toomey
Affiliation:
Division of Biology, Imperial College London
Paul N. Pearson
Affiliation:
School of Earth, Ocean and Planetary Sciences, Cardiff University
Roger Butlin
Affiliation:
University of Sheffield
Jon Bridle
Affiliation:
University of Bristol
Dolph Schluter
Affiliation:
University of British Columbia, Vancouver
Get access

Summary

Introduction

The study of rates of speciation and extinction, and how these have changed over time, has traditionally mainly been the preserve of paleontology (Simpson 1953; Stanley 1979; Raup 1985). More recently, phylogenies of extant species have been shown to contain information on these rates and how they may have changed, under the assumption that the same rules have applied in all contemporaneous lineages (Harvey et al. 1994; Kubo & Iwasa 1995; see Nee 2006 for a recent review). The first section of this chapter contrasts the strengths and weaknesses of these two approaches – paleontological and phylogenetic – to the study of macroevolution in general.

Moving to a specific macroevolutionary hypothesis, we then outline some tests of the hypothesis that diversification rates have declined in the recent past, either in response to changed abiotic conditions or as a result of density-dependence or diversity-dependence. It has long been appreciated that incomplete species-level sampling can cause a bias in favour of this hypothesis at the expense of the null hypothesis of no change (Pybus & Harvey 2000), but we highlight a further sort of incompleteness that is likely to be very widespread and which is not widely appreciated – products of recent lineage splits are unlikely to be considered as distinct species. We reanalyze the data from a key early paper (Zink & Slowinski 1995) to show how this incompleteness, which is inevitable when taxonomy and phylogeny meet, is sufficiently strong to account for much (though not all) of the apparent tendency for rates to have declined through time.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, A. P., Gillooly, J. F., Savage, V. M. and Brown, J. H. (2006) Kinetic effects of temperature on rates of genetic divergence and speciation. Proceedings of the National Academy of Sciences of the United States of America 103, 9130–9135.CrossRefGoogle ScholarPubMed
Alroy, J. (1996) Constant extinction, constrained diversification, and uncoordinated stasis in North American mammals. Palaeogeography, Palaeoclimatology, Palaeoecology 127, 285–311.CrossRefGoogle Scholar
Alroy, J. (1998) Equilibrial diversity dynamics in North American mammals. In: Biodiversity Dynamics: Turnover of Populations, Taxa and Communities (ed. McKinney, M. L. and Drake, J. A.), pp. 232–287. Columbia University Press, New York.Google Scholar
Alroy, J. (1999) The fossil record of North American mammals: evidence for a Paleocene evolutionary radiation. Systematic Biology 48, 107–118.CrossRefGoogle ScholarPubMed
Alroy, J. (2000) Understanding the dynamics of trends within evolving lineages. Paleobiology 26, 319–329.2.0.CO;2>CrossRefGoogle Scholar
Alroy, J., Koch, P. L. & Zachos, J. C. (2000). Global climate change and North American mammalian evolution. Paleobiology 26S, 259–288.CrossRefGoogle Scholar
Alroy, J., Marshall, C. R., Bambach, R. K., et al. (2001) Effects of sampling standardization on estimates of Phanerozoic marine diversification. Proceedings of the National Academy of Sciences of the United States of America 98, 6261–6266.CrossRefGoogle ScholarPubMed
Arnold, A. J. (1982) Species survivorship in the Cenozoic Globigerinida. Proceedings of the 3rd North American Paleontology Convention 1, 9–12.Google Scholar
Arnold, A. J., Kelly, D. C. and Parker, W. C. (1995) Causality and Cope's Rule: evidence from the planktonic Foraminifera. Journal of Paleontology 69, 203–210.CrossRefGoogle Scholar
Avise, J. C. and Walker, D. (1998) Pleistocene phylogeographic effects on avian populations and the speciation process. Proceedings of the Royal Society of London Series B-Biological Sciences 265, 457–463.CrossRefGoogle ScholarPubMed
Avise, J. C., Walker, D. and Johns, G. C. (1998) Speciation durations and Pleistocene effects on vertebrate phylogeography. Proceedings of the Royal Society B 265, 1707–1712.CrossRefGoogle ScholarPubMed
Barraclough, T. G. and Nee, S. (2001) Phylogenetics and speciation. Trends in Ecology & Evolution 16, 391–399.CrossRefGoogle ScholarPubMed
Barraclough, T. G. and Vogler, A. P. (2002) Recent diversification rates in North American tiger beetles estimated from a dated mtDNA phylogenetic tree. Molecular Biology and Evolution 19, 1706–1716.CrossRefGoogle ScholarPubMed
Benton, M. J. and Donoghue, P. C. J. (2007) Paleontological evidence to date the tree of life. Molecular Biology and Evolution 24, 26–53.CrossRefGoogle ScholarPubMed
Bininda-Emonds, O. R. P., Cardillo, M., Jones, K. E., et al. (2007) The delayed rise of present-day mammals. Nature 446, 507–512.CrossRefGoogle ScholarPubMed
Cifelli, R. L. and Gordon, C. L. (2007) Evolutionary biology – re-crowning mammals. Nature 447, 918–920.CrossRefGoogle ScholarPubMed
Crawley, M. J. (2002) Statistical Computing: An Introduction to Data Analysis Using S-Plus. John Wiley & Sons, New York and Chichester.Google Scholar
Cunningham, C.W., Omland, K.W. and Oakley, T. H. (1998) Reconstructing ancestral character states: a critical reappraisal. Trends in Ecology & Evolution 13, 361–366.CrossRefGoogle ScholarPubMed
Doran, N. A., Arnold, A. J., Parker, W. C. and Huffer, F. W. (2006) Is extinction age-independent?PALAIOS 21, 571–579.CrossRefGoogle Scholar
Felsenstein, J. (1985) Phylogenies and the comparative method. American Naturalist 125, 1–15.CrossRefGoogle Scholar
Foote, M. (1996) Perspective: evolutionary patterns in the fossil record. Evolution 50, 1–11.CrossRefGoogle ScholarPubMed
Foote, M. (2000) Origination and extinction components of taxonomic diversity: Paleozoic and post-Paleozoic dynamics. Paleobiology 26, 578–605.2.0.CO;2>CrossRefGoogle Scholar
Fordham, B. G. (1986) Miocene-Pleistocene planktic Foraminifers from DSDP sites 208 and 77, and phylogeny and classification of Cenozoic species. Evolutionary Monographs 6, 1–200.Google Scholar
Gill, F. B., Mostrom, A. M. and Mack, A. L. (1993) Speciation in North American Chickadees: I. Patterns of mtDNA divergence. Evolution 47, 195–212.Google Scholar
Gill, F. B. and Slikas, B. (1992) Patterns of mitochondrial DNA divergence in North American Crested Titmice. The Condor 94, 20–28.CrossRefGoogle Scholar
Gingerich, P. D. (2006) Environment and evolution through the Paleocene-Eocene thermal maximum. Trends in Ecology & Evolution 21, 246–253.CrossRefGoogle ScholarPubMed
Harvey, P. H., May, R. M. and Nee, S. (1994) Phylogenies without fossils. Evolution 48, 523–529.CrossRefGoogle ScholarPubMed
Hemleben, C., Spindler, M. and Anderson, O. R. (1989) Modern Planktonic Foraminifera. Springer-Verlag, New York.CrossRefGoogle Scholar
Hey, J. (1992) Using phylogenetic trees to study speciation and extinction. Evolution 46, 627–640.CrossRefGoogle ScholarPubMed
Hey, J., Waples, R. S., Arnold, M. L., Butlin, R. K. and Harrison, R. G. (2003) Understanding and confronting species uncertainty in biology and conservation. Trends in Ecology & Evolution 18, 597–603.CrossRefGoogle Scholar
Jablonski, D. and Roy, K. (2003) Geographical range and speciation in fossil and living molluscs. Proceedings of the Royal Society of London Series B-Biological Sciences 270, 401–406.CrossRefGoogle ScholarPubMed
Jablonski, D., Roy, K. and Valentine, J. W. (2003) Evolutionary macroecology and the fossil record. In: Macroecology: Concepts and Consequences (ed. Blackburn, T. M. and Gaston, K. J.), pp. 368–390. Blackwell Science, Oxford.Google Scholar
Jackson, J. B. C. and Erwin, D. H. (2006) What can we learn about ecology and evolution from the fossil record?Trends in Ecology & Evolution 21, 322–328.CrossRefGoogle ScholarPubMed
Johns, G. C. and Avise, J. C. (1998) A comparative summary of genetic distances in te vertebrates from the mitochondrial cytochrome b gene. Molecular Biology and Evolution 15, 1481–1490.CrossRefGoogle Scholar
Johnson, K. P. and Sorenson, M. D. (1998) Comparing molecular evolution in two mitochondrial protein coding genes (cytochrome b and ND2) in the dabbling ducks (Tribe: Anatini). Molecular Phylogenetics and Evolution 10, 82–94.CrossRefGoogle Scholar
Kendall, D. G. (1949) Stochastic processes and population growth. Journal of the Royal Statistical Society, Series B 11, 230–264.Google Scholar
Kessler, L. G. and Avise, J. C. (1985) A comparative description of mitochondrial DNA differentiation in selected avian and other vertebrate genera. Molecular Biology and Evolution 2, 109–125.Google ScholarPubMed
Kirchner, J. W. and Weil, A. (2000) Delayed biological recovery from extinctions throughout the fossil record. Nature 404, 177–180.CrossRefGoogle ScholarPubMed
Krajewski, C. and Fetzner, J. W., Jr. (1994) Phylogeny of Ganes (Gruiformes: Gruidae) based on cytochrome b DNA sequences. The Auk 111, 351–365.CrossRefGoogle Scholar
Kubo, T. and Iwasa, Y. (1995) Inferring the rates of branching and extinction from molecular phylogenies. Evolution 49, 694–704.CrossRefGoogle ScholarPubMed
Kucera, M. and Darling, K. F. (2002) Cryptic species of planktonic foraminifera: their effect on palaeoceanographic reconstructions. Philosophical Transactions of the Royal Society of London A 360, 695–718.CrossRefGoogle ScholarPubMed
Lovette, I. J. and Bermingham, E. (1999) Explosive speciation in the New World Dendroica warblers. Proceedings of the Royal Society of London Series B-Biological Sciences 266, 1629–1636.CrossRefGoogle Scholar
MacLeod, N. (2001) The role of phylogeny in quantitative paleobiological data analysis. Paleobiology 27, 226–240.2.0.CO;2>CrossRefGoogle Scholar
Maddison, W. P. (2006) Confounding asymmetries in evolutionary diversification and character change. Evolution 60, 1743–1746.CrossRefGoogle ScholarPubMed
Malmgren, M. A., Berggren, W. A. and Lohmann, G. P. (1983) Evidence for punctuated gradualism in the Late Neogene Globorotalia tumida lineage of planktonic foraminifera. Paleobiology 9, 377–389.CrossRefGoogle Scholar
Malmgren, M. A. and Kennett, J. P. (1981) Phyletic gradualism in a late Cenozoic planktonic foraminiferal lineage, DSDP Site 284, Southwest Pacific. Paleobiology 7, 230–240.CrossRefGoogle Scholar
Nee, S. (1994) How populations persist. Nature 367, 123–124.CrossRefGoogle Scholar
Nee, S. (2001) Inferring speciation rates from phylogenies. Evolution 55, 661–668.CrossRefGoogle ScholarPubMed
Nee, S. (2006) Birth-death models in macroevolution. Annual Review in Ecology, Evolution and Systematics 37, 1–17.CrossRefGoogle Scholar
Nee, S., May, R. M. and Harvey, P. H. (1994) The reconstructed evolutionary process. Philosophical Transactions of the Royal Society of London Series B 344, 305–311.CrossRefGoogle ScholarPubMed
Nee, S., Mooers, A. Ø. and Harvey, P. H. (1992) The tempo and mode of evolution revealed from molecular phylogenies. Proceedings of the National Academy of Sciences of the United States of America 89, 8322–8326.CrossRefGoogle ScholarPubMed
Norris, R. D. (2000) Pelagic species diversity, biogeography, and evolution. Paleobiology 26, 236–258.CrossRefGoogle Scholar
Norris, R. D. and Nishi, H. (2001) Evolutionary trends in coiling of tropical planktic foraminifera. Paleobiology 27, 327–347.2.0.CO;2>CrossRefGoogle Scholar
Nunn, G. B., Cooper, J., Jouventin, P., Robertson, C. R. J. and Robertson, G. G. (1996) Evolutionary relationships among extant albatrossses (Procellaroiformes: Diomedeidae) established from complete cytochrome b gene sequences. The Auk 113, 784–801.Google Scholar
Oakley, T. H. and Cunningham, C. W. (2000) Independent contrasts succeed where ancestor reconstruction fails in a known bacteriophage phylogeny. Evolution 54, 397–405.CrossRefGoogle Scholar
Olsson, R. K., Hemleben, C., Berggren, W. A. and Huber, B. T. (eds) (1999) Atlas of Paleocene Planktonic Foraminifera. Smithsonian Contributions to Paleontology. Smithsonian, New York.
Orme, C. D. L. (2002) Body size and macroevolutionary patterns of species-richness. In Department of Biological Science, Imperial College of Science, Technology and Medicine, vol. PhD. University of London, London.Google Scholar
Pagel, M. (1994) Detecting correlated evolution on phylogenies: a general model for the comparative analysis of discrete characters. Proceedings of the Royal Society of London Series B 255, 37–45.CrossRefGoogle Scholar
Paradis, E. (1997) Assessing temporal variations in diversification rates from phylogenies: estimates and hypothesis testing. Proceedings of the Royal Society of London Series B-Biological Sciences 264, 1141–1147.CrossRefGoogle Scholar
Paradis, E. (1998) Detecting shifts in diversification rates without fossils. American Naturalist 152, 176–187.CrossRefGoogle ScholarPubMed
Parker, W. C. and Arnold, A. J. (1997) Species survivorship in the Cenozoic planktonic foraminifera: a test of exponential and Weibull models. PALAIOS 12, 3–11.CrossRefGoogle Scholar
Parker, W. C., Feldman, A. and Arnold, A. J. (1999) Paleobiogeographic patterns in the morphologic diversification of the Neogene planktonic foraminifera. Palaeogeography, Palaeoclimatology, Palaeoecology 152, 1–14.CrossRefGoogle Scholar
Pearson, P. N. (1993) A lineage phylogeny for the Paleogene planktonic foraminifera. Micropaleontology 39, 193–232.CrossRefGoogle Scholar
Pearson, P. N. (1996) Cladogenetic, extinction and survivorship patterns from a lineage phylogeny: the Paleogene planktonic foraminifera. Micropaleontology 42, 179–188.CrossRefGoogle Scholar
Pearson, P. N. (1998a) Evolutionary concepts in biostratigraphy. In: Unlocking the Stratigraphical Record (ed. Doyle, P. and Bennett, M. R.), pp. 123–144. John Wiley, Chichester.Google Scholar
Pearson, P. N. (1998b) Speciation and extinction asymmetries in paleontological phylogenies: evidence for evolutionary progress?Paleobiology 24, 305–335.Google Scholar
Pearson, P. N., Olsson, R. K., Huber, B. T., Berggren, W. A. and Hemleben, C. (eds) (2006) Atlas of Eocene Planktonic Foraminifera. Cushman Foundation, Cushman Foundation Special Publications.
Penny, D. and Phillips, M. J. (2007) Evolutionary biology – Mass survivals. Nature 446, 501–502.CrossRefGoogle ScholarPubMed
Peters, S. E. and Foote, M. (2002) Determinants of extinction in the fossil record. Nature 416, 420–424.CrossRefGoogle ScholarPubMed
Pons, J., Barraclough, T. G., Gomez-Zurita, J., et al. (2006) Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Systematic Biology 55, 595–609.CrossRefGoogle ScholarPubMed
Price, T., Gibbs, H. L., Sousa, L. and Richman, A. D. (1998) Different timing of the adaptive radiations of North American and Asian warblers. Proceedings of the Royal Society of London Series B-Biological Sciences 265, 1969–1975.CrossRefGoogle Scholar
Prokoph, A., Fowler, A. D. and Patterson, R. T. (2000) Evidence for nonlinearity in a high-resolution fossil record of long-term evolution. Geology 28, 867–870.2.0.CO;2>CrossRefGoogle Scholar
Purvis, A. (2004) How do characters evolve?Nature 432, doi:10.1038/nature03092.CrossRefGoogle ScholarPubMed
Purvis, A., Nee, S. and Harvey, P. H. (1995) Macroevolutionary inferences from primate phylogeny. Proceedings of the Royal Society of London Series B 260, 329–333.CrossRefGoogle ScholarPubMed
Pybus, O. G. and Harvey, P. H. (2000) Testing macro-evolutionary models using incomplete molecular phylogenies. Proceedings of the Royal Society of London Series B 267, 2267–2272.CrossRefGoogle ScholarPubMed
Rabosky, D. L. (2006) Likelihood methods for detecting temporal shifts in diversification rates. Evolution 60, 1152–1164.CrossRefGoogle ScholarPubMed
Raup, D. M. (1985) Mathematical models of cladogenesis. Paleobiology 11, 42–52.CrossRefGoogle Scholar
Schluter, D., Price, T., Mooers, A. Ø. and Ludwig, D. (1997). Likelihood of ancestor states in adaptive radiation. Evolution 51, 1699–1711.CrossRefGoogle ScholarPubMed
Schmidt, D. N., Thierstein, H. R., Bollman, J. and Schiebel, R. (2004) Abiotic forcing of plankton evolution in the Cenozoic. Science 303, 207–210.CrossRefGoogle ScholarPubMed
Sepkoski, J. J. (1996) Competition in macroevolution: the double-wedge revisited. In: Evolutionary Paleobiology (ed. Jablonski, D., Erwin, D. H. and Lipps, J. H.), pp. 213–255. University of Chicago Press, Chicago.Google Scholar
Sibley, C. G. and Ahlquist, J. E. (1990) Phylogeny and Classification of Birds: A Case Study of Molecular Evolution. Yale University Press, New Haven, CT.Google Scholar
Simpson, G. G. (1953) The Major Features of Evolution. Columbia University Press, New York.Google Scholar
Smith, A. B., Gale, A. S. and Monks, N. E. A. (2001) Sea-level change and rock-record bias in the Cretaceous: a problem for extinction and biodiversity studies. Paleobiology 27, 241–253.2.0.CO;2>CrossRefGoogle Scholar
Stanley, S. M. (1979) Macroevolution. W H Freeman, San Francisco.Google Scholar
Stanley, S. M., Wetmore, K. L. and Kennett, J. P. (1988) Macroevolutionary differences between the two major clades of Neogene planktonic foraminifera. Paleobiology 14, 235–249.CrossRefGoogle Scholar
Stenseth, N. C. and Maynard Smith, J. (1984) Coevolution in ecosystems: red Queen evolution or stasis?Evolution 38, 870–880.CrossRefGoogle ScholarPubMed
Stewart, D. R. M. and Pearson, P. N. (2002) Plankrange: a database of planktonic foraminiferal ranges. http://palaeo.gly.bris.ac.uk/Data/plankrange.html.
Tavaré, S., Marshall, C. R., Will, O., Soligo, C. and Martin, R. D. (2002) Using the fossil record to estimate the age of the last common ancestor of extant primates. Nature 416, 726–729.CrossRefGoogle ScholarPubMed
Turgeon, J., Stoks, R., Thum, R. A., Brown, J. M. and McPeek, M. A. (2005) Simultaneous Quaternary radiations of three damselfly clades across the Holarctic. American Naturalist 165, E78–E107.CrossRefGoogle ScholarPubMed
Valen, L. (1973) A new evolutionary law. Evolutionary Theory 1, 1–30.Google Scholar
Webster, A. J. and Purvis, A. (2002) Testing the accuracy of methods for reconstructing ancestral states of continuous characters. Proceedings of the Royal Society of London Series B 214, 143–149.CrossRefGoogle Scholar
Wible, J. R., Rougier, G. W., Novacek, M. J. and Asher, R. J. (2007) Cretaceous eutherians and Laurasian origin for placental mammals near the K/T boundary. Nature 447, 1003–1006.CrossRefGoogle ScholarPubMed
Wood, S. N. (2006) Generalized Additive Models: An Introduction with R. Boca Chapman & Hall/CRC, Raton, FL.Google Scholar
Yule, G. U. (1924) A mathematical theory of evolution, based on the conclusions of Dr. J. C. Willis F.R.S. Philosophical Transactions of the Royal Society of London A 213, 21–87.CrossRefGoogle Scholar
Zink, R. M. (1994) The geography of mitochondrial DNA variation, popoulation structure, hybridization, and species limits in the Fox Sparrow (Passerella iliaca). Evolution 48, 96–111.Google Scholar
Zink, R. M. and Avise, J. C. (1990) Patterns of mitochondrial DNA and allozyme evolution in the avian genus Ammodramus. Systematic Zoology 39, 148–161.CrossRefGoogle Scholar
Zink, R. M. and Dittman, D. L. (1991) Evolution of Brown Towhees: mitochondrial DNA evidence. The Condor 93, 98–105.CrossRefGoogle Scholar
Zink, R. M. and Dittman, D. L. (1993) Population structure and gene flow in the Chipping Sparrow and a hypothesis for evolution in the genus Spizella. The Wilson Bulletin 105, 399–413.Google Scholar
Zink, R. M., Dittman, D. L., Klicka, J. and Blackwell-Rago, R. C. (1999) Evolutionary patterns of morphometrics, allozymes and mitochondrial DNA in Thrashers (Genus Toxostoma). The Auk 116, 1021–1038.CrossRefGoogle Scholar
Zink, R. M., Dittman, D. L. and Rootes, W. L. (1991a) Mitochondrial DNA variation and the phylogeny of Zonotrichia. The Auk 108, 578–584.CrossRefGoogle Scholar
Zink, R. M., Rootes, W. L. and Dittman, D. L. (1991b) Mitochondrial DNA variation, population structure, and evolution of the Common Grackle (Quiscalus quiscula). The Condor 93, 318–329.CrossRefGoogle Scholar
Zink, R. M. and Slowinski, J. B. (1995) Evidence from molecular systematics for decreased avian diversification in the Pleistocene epoch. Proceedings of the National Academy of Sciences of the United States of America 92, 5832–5835.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×