Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-wxhwt Total loading time: 0 Render date: 2024-07-08T14:38:16.646Z Has data issue: false hasContentIssue false

15 - Mechanisms of simultaneity constancy

from Part III - Temporal phenomena: binding and asynchrony

Published online by Cambridge University Press:  05 October 2010

Romi Nijhawan
Affiliation:
University of Sussex
Beena Khurana
Affiliation:
University of Sussex
Get access

Summary

Summary

There is a delay before sensory information arising from a given event reaches the central nervous system. This delay may be different for information carried by different senses. It will also vary depending on how far the event is from the observer and stimulus properties such as intensity. However, it seems that at least some of these processing time differences can be compensated for by a mechanism that resynchronizes asynchronous signals and enables us to perceive simultaneity correctly. This chapter explores how effectively simultaneity constancy can be achieved, both intramodally within the visual and tactile systems and cross-modally between combinations of auditory, visual, and tactile stimuli. We propose and provide support for a three-stage model of simultaneity constancy in which (1) signals within temporal and spatial windows are identified as corresponding to a single event, (2) a crude resynchronization is applied based on simple rules corresponding to the average processing speed differences between the individual sensory systems, and (3) fine-tuning adjustments are applied based on previous experience with particular combinations of stimuli.

Introduction

Although time is essential for the perception of the outside world, there is no energy that carries duration information, and consequently there can be no sensory system for time. Time needs to be constructed by the brain, and because this process itself takes time, it follows that the perception of when an event occurs must necessarily lag behind the occurrence of the event itself.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alais, D., & Carlile, S. (2005). Synchronizing to real events: subjective audiovisual alignment scales with perceived auditory depth and speed of sound. Proc Natl Acad Sci U S A 102: 2244–2247.CrossRefGoogle ScholarPubMed
Allan, L. G. (1975). The relationship between judgments of successiveness and judgments of order. Perception & Psychophysics 18: 29–36.CrossRefGoogle Scholar
Arnold, D. H., Johnston, A., & Nishida, S. (2005). Timing sight and sound. Vision Res 45: 1275–1284.CrossRefGoogle ScholarPubMed
Aschersleben, G. (1999). Task-dependent timing of perceptual events. In G., Aschersleben, T., Bachmann, & J., Müsseler (eds.), Cognitive Contributions to the Perception of Spatial and Temporal Events (293–318). North Holland: Elsevier.CrossRefGoogle Scholar
Aschersleben, G., & Bertelson, P. (2003). Temporal ventriloquism: cross-modal interaction on the time dimension. 2. Evidence from sensorimotor synchronization. Int J Psychophysiol 50: 157–163.CrossRefGoogle Scholar
Bergenheim, M., Johansson, H., Granlund, B., & Pedersen, J. (1996). Experimental evidence for a sensory synchronization of sensory information to conscious experience. In S. R., Hameroff, A. W., Kaszniak, & A. C., Scott (eds.), Towards a Science of Consciousness: The First Tucson Discussions and Debates (301–310). Cambridge, MA: MIT Press.Google Scholar
Bertelson, P., & Aschersleben, G. (2003). Temporal ventriloquism: crossmodal interaction on the time dimension. 1. Evidence from auditory-visual temporal order judgment. Int J Psychophysiol 50: 147–155.CrossRefGoogle ScholarPubMed
Celesia, G. G. (1976). Organization of auditory cortical areas in man. Brain 99: 403–414.CrossRefGoogle ScholarPubMed
Craig, J. C., & Baihua, X. (1990). Temporal order and tactile patterns. Perception & Psychophysics 47: 22–34.CrossRefGoogle ScholarPubMed
Dennett, D. C. (1991). Consciousness Explained. Boston: Little, Brown and Company.Google Scholar
Dennett, D. C., & Kinsbourne, M. (1992). Time and the observer: the where and when of consciousness in the brain. Behav Brain Sci 15: 183–201.CrossRefGoogle Scholar
Dixon, N. F., & Spitz, L. (1980). The detection of auditory visual desynchrony. Perception 9: 719–721.CrossRefGoogle ScholarPubMed
Engel, G. R., & Dougherty, W. G. (1971). Visual-auditory distance constancy. Nature 234: 308.CrossRefGoogle ScholarPubMed
Fujisaki, W., Shimojo, S., Kashino, M., & Nishida, S. (2004). Recalibration of audiovisual simultaneity. Nat Neurosci 7: 773–778.CrossRefGoogle ScholarPubMed
Gregory, R. L. (1963). Distortion of visual space as inappropriate constancy scaling. Nature 199: 678–680.CrossRefGoogle ScholarPubMed
Harrar, V., & Harris, L. R. (2005). Simultaneity constancy: detecting events with touch and vision. Exp Brain Res 166: 465–473.CrossRefGoogle ScholarPubMed
Harrar, V., & Harris, L. R. (2008). The effect of exposure to asynchronous audio, visual, and tactile stimulus combinations on the perception of simultaneity. Exp Brain Res 186: 517–524.CrossRefGoogle ScholarPubMed
Jaekl, P. M., & Harris, L. R. (2007). Auditory-visual temporal integration measured by shifts in perceived temporal location. Neurosci Lett 417: 219–224.CrossRefGoogle ScholarPubMed
Jaśkowski, P. (1999). Reaction time and temporal-order judgement as measures of perceptual latency: the problem of dissociations. In G., Aschersleben, T., Bachmann, & J., Müsseler (eds.), Cognitive Contributions to the Perception of Spatial and Temporal Events (265–282). North Holland: Elsevier.CrossRefGoogle Scholar
Jaśkowski, P., & Verleger, R. (2000). Attentional bias toward low-intensity stimuli: an explanation for the intensity dissociation between reaction time and temporal order judgment?Conscious Cogn 9: 435–456.CrossRefGoogle ScholarPubMed
Jeffreys, D. A., & Axford, J. G. (1972). Source locations of pattern-specific components of human VEPs. Exp Brain Res 16: 1–21.Google Scholar
King, A. J., & Palmer, A. R. (1985). Integration of visual and auditory information in bimodal neurones in the guinea-pig superior colliculus. Exp Brain Res 60: 492–500.CrossRefGoogle ScholarPubMed
Kopinska, A., & Harris, L. R. (2004). Simultaneity constancy. Perception 33: 1049–1060.CrossRefGoogle ScholarPubMed
Lesevre, N. (1982). Chronotopographical analysis of the human evoked potential in relation to the visual field. Ann NY Acad Sci 388: 156–182.Google ScholarPubMed
Lewald, J., & Guski, R. (2004). Auditory-visual temporal integration as a function of distance: no compensation for sound-transmission time in human perception. Neurosci Lett 357: 119–122.CrossRefGoogle ScholarPubMed
Libet, B. (2004). Mind Time: The Temporal Factor in Consciousness. Cambridge, MA: Harvard University Press.Google Scholar
Liegeois-Chauvel, C., Musolino, A., & Chauvel, P. (1991). Localization of the primary auditory area in man. Brain 114: 139–153.Google ScholarPubMed
Luce, R. D. (1986). Response Times: Their Role in Inferring Elementary Mental Organization. New York: Oxford University Press.Google Scholar
Macefield, G., Gandevia, S. C., & Burke, D. (1989). Conduction velocities of muscle and cutaneous afferents in the upper and lower limbs of human subjects. Brain 112: 1519–1532.CrossRefGoogle ScholarPubMed
McKee, S. P., & Smallman, H. S. (1998). Size and speed constancy. In V., Walsh & J. J., Kulikowski (eds.), Perceptual Constancy (373–408). Cambridge: Cambridge University Press.Google Scholar
Miyazaki, M., Yamamoto, S., Uchida, S., & Kitazawa, S. (2006). Bayesian calibration of simultaneity in tactile temporal order judgment. Nat Neurosci 9: 875–877.CrossRefGoogle ScholarPubMed
Morein-Zamir, S., Soto-Faraco, S., & Kingstone, A. (2003). Auditory capture of vision: examining temporal ventriloquism. Cogn Brain Res 17: 154–163.CrossRefGoogle ScholarPubMed
Navarra, J., Soto-Faraco, S., & Spence, C. (2007). Adaptation to audiotactile asynchrony. Neurosci Lett 413: 72–76.CrossRefGoogle ScholarPubMed
Navarra, J., Vatakis, A., Zampini, M., Soto-Faraco, S., Humphreys, W., & Spence, C. (2005). Exposure to asynchronous audiovisual speech extends the temporal window for audiovisual integration. Cogn Brain Res 25: 499–507.CrossRefGoogle ScholarPubMed
Nickalls, R. W. D. (1996). The influence of target angular velocity on visual latency difference determined using the rotating Pulfrich effect. Vision Res 36: 2865–2872.CrossRefGoogle ScholarPubMed
Pöppel, E. (1988). Mindworks. Boston: Harcourt Brace Jovanovich.Google Scholar
Pöppel, E., Schill, K., & von Steinbuchel, N. (1990). Sensory integration within temporally neutral systems states: a hypothesis. Naturwissenschaften 77: 89–91.CrossRefGoogle ScholarPubMed
Schneider, K. A., & Bavelier, D. (2003). Components of visual prior entry. Cogn Psychol 47: 333–366.CrossRefGoogle ScholarPubMed
Shore, D. I., Spry, E., & Spence, C. (2002). Confusing the mind by crossing the hands. Brain research. Cogn Brain Res 14: 153–163.CrossRefGoogle Scholar
Soto-Faraco, S., Ronald, A., & Spence, C. (2004). Tactile selective attention and body posture: assessing the multisensory contributions of vision and proprioception. Percept Psychophys 66: 1077–1094.CrossRefGoogle ScholarPubMed
Spence, C., Baddeley, R., Zampini, M., James, R., & Shore, D. I. (2003). Multisensory temporal order judgments: when two locations are better than one. Percept Psychophys 65: 318–328.CrossRefGoogle ScholarPubMed
Spence, C., Shore, D. I., & Klein, R. M. (2001). Multisensory prior entry. J Exp Psychol General 130: 799–832.CrossRefGoogle ScholarPubMed
Spence, C., & Squire, S. (2003). Multisensory integration: maintaining the perception of synchrony. Curr Biol 13: R519–521.CrossRefGoogle ScholarPubMed
Sternberg, S., & Knoll, R. L. (1973). The perception of temporal order: fundamental issues and a general model. In S., Kornblum (ed.), Attention and Performance IV (629–685). New York: Academic Press.Google Scholar
Stone, R. V., Hunkin, N. M., Porrill, J., Wood, R., Keeler, V., & Beanland, M., et al. (2001). When is now? Perception and simultaneity. Proc Roy Soc Lond B 268: 31–38.CrossRefGoogle ScholarPubMed
Sugita, Y., & Suzuki, Y. (2003). Audiovisual perception: implicit estimation of sound-arrival time. Nature 421: 911.CrossRefGoogle ScholarPubMed
Vatakis, A., & Spence, C. (2006). Audiovisual synchrony perception for speech and music assessed using a temporal order judgment task. Neurosci Lett 393: 40–44.CrossRefGoogle ScholarPubMed
von Békésy, G. (1963). Interaction of paired sensory stimuli and conduction in peripheral nerves. J Applied Physiol 18: 1276–1284.CrossRefGoogle Scholar
von Békésy, G. (1967). Sensory Inhibition. Princeton, NJ: Princeton University Press.Google Scholar
Vroomen, J., Keetels, M., de Gelder, B., & Bertelson, P. (2004). Recalibration of temporal order perception by exposure to audio-visual asynchrony. Cogn Brain Res 22: 32–35.CrossRefGoogle ScholarPubMed
Walsh, V., & Kulikowski, J. (1998). Perceptual Constancy: Why Things Look as They Do. Cambridge: Cambridge University Press.Google Scholar
Wilson, J. A., & Anstis, S. M. (1969). Visual delay as a function of luminance. Am J Psychol 82: 350–358.CrossRefGoogle ScholarPubMed
Zampini, M., Brown, T., Shore, D. I., Maravita, A., Roder, B., & Spence, C. (2005). Audiotactile temporal order judgments. Acta Psychol (Amst) 118: 277–291.CrossRefGoogle ScholarPubMed
Zampini, M., Guest, S., Shore, D. I., & Spence, C. (2005). Audio-visual simultaneity judgments. Percept Psychophys 67: 531–544.CrossRefGoogle ScholarPubMed
Zampini, M., Shore, D. I., & Spence, C. (2005). Audiovisual prior entry. Neurosci Lett 381: 217–222.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×