Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-06-19T04:55:17.611Z Has data issue: false hasContentIssue false

Part III - Solute and sedimentary fluxes in subarctic and Arctic environments

Published online by Cambridge University Press:  05 July 2016

Achim A. Beylich
Affiliation:
Geological Survey of Norway
John C. Dixon
Affiliation:
University of Arkansas
Zbigniew Zwoliński
Affiliation:
Adam Mickiewicz University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

André, M. F. (1990a). Geomorphic impact of spring avalanches in northwest Spitsbergen (79°N). Permafrost and Periglacial Processes, 1, 97110.CrossRefGoogle Scholar
André, M. F. (1990b). Frequency of debris flows and slush avalanches in Spitsbergen: a tentative evaluation from lichenometry. Polish Polar Research, 11, 345363.Google Scholar
Arnborg, L. B., Walker, H. J., and Peippo, J. (1967). Suspended load in the Colville River, Alaska, 1962. Geografiska Annaler, 49A, 131144.CrossRefGoogle Scholar
Barsch, D. and Caine, N. (1984). The nature of mountain geomorphology. Mountain Research and Development, 4, 287298.CrossRefGoogle Scholar
Barsch, D., Gude, M., Maüsbacker, R., Schukraft, G., and Schulte, A. (1994). Recent fluvial sediment budgets in glacial and periglacial environments, NW Spitsbergen. Zeitschrift für Geomorphologie, (Suppl. 97), S111–S122.Google Scholar
Beylich, A. A. (2000). Geomorphology, sediment budget, and relief development in Austdalur, Austfirdir, east Iceland. Arctic, Antarctic and Alpine Research, 32, 466477.CrossRefGoogle Scholar
Beylich, A. A. (2003). Present morphoclimates and morphodynamics of Latnjavagge, northern Swedish Lapland and Austdalur, east Iceland. Jӧkul, 52, 3354.Google Scholar
Beylich, A. A. (2008). Mass transfers, sediment budget and relief development in the Latnjavagge catchment, Arctic-oceanic Swedish Lapland. Zeitschrift für Geomorphologie, 52, 149197.CrossRefGoogle Scholar
Beylich, A. A. (2011). Mass transfers, sediment budgets and relief development in cold environments: results of long-term geomorphologic drainage basin studies in Iceland, Swedish Lapland and Finnish Lapland. Zeitschrift für Geomorphologie, 55, 145174.CrossRefGoogle Scholar
Beylich, A. A. (2012). Major controls of mass transfers and relief development in four cold-climate catchment systems in eastern Iceland, Swedish Lapland and Finnish Lapland: Synthesis paper. In Abstracts and Proceedings of the Geological Society of Norway. No. 1. 86–123.Google Scholar
Beylich, A. A. and Kneisel, C. H. (2009). Sediment budget and relief development in Hrafndalur, subarctic oceanic eastern Iceland. Arctic, Antarctic and Alpine Research, 41, 317.CrossRefGoogle Scholar
Beylich, A. A., Schmidt, K. H., Neuvonen, S., Forbrich, I., and Schildt, A. (2006). Solute fluxes in the Kidisjoki catchment subarctic Finnish Lapland. Geomorphologie: relief, processus, environment, 3, 205212.Google Scholar
Bogen, J., and Bønsnes, T. E. (2003). Erosion and sediment transport in High Arctic Rivers, Svalbard. Polar Research, 22, 175189.CrossRefGoogle Scholar
Büdel, J. (1963). Climatic Geomorphology. Translated by Fischer, L. and Busche, D. Princeton, NJ: Princeton University Press.Google Scholar
Caine, N. (2001). Geomorphic systems of Green Lakes Valley. In Bowman, W. D. and Seastedt, T. R., eds., Structure and Function of an Alpine Ecosystem: Niwot Ridge, Colorado. Oxford: Oxford University Press, pp. 4574.Google Scholar
Caine, N. (2004). Mechanical and chemical denudation in mountain systems. In Owens, P. N. and Slaymaker, O., eds., Mountain Geomorphology. London: Edward Arnold, pp. 132152.Google Scholar
Caine, N., and Swanson, F. J. (1989). Geomorphic coupling of hillslope and channel systems in two small mountain basins. Zeitschrift für Geomorphology, 33, 189203.CrossRefGoogle Scholar
Christiansen, H. H. (1998). Nivation forms and processes in unconsolidated sediments, NE Greenland. Earth Surface Processes and Landforms, 23, 751760.3.0.CO;2-A>CrossRefGoogle Scholar
Christiansen, H. H., Sigsgaard, C., Humlum, O., Rasch, M., and Hansen, B. U. (2008). Permafrost and periglacial geomorphology at Zackenberg. Advances in Ecological Research, 40, 151174.CrossRefGoogle Scholar
Church, M. (1974). On the quality of some waters on Baffin Island, Northwest Territories. Canadian Journal of Earth Sciences, 11, 16761688.CrossRefGoogle Scholar
Church, M., and Ryder, J. M. (1972). Paraglacial sedimentation: a consideration of fluvial processes conditioned by glaciation. Bulletin of the Geological Society of America, 83, 30593067.CrossRefGoogle Scholar
Clark, M. J. (1988). Periglacial hydrology. In Clark, M. J., ed., Advances in Periglacial Geomorphology. Chichester: John Wiley and Sons, pp. 415462.Google Scholar
Dixon, J. C. (in press). A contemporary assessment of sediment and solute transfers in Kärkevagge, Swedish Lapland. In A. A. Beylich, J. C. Dixon, and Z. Zwolinski, eds., Source to Sink Fluxes in Undisturbed Cold Environments. Cambridge: Cambridge University Press.Google Scholar
Etzelmüller, B., Odegard, R. S., Vatne, G., Mysterud, R. S., Tonning, T., and Sollid, J. L. (2000). Glacier characteristics and sediment transfer system of Longyearbreen and Larsbreen, western Spitsbergen. Norsk Geografisk Tidsskrift, 54, 157168.CrossRefGoogle Scholar
Forbes, D. L. (1975). Sedimentary processes and sediments, Babbage River Delta, Yukon coast. Geological Survey of Canada Paper, 75–1, 157160.Google Scholar
Forland, E., and Hanssen-Bauer, I. (2000). Increased precipitation in the Norwegian Arctic: true or false? Climate Change, 46, 485509.CrossRefGoogle Scholar
Hansen, B. U., Sigsgaard, C., Rasmussen, L., Cappelen, J., Hinkler, J., Mernild, S. H., Petersen, D., Tamstorf, M. P., Rasch, M., and Hasholt, B. (2008). Present day climate at Zackenberg. Advances in Ecological Research, 40, 111149.CrossRefGoogle Scholar
Hasholt, B. (1976). Hydrology and transport of material in the Sermilik area 1972. Geografisk Tidsskrift, 75, 3039.CrossRefGoogle Scholar
Hasholt, B. (1996). Sediment transport in Greenland. In Walling, D. E. and Webb, B. W., eds., Erosion and Sediment Yield: Global and Regional perspectives. IAHS Publication 236, Wallingford, IAHS Press, pp. 105114.Google Scholar
Hasholt, B., and Mernild, S. H. (2006). Glacial erosion and sediment transport in the Mittivakkat Glacier catchment, Ammassalik Island, southeast Greenland. IAHS Publication 306: 4556.Google Scholar
Hasholt, B., Mernild, S. H., Sigsgaard, C., Elberling, B., Petersen, D., Jakobsen, B. H., Hansen, B. U., Hinkler, J., and Søgaard, H. (2008). Hydrology and transport of sediment and solutes at Zackenberg. Advances in Ecological Research, 40, 197220.CrossRefGoogle Scholar
Hellden, D. (1973). Limestone solution intensity in a karst area in Lapland, northern Sweden. Geografiska Annaler, 55A, 185196.CrossRefGoogle Scholar
Hodgkins, R., Cooper, R., Wadham, J., and Tranter, M. (2003). Suspended sediment fluxes in a high-Arctic glacierised catchment: implications for fluvial sediment storage. Sedimentary Geology, 162, 105117.CrossRefGoogle Scholar
Hodgkins, R., Tranter, M., and Dowdeswell, J. A. (1997). Solute provenance, transport and denudation in a high arctic glacierized catchment. Hydrological Processes, 11, 18131832.3.0.CO;2-C>CrossRefGoogle Scholar
Humlum, O. (1997). Active layer thermal regime at three rock glaciers in Greenland. Permafrost and Periglacial Processes, 8, 383408.3.0.CO;2-V>CrossRefGoogle Scholar
Humlum, O. (1998). The climatic significance of rock glaciers. Permafrost and Periglacial Processes, 9, 375395.3.0.CO;2-0>CrossRefGoogle Scholar
Jäckli, H. (1957). Gegenwartsgeologie des Bundnerischen Rheingebietes Beitrag zur Geologischen Karte der Schweiz, Geotechn. Serie, 36.Google Scholar
Jakobsen, B. H. (1992). Preliminary studies of soils in North-East Greenland between 74o and 75o Northern latitude. Geografisk Tidskrift, 92, 111115.CrossRefGoogle Scholar
Kostrzewski, A., Kanecki, A., Kapuschinski, J., Klimczak, R., Stach, A., and Zwolinski, Z. (1989). The dynamics and rate of denudation of glaciated and non-glaciated catchments in central Spitsbergen. Polish Polar Research, 10, 317367.Google Scholar
Lewkowicz, A. G. (1983). Erosion by overland flow, central Banks Island, western Canadian Arctic. Proceedings of the Fourth International Permafrost Conference. Washington DC: National Academy Press. 701706.Google Scholar
Lisitsyna, K. N., and Aleksandrova, V. I. (1972). Sediment load of rivers in the European USSR. Soviet Hydrology: Selected Papers, 2, 69100.Google Scholar
McCann, S. B., and Cogley, J. G. (1972). Hydrologic observations on a small arctic catchment, Devon Island. Canadian Journal of Earth Sciences, 9, 361365.CrossRefGoogle Scholar
McCloy, J. M. (1970). Hydrometeorological relationships and their effects upon the levees of a small arctic delta. Geografiska Annaler, 52A, 223241.CrossRefGoogle Scholar
McDonald, B. C., and Lewis, C. P. (1973). Geomorphological and sedimentologic processes of rivers and coast, Yukon coastal plain. Environmental-Social Committee Northern Pipelines (Canada). Report 73–39.Google Scholar
Nilsson, B. (1971). Sediment transport in Swedish rivers. IHD project part 2: Catchment Areas, Stations and Results 1967–69. Uppsala Universitets Naturgeografiska Institution, Rapport 16.Google Scholar
Peltier, L. C. (1950). The geographic cycle in periglacial regions as it is related to climatic geomorphology. Annals of the Association of American Geographers, 40, 214236.CrossRefGoogle Scholar
Rachlewicz, G. (2009). Contemporary sediment fluxes and relief changes in high Arctic glacierized valley systems (Billefjorden, central Spitsbergen). Poznań: Uniwersytet im Adama Mickiewicza W Poznaniu. Seria Geografia, 87.Google Scholar
Rachlewicz, G., Szczuciński, W., and Ewertowski, M. (2007). Post-“Little Ice Age” retreat rates of glaciers around Billefjorden in central Spitsbergen, Svalbard. Polish Polar Research, 28, 159186.Google Scholar
Rapp, A. (1960). Recent development of mountain slopes Kärkevagge and surroundings, northern Scandinavia. Geografiska Annaler, 42A, 71200.Google Scholar
Rasch, M., Elberling, B., Jakobsen, B. H., and Hasholt, B. (2000). High-resolution measurements of water discharge, sediment, and solute transport in the river Zackenbergelven, northeast Greenland. Arctic, Antarctic, and Alpine Research, 32, 336345.CrossRefGoogle Scholar
Rehn, J., Stoertz, M., and Strömquist, L. (1982). Geomorphological investigations on erosion, sediment production, and fluvial transport along road 98, Kiruna-Riksgransen. Swedish Environmental Protection Board Publication 1522. 91p (in Swedish).Google Scholar
Ritchie, W., and Walker, H. J. (1974). River in the frozen north. Geographical Magazine, 46, 634640.Google Scholar
Slaymaker, O. (2004). Mass balances of sediments, solutes and nutrients: the need for greater integration. Journal of Coastal Research, Special Issue, 43, 109123.Google Scholar
Slaymaker, O. (2008). Sediment budget and sediment flux studies under accelerating global change in cold climates. Zeitschrift für Geomorphologie, 52, 123148.CrossRefGoogle Scholar
Slaymaker, O. (2009). Proglacial, periglacial or paraglacial? In Knight, J. and Harrison, S., eds., Periglacial and paraglacial Processes and Environments. Special Publication 320. London: Geological Society of London, 7184.Google Scholar
Strömquist, L. (1983). Gelifluction and surface wash, their importance and interaction on a periglacial slope. Geografiska Annaler, 65A, 245254.CrossRefGoogle Scholar
Szpikowski, J., Szpikowska, G., Zwolińki, Z., Rachlewicz, G., Kostrzewski, A., Marciniak, M., and Dragon, K. (2014). Geomorphology, 218, 52–62.CrossRefGoogle Scholar
Thomasson, H. (1990). Glacial and volcanic shore interaction. Part 1. On land. In Sigbjarnarsson, G., ed., Icelandic Coastal and River Symposium Proceedings. Reykjavik: Icelandic National Energy Authority, pp. 718.Google Scholar
Thomasson, H. (1991). Glaciofluvial sediment transport and erosion. In Hagen, J. O. and Hassel, K. A., eds., Arctic Hydrology, Present and Future Tasks. Oslo: Norwegian National Committee for Hydrology. Report. 23/91. pp. 2736.Google Scholar
Thorn, C. E., Schlyter, P. L., Darmody, R. G., and Dixon, J. C. (1999). Statistical relationships between daily and monthly air and shallow-ground temperatures in Karkevagge, Swedish Lapland. Permafrost and Periglacial Processes, 10, 317330.3.0.CO;2-S>CrossRefGoogle Scholar
Threlfall, J. L. (1986). Sediment source and discharge variability in small subarctic nival catchments. Unpublished Ph.D. thesis, University of Southampton, U.K.Google Scholar
Tricart, J., and Cailleux, A. (1965). Introduction to Climatic Geomorphology. Translated by de Jong, C. J. K., London: Longman.Google Scholar

References

Barbolini, M., and Keylock, C. J. (2002). A new method for avalanche hazard mapping using a combination of statistical and deterministic models. Natural Hazards and Earth System Sciences 2, 239245.CrossRefGoogle Scholar
Bräker, O. U. (2002). Measuring and data processing in tree-ring research – a methodological introduction. Dendrochronologia 20, 203216.CrossRefGoogle Scholar
Bryant, C. L., Butler, D. R., and Vitek, J. D. (1989). A statistical analysis of tree-ring dating in conjunction with snow avalanches: comparison of on-path versus off-path responses. Environmental Geological Water Science 14, 5359.CrossRefGoogle Scholar
Brynjólfsson, S., and Ólafsson, H. (2009). Precipitation in the Svarfaðardalur region, North-Iceland. Meteorology and Atmospheric Physics 103, 5766.CrossRefGoogle Scholar
Butler, D. R., (1979). Snow avalanche path terrain and vegetation, Glacier National Park, Montana. Arctic and Alpine Research 11, 1732.CrossRefGoogle Scholar
Butler, D. P., and Malanson, G. P. (1985). A history of high-magnitude snow avalanches, Southern Glacier National Park, Montana, USA. Mountain Research and Development 5, 175182.CrossRefGoogle Scholar
Butler, D. R., Malanson, G. P., and Oelfke, J. G. (1987). Tree-ring analysis and natural hazard chronologies: minimum sample sizes and index values. The Professional Geographer 39, 4147.CrossRefGoogle Scholar
Butler, D. R., Sawyer, C. F., and Maas, J. A. (2010). Tree-ring dating of snow avalanches in Glacier National Park, Montana, USA. In: Stoffel, M., Bollschweiler, M., Butler, D. R., and Luckman, B. H., eds., Tree Rings and Natural Hazards, a State-of-the-Art. Heidelberg, Berlin, New York: Springer, pp. 3546.CrossRefGoogle Scholar
Carrara, P. E. (1979). The determination of snow avalanche frequency through tree-ring analysis and historical records at Ophir, Colorado. Geological Society of America Bulletin 90, 773780.2.0.CO;2>CrossRefGoogle Scholar
Corona, C., Rovéra, G., Lopez Saez, J., Stoffel, M., and Perfettini, P. (2010). Spatio-temporal reconstruction of snow avalanche activity using tree rings: Pierres Jean Jeanne avalanche talus, Massif de l'Oisans, France. Catena 83, 107118.Google Scholar
Corona, C., Lopez, Saez J., Stoffel, M., Rovéra, G., Edouard, J.-L., and Berger, F. (2012). Seven centuries of avalanche activity at Echalp (Queyras massif, southern French Alps) as inferred from tree rings. The Holocene 23, 292304.CrossRefGoogle Scholar
Decaulne, A. (2001). Mémoire collective et perception du risque lié aux avalanches et aux debris flows dans les fjords islandais: l'exemple du site d'Ísafjörður (Islande nord-occidentale). Revue de Géographie Alpine, T. 89, n°3, 6380.CrossRefGoogle Scholar
Decaulne, A., and Sæmundsson, Þ. (2010). Distribution and frequency of snow-avalanche debris transfer in the distal part of colluvial cones in Central North Iceland. Geografiska Annaler, 92A (2), 177147.CrossRefGoogle Scholar
Decaulne, A., Eggertsson, Ó., and Sæmundsson, Þ. (2012). A first dendrogeomorphologic approach of snow avalanche magnitude – frequency in Northern Iceland. Geomorphology 167–168, 3544.CrossRefGoogle Scholar
Decaulne, A., Sæmundsson, Þ., and Eggertsson, Ó. (2013). A multi-scale resolution of snow-avalanche activity based on geomorphological investigations at Fnjóskadalur, northern Iceland, Polar Record 49, 220229.CrossRefGoogle Scholar
Decaulne, A., Eggertsson, Ó., Laute, K., and Beylich, A. A. (2013). Dendrogeomorphic approach for snow-avalanche activity reconstruction in a maritime cold environment (upper Erdalen, Norway). Zeitschrift für Geomorphologie Suppl. Bd. 2, 5568.CrossRefGoogle Scholar
Decaulne, A., Eggertsson, Ó., Laute, K., and Beylich, A. A. (2014). A 100-year extreme snow-avalanche record based on tree-ring research in upper Bødalen, inner Nordfjord, western Norway. Geomorphology 218, 315.CrossRefGoogle Scholar
Dubé, S., Filion, L., and Hétu, B. (2004). Tree-ring reconstruction of high-magnitude snow avalanches in the northern Gaspé Peninsula, Québec, Canada. Arctic, Antarctic, and Alpine Research 36, 555564.CrossRefGoogle Scholar
Germain, D., Filion, L., and Hétu, B. (2005). Snow avalanche activity after fire and logging disturbances, northern Gaspé Peninsula, Quebec, Canada. Canadian Journal of Earth Sciences 42, 21032116.CrossRefGoogle Scholar
Germain, D., Filion, L., and Hétu, B. (2009). Snow avalanche regime and climatic conditions in the Chic-Choc Range, eastern Canada. Climatic Change 92, 141167.CrossRefGoogle Scholar
Germain, D., Hétu, B., and Filion, L. (2010). Tree-ring based reconstruction of past snow avalanche events and risk assessment in Northern Gaspé Peninsula (Québec, Canada). In Stoffel, M., Bollschweiler, M., Butler, D. R., and Luckman, B. H., eds. Tree Rings and Natural Hazards, a State-of-the-Art. Heidelberg, Berlin, New York: Springer, pp. 5173.CrossRefGoogle Scholar
Grissino-Mayer, H. D. (2001). Evaluating cross-dating accuracy: a manual and tutorial for the computer program COFECHA. Tree-Ring Research 57, 205221.Google Scholar
Haraldsdóttir, S. H., Tracy, L., Jensen, E. H., and Ólafsson, H. (2006). Avalanches in coastal towns in Iceland. Jökull 56, 125.CrossRefGoogle Scholar
Hewitt, K. (2004). Geomorphic hazards in mountain environments. In Owens, P. N., & Slaymaker, O.. Mountain Geomorphology, London: Arnold, 313 p.Google Scholar
Holmes, R. (1983). Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bulletin 43, 6978.Google Scholar
Jónsson, Þ. H. (2004). Stature of sub-arctic birch in relation to growth rate, lifespan and tree form. Annals of Botany 94, 753762.CrossRefGoogle ScholarPubMed
Khapayev, S. A. (1978). Dynamics of avalanche natural complexes: an example from the high-mountain Teberda State Reserve, Caucasus Mountains, USSR. Arctic and Alpine Research 10, 335344.CrossRefGoogle Scholar
Keylock, C. (1997). Snow avalanches. Progress in Physical Geography 21, 481500.CrossRefGoogle Scholar
Köse, N., Aydın, A., Akkemik, Ü., Yurtseven, H., and Güner, T. (2010). Using tree-ring signals and numerical model to identify the snow avalanche tracks in Kastamonu, Turkey. Natural Hazards and Earth System Sciences 54, 435449.CrossRefGoogle Scholar
Levanic, T., and Eggertsson, O. (2008). Climatic effects on birch (Betula pubescens) growth in Fnjoskadalur valley, northern Iceland. Dendrochronologica, 25, 135143.CrossRefGoogle Scholar
Lied, K., and Bakkehøi, S. (1980). Empirical calculations of snow-avalanche run-out distance based on topographic parameters. Journal of Glaciology 26, 165–77.CrossRefGoogle Scholar
Luckman, B. H. (1977). The geomorphic activity of avalanches. Geografiska Annaler 59, 3148.CrossRefGoogle Scholar
Luckman, B. H. (1978). Geomorphic work of snow avalanches in the Canadian Rocky Mountains. Arctic and Alpine Research 10, 261276.CrossRefGoogle Scholar
McClung, D., and Shaerer, P. (1993). The Avalanche Handbook. Seattle: The Mountaineers, 271 p.Google Scholar
Perla, R. I., Cheng, T. T., and McClung, D. M. (1980). A two-parameter model of snow avalanche motion. Journal of Glaciology 26, 197207.CrossRefGoogle Scholar
Potter, N. (1969). Tree-ring dating of snow avalanche tracks and the geomorphic activity of avalanches, northern Absaroka Mountains, Wyoming, Boulder, CO. Geological Society of America, Special Paper 123, pp. 141–165.CrossRefGoogle Scholar
Rapp, A. (1959). Avalanche boulder tongues in Lappland: a description of little known landforms of periglacial debris accumulation. Geografiska Annaler 41, 3448.CrossRefGoogle Scholar
Rapp, A. (1960). Recent developments of mountain slopes in Kärkevagge and surroundings, northern Scandinavia. Geografiska Annaler 42, 73200.Google Scholar
Rinntech. (2006). LINTAB - Precision Ring by Ring. http://www.rinntech.com/Products/LINTAB.htm. 2 pp.Google Scholar
Selby, M. J. (2005). Hillslope materials and processes. Oxford: Oxford University Press, 451 p.Google Scholar
Shroder, J. F. (1978). Dendrochronological analysis of mass movement on Table Cliffs, Utah. Quaternary Research, 9, 168185.CrossRefGoogle Scholar
Speer, J. H. (2010). Fundamentals of Tree-ring Research. Tucson: The University of Arizona Press.Google Scholar
Stoffel, M. (2005). Spatio-temporal Variations of Rockfall Activity into Forests - Results from Tree-ring and Tree Analysis. PhD thesis no. 1480, Department of Geosciences, Geography, GeoFocus 12. University of Fribourg, Fribourg, 188 pp.Google Scholar
Stoffel, M., Bollschweiler, M., and Hassler, G. R. (2006). Differentiating events on a cone influenced by debris-flow and snow avalanche activity – a dendrogeomorphological approach. Earth Surface Processes and Landforms 31, 14241437.CrossRefGoogle Scholar
Szymczak, S., Bollschweiler, M., Stoffel, M., and Dikau, R. (2010). Debris-flow activity and snow avalanches in a steep watershed of the Valais Alps (Switzerland): dendrogeomorphic event reconstruction and identification of triggers. Geomorphology 116, 107114.CrossRefGoogle Scholar
Voiculescu, M., and Onaca, A. (2014). Spatio-temporal reconstruction of snow avalanche activity using dendrogeomorphological approach in Bucegi Mountains Romanian Carpathians. Cold Region Science and Technology 104–105, 6375.CrossRefGoogle Scholar

References

Allen, C. E., Darmody, R. G., Thorn, C. E., Dixon, J. C., and Schlyter, P. (2001). Clay mineralogy, chemical weathering, and landscape evolution in Arctic-Alpine Sweden. Geoderma, 99, 277294.CrossRefGoogle Scholar
Angstrőm, A. (1974). Sveriges klimat (Swedish climate) (In Swedish with English summaries). Stockholm: Generalstabens Litografiska Ansyalta Forlag.Google Scholar
Bartsch, A., Gude, M., Jonasson, C., and Scherer, D. (2002). Identification of geomorphic process units in Kärkevagge, northern Sweden, by remote sensing and digital terrain analysis. Geografiska Annaler, 84A, 171178.CrossRefGoogle Scholar
Barsch, D. (1981). Studien zur gegenwartigen Geomorphodynamik im Bereich der Oobloyah Bay, N-Elllesmer Island N.W.T. Kanada. Heidelberger Geographische Arbeiten, 69, 123161.Google Scholar
Bartsch, A., Gude, M., and Gurney, S. D. (2008). A geomatics-based approach for the derivation of the spatial distribution of the sediment transport processes in periglacial mountain environments. Earth Surface Processes and Landforms, 33, 22552265.CrossRefGoogle Scholar
Bartsch, A., Gude, M., and Gurney, S. D. (2009). Quantifying sediment transport processes in periglacial mountain environments at a catchment scale using geomorphic process units. Geografiska Annaler, 91A, 19.Google Scholar
Baumgart-Kotarba, M., Kedzia, S., Kotarba, A., and Mościcki, J. (2001). Geomorphological and geophysical studies in a subarctic environment of Kärkevagge Valley, northern Sweden. Bulletin of the Polish Academy of Sciences: Earth Sciences, 49, 123135.Google Scholar
Beylich, A. A. (2000). Geomorphology, sediment budget and relief development in Austdalfur, Austfirdir, east Iceland. Arctic, Antarctic and Alpine Research, 32, 466477.CrossRefGoogle Scholar
Beylich, A. A. (2008a). Mass transfers, sediment budget and relief development in the Latnjavagge catchment, Arctic-oceanic Swedish Lapland. Zeitschrift fur Geomorphologie, 52, Supplement 1, S149S 197.CrossRefGoogle Scholar
Beylich, A. A. (2008b). Sediment fluxes and sediment budget in Latnjavagge and the potential of applying unified methods for integrating investigations on sediment fluxes and budgets in cold-environment catchments. In Slagstad, T., ed., Geology for Society. Geological Survey of Norway Special Publication, 11, pp. 111130.Google Scholar
Beylich, A. A. (2012). Major controls of mass transfers and relief development in four cold-climate catchment systems in eastern Iceland, Swedish Lapland and Finish Lapland (Synthesis Paper). Seventh I.A.G./A.I.G. SEDIBUD Workshop and SEDIBUD Summer School, September 10–17, 2012, Trondheim and Loen, Norway. Abstracts and Proceedings of the Geological Society of Norway. No. 1, 87–123Google Scholar
Campbell, S. W., Dixon, J. C., Darmody, R. G., Thorn, , and C. E. (2001). Spatial variation of early season water chemistry in Kärkevagge, Swedish Lapland. Geografiska Annaler, 83A, 169178.CrossRefGoogle Scholar
Campbell, S. W., Dixon, J. C., and Thorn, C. E. (2002). Chemical denudation rates in Kärkevagge, Swedish Lapland. Geografiska Annaler, 84A, 179185.CrossRefGoogle Scholar
Darmody, R. G., Thorn, C. E., Schlyter, P., and Dixon, J. C. (2004). Relationship of vegetation distribution to soil properties in Kärkevagge, Swedish Lapland. Arctic Antarctic and Alpine Research, 36, 2132.CrossRefGoogle Scholar
Darmody, R. G., Thorn, C. E., Harder, R. L., and Dixon, J. C. (2000a). Weathering implications of water chemistry in an Arctic-Alpine environment, northern Sweden. Geomorphology, 34, 89100.CrossRefGoogle Scholar
Darmody, R. G., Thorn, C. E., Dixon, J. C., and Schlyter, P. (2000b). Soils and landscapes of Kärkevagge, Swedish Lapland. Soil Science Society of America Journal, 64, 14551466.CrossRefGoogle Scholar
Eriksson, B. (1982). Data rorande Sveriges temperature-climat (Data concerning air temperature of Sweden). (In Swedish with English summaries). Norrköping: SMHI Reports. Meteorology and Climatology. RMK 39.Google Scholar
French, H. M. (2007). The Periglacial Environment. 3rd edn. Chichester. United Kingdom: John Wiley and Sons.CrossRefGoogle Scholar
Gude, M., Jonasson, C., Dietrich, S., and Scherer, D. (2000). Assessment of variability in fluvial sediment transfers in Kärkevagge (N-Sweden) during the last 50 years. Nordic Hydrology, 31, 373384.CrossRefGoogle Scholar
Gude, M., Daut, G., Dietrich, S., Mausbacher, R., Jonasson, C., Bartsch, A., and Scherer, D. (2002). Towards an integration of process measurements, archive analysis, and modern geomorphology – the Kärkevagge experimental site, Abisko area, northern Sweden. Geografiska Annaler, 84A, 205212.CrossRefGoogle Scholar
Jäckli, H. (1957). Gegenwartsgeologie des Bundnerischen Rheingebietes. Beitrag zur geologischen Karte der Schweiz, Geotechnische Seri, 36, 126p.Google Scholar
Jarman, D. (2002). Rock slope failure and landscape evolution in the Caledonian Mountains, as exemplified in the Abisko area, northern Sweden. Geografiska Annaler, 84A, 213224.CrossRefGoogle Scholar
Karlén, V. (1979). Deglaciation dates from northern Swedish Lapland. Geografiska Annaler, 61A, 203210.CrossRefGoogle Scholar
Kulander, I., and Nordstrőm, K. (1982). Sedimentproduktion från en flytordsvalk I Kärkevagge. Department of Physical Geography, Upsala University.Google Scholar
Laute, K., and Beylich, A. A. (2014). Environmental controls, rates and mass transfers of contemporary hillslope processes in the headwaters of two glacier-connected drainage basins in western Norway. Geomorphology, 216, 93113.CrossRefGoogle Scholar
Rapp, A. (1960). Recent development of mountain slopes in Kärkevagge and surroundings northern Scandinavia. Geografiska Annaler, 42, 65200.Google Scholar
Rapp, A., and Ǻkerman, J. (1993). Slope processes and climate in the Abisko mountains, northern Sweden. In Frenzel, B., ed., Solifluction and Climate Variations in the Holocene. Special Issue: ESF Project “European Paleoclimate and Man .” European Science Foundation. Strasbourg, 163177.Google Scholar
Rapp, A., and Strőmquist, L. (1979). Field experiments on mass movements in the Scandinavian mountains with special reference to Kärkevagge, Swedish Lapland. Studia Geomorphologica Carpatho-Balcanica, 13, 2438.Google Scholar
Rehn, J. (1985). Fluvial sediment transport during snowmelt period in periglacial environments as exemplified by Kärkevagge valley, north-western Sweden (in Swedish), Lunds universitets Naturgeografiska institution, Rapporter och Notiser 65, 5668.Google Scholar
Rehn, J., Stoertz, M., and Stromquist, L. (1982). Geomorphological investigations on erosion, sediment production and fluvial transport along road 98, Kiruna-Riksgransen. Swedish Environmental Protection Board, PM 1522. (In Swedish).Google Scholar
Ridefelt, H., and Boelhouwers, J. (2006). Observations on regional variations in solifluction landform morphology and environment in the Abisko region, northern Sweden. Permafrost and Periglacial Processes, 17, 253266.CrossRefGoogle Scholar
Ridefelt, H., Boelhouwers, J., and Eiken, T. (2009a). Measurement of solifluction rates using multi-temporal aerial photography. Earth Surface Processes and Landforms, 34, 725737.CrossRefGoogle Scholar
Ridefelt, H., Akerman, J., Boelhouwers, J., Kolstrup, E., and Nyberg, R. (2009b). 56 years of solifluction measurements in the Abisko mountains, northern Sweden-variations of slow soil surface movement. Geografiska Annaler, 91A, 215232.CrossRefGoogle Scholar
Sjolin, E., and Rodhe, L. (1977). Studier av flytjordvalkar I Kärkevagge 1976. In Strőmquist, L., Sammanstallning av case studies I naturgeografi. Uppsala: Uppsala University National Geographical Institute.Google Scholar
Soil Survey Staff. (1999). Soil Taxonomy. 2nd edn. U.S.D.A-N.R.C.S. Agricultural Handbook, 436. Washington DC: U.S. Government Printing Office.Google Scholar
Stromquist, L. (1983). Gelifluction and surface wash, their importance and interaction on a periglacial slope. Geografiska Annaler, 65A, 245254.CrossRefGoogle Scholar
Stromquist, L. (1985). Geomorphic impact of snowmelt on slope erosion and sediment production. Zeitschrift fur Geomorphologie, 29, 129138.CrossRefGoogle Scholar
Thorn, C. E., Schlyter, P., Darmody, R. G., and Dixon, J. C. (1999). Statistical relationships between daily and monthly air and shallow-ground temperatures in Kärkevagge, Swedish Lapland. Permafrost and Periglacial Processes, 10, 317330.3.0.CO;2-S>CrossRefGoogle Scholar

References

Archambault, B. (1991). Étude d’un glacier rocheux relique de la vallée de Mont-Saint-Pierre, Gaspésie. MSc, Département de Géographie, université de Montréal.Google Scholar
Ballantyne, C. K. (2002). A general model of paraglacial landscape response. The Holocene, 12, 371376.CrossRefGoogle Scholar
Bebi, P., Kulakowski, D., and Rixen, C. (2009). Snow avalanche disturbances in forest ecosystems – State of research and implications for management. Forest Ecology and Management, 257, 18831892.CrossRefGoogle Scholar
Beylich, A. (2008). Mass transfer, sediment budget and relief development in the Latnjavagge catchment, Arctic-oceanic Swedish Lapland. Zeithschrift für Geomorphologie, Supplementary issue 52, 149197.CrossRefGoogle Scholar
Beylich, A. A., and Sandberg, O. (2005). Geomorphic effects of the extreme rainfall event of 20–21 July, 2004 in the Latnjavagge catchment, northern Swedish Lapland. Geografiska Annaler, 87A, 409419.CrossRefGoogle Scholar
Blikra, L. H., and Nemec, W. (1998). Postglacial colluvium in western Norway: depositional processes, facies and paleoclimatic record. Sedimentology, 45, 909959.CrossRefGoogle Scholar
Bogaart, P. W., Van Balen, R. T., Kasse, C., and Vandenberghe, J. (2003). Process-based modelling of fluvial system response to rapid climate change II. Application to the River Maas (The Netherlands) during the Last Glacial-Interglacial Transition. Quaternary Science Reviews, 22, 20972110.CrossRefGoogle Scholar
Caine, N. (1974). The geomorphic processes of the alpine environment. In Barry, R. G. and Ives, J. D., eds., Arctic and Alpine Environments. London: Methuen, pp. 721748.Google Scholar
Caine, N. (1981). A source of bias in rates of surface soil movement as estimated from marked particles. Earth Surface Processes and Landforms, 6, 6975.CrossRefGoogle Scholar
Curry, A. M. (2000). Holocene reworking of drift-mantled hillslopes in glen Docherty, Northwest Highlands, Scotland. The Holocene, 10, 509518.CrossRefGoogle Scholar
de Vernal, A., Guiot, J., and Turon, J.-L. (1993). Late and postglacial environments of the Gulf of St. Lawrence: marine and terrestrial palynological evidence. Géographie physique et Quaternaire, 47, 167180.Google Scholar
Dubé, S. (1999). Impacts dendroécologiques et fréquence séculaire des avalanches sur trois versants boisés de la Gaspésie septentrionale. MA thesis, Department of Geography, Université Laval.Google Scholar
Dubé, S., Filion, L., and Hétu, B. (2004). Tree-ring reconstruction of high-magnitude snow avalanches in the northern Gaspé Peninsula, Quebec. Arctic, Antarctic, and Alpine Research, 36, 555564.CrossRefGoogle Scholar
Eaton, L. S., Morgan, B. A., Kochel, R. C., and Howard, A. D., (2003). Quaternary deposits and landscape evolution of the central Blue Ridge of Virginia. Geomorphology, 56, 139154.CrossRefGoogle Scholar
Fortin, G., and Hétu, B. (2009). Les extremes meteorologiques hivernaux et leurs influences sur la couverture neigeuse dans les monts Chic-Chocs, Gaspésie, Canada. Geographical Techniques, Special issue, 181–186.Google Scholar
Fortin, G., Hétu, B., and Germain, D. (2011). Climat hivernal et régime avalancheux dans les corridors routiers de la Gaspésie septentrionale (Québec, Canada). Climatologie, 8, 926.CrossRefGoogle Scholar
Gagnon, R. M. (1970). Le climat des Chic-Chocs. Montréal: Ministère des Richesses Naturelles du Québec, Service de la Météorologie. Rapport M.-P. 36.Google Scholar
Gardner, J. S. (1979). The movement of material on debris slopes in the Canadian Rocky Mountains. Zeitschrift für Geomorphologie, N.F. 23, 4557.Google Scholar
Gauthier, F., Hétu, B., and Bergeron, N. (2013). Impacts géomorphologiques des chutes de blocs de glace sur les versants du nord de la Gaspésie (Québec, Canada). Canadian Journal of Earth Sciences, 54, 406422.CrossRefGoogle Scholar
Germain, D., Filion, L., and Hétu, B. (2005). Snow avalanche activity after fire and logging disturbances, northern Gaspé Peninsula, Québec, Canada. Canadian Journal of Earth Sciences, 42, 21032116.CrossRefGoogle Scholar
Germain, D., Filion, L., and Hétu, B. (2009). Snow avalanche regime and climatic conditions in the Chic-Choc Range, eastern Canada. Climatic Change, 92, 41167.CrossRefGoogle Scholar
Germain, D., Hétu, B., and Filion, L. (2010). Tree-ring based reconstruction of past snow avalanche events and risk assessment in northern Gaspé Peninsula (Québec, Canada). In Stoffel, M., Bollschweiler, M., Butler, D. R., and Luckman, B., eds., Tree Rings and Natural Hazards: A State-of-the-Art. Heidelberg: Springer Science, pp. 5173.CrossRefGoogle Scholar
Germain, D., and Ouellet, M.-A. (2013). Subaerial sediment-water flows on hillslopes: Essential research questions and classification challenges. Progress in Physical Geography, 37, 813833.CrossRefGoogle Scholar
Girard, J.-F. (1993). La migration des débris de surface sur deux talus d’éboulis en milieu tempéré, Gaspésie, Québec, Canada. MSc thesis, Department of Geography, Université de Montréal.Google Scholar
Govers, G., and Poesen, J. (1998). Field experiments on the transport of rock fragments by animal trampling on scree slopes. Geomorphology, 23, 193203.CrossRefGoogle Scholar
Graveline, M.-H. (2012). Analyse multirisques des aléas d’écroulement des carapaces de glace et d’avalanche de neige sur le site d’Aqua Velva en bordure de la route 132, Gaspésie septentrionale, Québec. MSc thesis, Département de Géographie, Université du Québec à Montréal.Google Scholar
Hales, T. C., and Roering, J. J. (2005). Climate-controlled variations in scree production, Southern Alps, New Zealand. Geology, 33, 701704.CrossRefGoogle Scholar
Hétu, B. (1987). L’influence du contexte géomorphologique quaternaire sur la dynamique postglaciaire des versants raides de la Gaspésie septentrionale. PhD thesis, Department of Geography, Université de Montréal.Google Scholar
Hétu, B. (1990). Évolution récente d’un talus d’éboulis en milieu forestier, Gaspésie, Québec. Géographie physique et Quaternaire, 44, 199215.CrossRefGoogle Scholar
Hétu, B. (1991). Éboulis stratifiés actifs près de Manche-d’Épée, Gaspésie (Québec, Canada). Zeitschrift für Geomorphologie, N.S. 35, 439461.CrossRefGoogle Scholar
Hétu, B. (1992). Coarse cliff-top Aeolian sedimentation in Northern Gaspésie, Québec (Canada). Earth Surface Processes and Landforms, 17, 95108.CrossRefGoogle Scholar
Hétu, B. (1995). Le litage des éboulis stratifiés cryonivaux en Gaspésie (Québec, Canada): rôle de la sédimentation nivéo-éolienne et des transits supranivaux. Permafrost and Periglacial Processes, 6, 147171.CrossRefGoogle Scholar
Hétu, B., (2004). Talus d’éboulis: environnement et histoire, p. 199216. In Bertran, P., ed., Dépôts de pente continentaux. Dynamique et Faciès. Association française pour l’étude du Quaternaire, volume hors-série de la revue Quaternaire, 258 p.Google Scholar
Hétu, B., & Gray, J. T., (1980). Évolution postglaciaire des versants de la région de Mont‑Louis, Gaspésie, Québec. Géographie physique et Quaternaire, 34, 7784.Google Scholar
Hétu, B., and Gray, J. T. (1985). Le modelé d’érosion glaciaire de la Gaspésie septentrionale. Géographie physique et Quaternaire, 39, 4766.CrossRefGoogle Scholar
Hétu, B., and Gray, J. T. (2000a). Effects of environmental change on scree development throughout the postglacial period in the Chic-Choc Mountains in the northern Gaspé Peninsula, Québec. Geomorphology, 32, 335355.CrossRefGoogle Scholar
Hétu, B., and Gray, J. T. (2000b). Les étapes de la déglaciation dans le nord de la Gaspésie (Québec, Canada): les marges glaciaires des Dryas ancien et récent. Géographie physique et Quaternaire, 54, 540.CrossRefGoogle Scholar
Hétu, B., Gray, J. T., Gangloff, P., and Archambault, B. (2003). Postglacial talus-derived rock glaciers in the Gaspé Peninsula, Québec (Canada). Proceedings – 8th International Conference on Permafrost, Zurich, Switzerland, July 20–25, 2003. Edited by Phillips, M., Springman, S. M. and Arenson, L. U.; International Permafrost Association, 8(1): 389–394.Google Scholar
Hétu, B., and Vandelac, P. (1989). La dynamique des éboulis schisteux au cours de l’hiver, Gaspésie septentrionale, Québec. Géographie physique et Quaternaire, 43, 389406.CrossRefGoogle Scholar
Hétu, B., van Steijn, H., and Vandelac, P. (1994). Les coulées de pierres glacées: un nouveau type de coulées de pierraille sur les talus d’éboulis. Géographie physique et Quaternaire, 48, 322.CrossRefGoogle Scholar
Hinchliffe, S., and Ballantyne, C. K. (1998). The structure and sedimentology of relict talus, Trotternish, northern Skye, Scotland. Earth Surface Processes and Landforms, 23, 545560.3.0.CO;2-E>CrossRefGoogle Scholar
Jacob, N., (2001). Fréquence, intensité et déclenchement des coulées de débris en milieu forestier, Gaspésie septentrionale, Québec. Université Laval, Mémoire de maîtrise, 76 p.Google Scholar
Jakob, M., and Friele, P. 2010. Frequency and magnitude of debris flows on Cheekye River, British Columbia. Geomorphology, 114, 382395.CrossRefGoogle Scholar
Kirkby, M. J., and Statham, I. 1975. Surface stone movement and scree formation. Journal of Geology, 83, 349362.CrossRefGoogle Scholar
Kotarba, A., and Strömquist, L. (1984). Transport, sorting and deposition processes of alpine debris slope deposits in the Polish Tatra Mountains. Geografiska Annaler, 66A; 285294.CrossRefGoogle Scholar
Labelle, C., and Richard, P. J. H. (1984). Histoire postglaciaire de la végétation dans la région de Mont-Saint-Pierre, Gaspésie, Québec. Géographie physique et Quaternaire, 38, 257274.CrossRefGoogle Scholar
Lafortune, M., Filion, L., and Hétu, B. (1997). Dynamique d’un front forestier sur un talus d’éboulis actif en climat tempéré froid (Gaspésie, Québec). Géographie physique et Quaternaire, 51, 6780.CrossRefGoogle Scholar
Luckman, B. H. (2010). Dendrogeomorphology and snow avalanche research. In Stoffel, M., Bollschweiler, M., Butler, D. R., and Luckman, B., eds., Tree Rings and Natural Hazards: A State-of-the-Art. Heidelberg: Springer. pp. 2734CrossRefGoogle Scholar
Marcoux, N., and Richard, P. J. H. (1995). Végétation et fluctuations climatiques postglaciaires sur la côte septentrionale gaspésienne, Canadian Journal of Earth Sciences, 32, 7996.CrossRefGoogle Scholar
Matthews, J. A., Dahl, S.-O., Berrisford, M. S., Nesje, A., Quentin Dresser, P., and Dumayne-Peaty, L. (1997). A preliminary history of Holocene colluvial (debris-flow) activity, Leirdalen, Jotunheimen, Norway. Journal of Quaternary Science, 12, 117129.3.0.CO;2-1>CrossRefGoogle Scholar
McCarroll, D., Shakesby, R. A., and Matthews, J. A. (2002). Enhanced rockfall activity during the Little Ice Age: further lichenometric evidence from a Norwegian talus. Permafrost and Periglacial Processes, 12, 157164.CrossRefGoogle Scholar
Nemec, W., and Kazanci, N. (1999). Quaternary colluvium in west-central Anatolia: sedimentary facies and paleoclimatic significance. Sedimentology, 46, 139170.CrossRefGoogle Scholar
Nesje, A., Kvamme, A. R., and Sonstegaard, E. (1994). A record of late Holocene avalanche activity in Frudalen, Sogndalsdalen, western Norway. Norsk Geologisk Tidsskrift, 74, 108113.Google Scholar
Ouellet, M.-A., and Germain, D. (2014). Hyperconcentrated flows on a forested alluvial fan of Eastern Canada: geomorphic characteristics, return period, and triggering scenario, Earth Surface Processes and Landforms, 39, 18761887.CrossRefGoogle Scholar
Pawlik, L. (2013). The role of trees in the geomorphic system of forested hillslopes – A review. Earth-Science Reviews, 126, 250265.CrossRefGoogle Scholar
Pérez, F. L. (1993). Talus movement in the High Equatorial Andes: a synthesis of ten years of data. Permafrost and Periglacial Processes, 4, 199215.CrossRefGoogle Scholar
Pérez, F. L., (2012). Biogeomorphological influence of slope processes and sedimentology on vascular talus vegetation in the southern Cascades, California. Geomorphology, 138, 2948CrossRefGoogle Scholar
Rapp, A. (1960). Recent development of mountain slopes in Käkevagge and surroundings, northern Scandinavia. Geografiska Annaler, 42A, 65200.Google Scholar
Richard, P. J. H., and Larouche, A. (1994). Histoire postglaciaire de la végétation et du climat dans la région de Rimouski, Québec. Paléo-Québec, 22, 49111.Google Scholar
Sass, O., and Krautblatter, K. (2007). Debris flow-dominated and rockfall-dominated talus slopes: genetic models derived from GPR measurements. Geomorphology, 86, 176–19.CrossRefGoogle Scholar
Sawada, M., Gajewski, K., de Vernal, A., and Richard, P. (1999). Comparison of marine and terrestrial Holocene climatic reconstructions from northeastern North America. The Holocene, 9, 267277.CrossRefGoogle Scholar
Schrott, l., Hufschmidt, G., Hankammer, M., Hoffmann, T., and Dikau, R. (2003). Spatial distribution of sediment storage types and quantification of valley fill deposits in an alpine basin, Reintal, Bavarian Alps, Germany. Geomorphology, 55, 4563.CrossRefGoogle Scholar
Schumm, S. A. (1967). Rates of surficial rock creep on hillslopes in western Colorado. Science, 155, 560561.CrossRefGoogle ScholarPubMed
Slaymaker, O. (2008). Sediment budget and sediment flux studies under accelerating global change in cold environments. Zeitschrift für Geomorphologie, Supplementary Issue 52, 123148.CrossRefGoogle Scholar
Slivitzky, A., Pierre St-Julien, P., and Lachambre, G. (1991). Synthèse géologique du Cambro-ordovicien du nord de la Gaspésie. Service géologique de Québec, Ministère de l'énergie et des ressources, rapport ET 88–14Google Scholar
Stoffel, M., Schneuwly, D., Bollschweiler, M., Lièvre, I., Delaloye, R., Myint, M., and Monbaron, M. (2005). Analyzing rockfall activity (1600–2002) in a protection forest – a case study using dendrogeomorphology. Geomorphology, 68, 224241.CrossRefGoogle Scholar
Van Steijn, H. (2002). Long-term landform evolution: evidence from talus studies. Earth Surface Processes and Landforms, 27, 11891199.CrossRefGoogle Scholar
Van Steijn, H., Bertran, P., Francou, B., Hétu, B., and Texier, J.-P. (1995). Models for the genetic and environmental interpretation of stratified slope deposits: review. Permafrost and Periglacial Processes, 6, 125146.CrossRefGoogle Scholar
Van Steijn, H., Boelhouwers, J., Harris, S., and Hétu, B. (2002). Recent research on the nature, origin and climatic relations of blocky and stratified slope deposits. Progress in Physical Geography, 26, 551575.CrossRefGoogle Scholar
Whitehouse, I. E., and McSaveney, M. J. (1983). Diachronous talus surface in the Southern Alps, New Zealand, and their implications to talus accumulation. Arctic and Alpine Research, 15, 1, 5364.CrossRefGoogle Scholar

References

Busskamp, R., and Hasholt, B. (1996). Coarse bed load transport in a glacial valley, Sermilik, East Greenland. Zeitschrift fȕr Geomorphologie, 40, 349358.CrossRefGoogle Scholar
Cowton, T., Nienow, P., Bartholomew, I., Sole, A., and Mair, D. (2012). Rapid erosion beneath the Greenland ice sheet. Geology, 40(4), 343346.CrossRefGoogle Scholar
De Jong, C. (1992). Threshold for channel changes on two contrasting pro-glacial river fans, West Greenland, Geogr Ann. Series A, Physical Geography, 74A(1), 113Google Scholar
Desloges, J. R., Gilbert, R., Nielsen, N., Christiansen, C., Rasch, M., and Øhlenschläger, R. (2002). Holocene glacimarine sedimentary environments in fjords of Disko Bugt, West Greenland. Quarternary Science Reviews, 21, 947963.CrossRefGoogle Scholar
Fausto, R. S., Mernild, S. H., Hasholt, B., Ahlstrøm, A. P., and Knudsen, N. T. (2012). Modeling suspended sediment concentration and transport, Mittivakkat Glacier, South East Greenland. Arctic, Antarctic and Alpine Research, 44, 306318.CrossRefGoogle Scholar
Gasser, G. (2004). Undersøgelser af vandkemi I relation til vandføring ved en surgetype gletsjer, Kuannersuit Kuussuat, Disko, Vestgrønland. Unpubl. MSc thesis in Danish. Institute of Geology, University of Aarhus, Denmark 2004. 120 pp.Google Scholar
Gilbert, R. (1990). Rafting in glacimarine environments. In Dowdeswell, J. A. and Scourse, J. D., eds., Glacimarine Environments: Processes and Sediments. Geological Society Special Publ. No. 53, 105120. London: The Geological Society.Google Scholar
Gilbert, R., Domack, E. W., and Tewkesbury, D. (2005). Sediment content in Antarctic iceberg fragments sufficient to sink the ice. Geographie Physique et Quartaire, 58, 147149.CrossRefGoogle Scholar
Gilbert, R., Nielsen, N. Møller, H. S., Desloges, J. R., and Rasch, M. (2002). Glacimarine sedimentation in Kangerdluk (Disko Fjord), West Greenland, in response to a surging glacier. Marine Geology, 191, 118.CrossRefGoogle Scholar
Hagedorn, B., and Hasholt, B. (2004). Hydrology, geochemistry and Sr isotopes in solids and solutes of the meltwater from Mittivakkat Gletscher, SE Greenland. Nordic Hydrology, 35, 369380.CrossRefGoogle Scholar
Hansen, B. U., and Tastum, J. (1979). Sermilik 1979, report in Danish, Naturgeografisk Hovedfagskursus. Copenhagen: Institute of Geography.Google Scholar
Hasholt, B. (1976). Hydrology and transport of material in the Sermilik Area 1972. Geografisk Tidsskrift, 75, 3039.CrossRefGoogle Scholar
Hasholt, B. (1982). Forundersøgelse Vandkraft 1981, Hydrologi Kap. 2 Buksefjord, Nuuk/Godthåb. GTO 1982: 4–76. In Danish.Google Scholar
Hasholt, B. (1983). Field Report on Sediment Transport Investigations at Marmorilik. Copenhagen: Institute of Geography, internal report, in Danish.Google Scholar
Hasholt, B. (1992). Sediment transport in a proglacial valley, Sermilik, East Greenland. Geografisk Tidsskrift, 92, 105110.CrossRefGoogle Scholar
Hasholt, B. (1993). Late autumn runoff and sediment transport in a proglacial drainage system, Sermilik, East Greenland. Geografisk Tidsskrift, 93, 15.CrossRefGoogle Scholar
Hasholt, B. (1996). Sediment Transport in Greenland. IAHS Publ. no. 236, 105–113.Google Scholar
Hasholt, B. (2003). Method for Estimation of the Delivery of Sediments and Solutes from Greenland to the Ocean. IAHS Publ. no. 279, 84–92.Google Scholar
Hasholt, B. (2005). The Sediment Budgets of Arctic Drainage Basins. IAHS Publ. no. 292, 48–58.Google Scholar
Hasholt, B., and Søgaard, H. (1978). Et forsøg på en klimatisk-hydrologisk inddeling af Holsteinsborg Kommune (Sisimiut). In Danish with an English summary. Geografisk Tidsskrift, 77, 7292.CrossRefGoogle Scholar
Hasholt, B., and Thomsen, T. (1980). Sedimenttransport i oplandet til et Grønlandsk Vandkraftsreservoir (Nordbo Sø), in Danish with an English Summary. UNGI Rapport No. 52, 441–453. Uppsala Universitet.Google Scholar
Hasholt, B., and Walling, D. E. (1992). Use of Caesium-137 to Investigate Sources and Sediment Delivery in a Small Glacierized Mountain Drainage Basin in Eastern Greenland. IAHS publ. No. 209, 87–99.Google Scholar
Hasholt, B., Walling, D. E., and Owens, P. N. (2000). Sedimentation in arctic proglacial lakes: Mittivakkat Glacier, South East Greenland. Hydrological Processes, 14(4), 679699.3.0.CO;2-E>CrossRefGoogle Scholar
Hasholt, B., and Hagedorn, B. (2000). Hydrology and geochemistry of river-borne material in a high arctic drainage system, Zackenberg, Northeast Greenland. Arctic, Antarctic and Alpine Research, 32(1) 8194.CrossRefGoogle Scholar
Hasholt, B., and Mernild, S. H. (2006). Glacial Erosion and Sediment Transport in the Mittivakkat Glacier Catchment, Ammassalik Island, Southeast Greenland, 2005. IAHS Publ. no. 306, 45–56.Google Scholar
Hasholt, B., Bobrovitskaya, N., Bogen, J., McNamara, J., Mernild, S. H., Milburn, D., and Walling, D. E. (2006). Sediment transport to the Arctic Ocean and adjoining cold oceans. Nordic Hydrology, 37(4–5), 413432.CrossRefGoogle Scholar
Hasholt, B., and Mernild, S. H. (2008). Hydrology, sediment transport and water resources of Ammassalik Island, SE Greenland. Danish Journal of Geography, 108(1), 7396.CrossRefGoogle Scholar
Hasholt, B., Mernild, S. H., Sigsgaard, C., Elberling, B., Petersen, D., Jakobsen, B. H., Hansen, B. U., Hinkler, J., and Søgaard, H. (2008). Hydrology and transport of sediment and solutes at Zackenberg. Advances in Ecological Research, 40, 197220.CrossRefGoogle Scholar
Hasholt, B., Mikkelsen, A. B., Nielsen, M. H., and Larsen, M. A. D. (2013). Observations of runoff and sediment and dissolved loads from the Greenland Ice Sheet at Kangerlussuaq, West Greenland, 2007 to 2010. Zeitschrift für Geomorphologie, 57(Suppl. 2), 327.CrossRefGoogle Scholar
Hudson, B., Overeem, I., McGrath, D., Syvitski, , Mikkelsen, A. B., and Hasholt, B. (2013). MODIS observed increase in duration and spatial extent of sediment plumes in Greenland Fjords. The Cryosphere Discussion, 7, 61016141.Google Scholar
Humlum, O., ed. (1976). Arktisk Geomorfologi, Godhavn 1976 (in Danish), kap.4: 75–99. Copenhagen: Institute of Geography, Internal Report.Google Scholar
Humlum, O., Jakobsen, B. H., Nielsen, N., Christiansen, H. H., Hasholt, B., Hansen, B. U., and Rasch, M. (1995). Holocene landscape evolution in the Mellemfjord area, Disko central West Greenland. Geografisk Tidsskrift, 95, 2841.CrossRefGoogle Scholar
Hyldegaard, P. (1983). Suspenderet Sedimenttransport i et Glacialt Smeltevandsløb I Vestgrønland (in Danish). Unpubl. MSc thesis, University of Aarhus.Google Scholar
Jakobsen, B. H. et al. (1991). Rapport om muligheden for en placering af en naturvidenskabelig forskningsstation ved Zackenberg i Nord-Øst Grønland (in Danish). Københavns Universitet, Botanisk Museum, Zoologisk Museum, Geografisk Institut og Dansk Polarcenter, intern report.Google Scholar
Jakobsen, B. H. (1992). Zackenbergområdets naturgeografi. Naturens Verden, 8, 306313, in Danish.Google Scholar
Jensen, L. M., and Rasch, M., eds. 2009. Nuuk Ecological Research Operations, 2nd Annual Report, 2008. National Environmental Research Institute, Aarhus University, Denmark, 80 pp.Google Scholar
Markussen, T. (2013). Sediment transport investigations in Røde Elv. Personal communication.Google Scholar
McGrath, D., Steffen, K., Overeem, I., Mernild, S. H., Hasholt, B., and van den Broeke, M. R. (2010). Sediment plumes in Kangerlussuaq, West Greenland, as a proxy for runoff from the Greenland Ice Sheet. Journal of Glaciology, 56, 831821.CrossRefGoogle Scholar
Meltofte, H., Christensen, T. R., Elberling, B., Forchhammer, M. C., and Rasch, M., eds. (2008). High arctic ecosystem dynamics in a changing climate. Advances in Ecological Research, 40, 563 p.Google Scholar
Mernild, S. H., and Hasholt, B. (2009). Observed runoff, jökulhlaups and suspended sediment load from the Greenland ice sheet at Kangerlussuaq, West Greenland, 2007 and 2008. Journal of Glaciology, 55, 855858.CrossRefGoogle Scholar
Mikkelsen, A. B., Hasholt, B. Knudsen, N. T., and Nielsen, M. H. (2013). Jökulhlaups and sediment transport in Watson River, Kangerlussuaq, West Greenland. Hydrology Research, 44(1), 5867.CrossRefGoogle Scholar
Mikkelsen, A. B., and Hasholt, B. (2013). Sediment Transport to the Kangerlussuaq Fjord, West Greenland. In Stuefer, S. L. and Bolton, W. R., eds., Proceedings 19th International Research Basins Symposium and Workshop, 157166. Fairbanks: University of Alaska Fairbanks.Google Scholar
Mikkelsen, A. B. (2014). Freshwater discharge and sediment transport to Kangerlussuaq Fjord, West Greenland. PhD thesis, Faculty of Science, University of Copenhagen.Google Scholar
Møller, H. S., Christiansen, C., Nielsen, N., and Rasch, M. (2001). Investigation of a modern glacimarine sedimentary environment in the fjord Kuannersuit Sulluat, Disko, West Greenland. Danish Journal of Geography, 101, 110.CrossRefGoogle Scholar
Naturgeografisk Hovedfagskursusrapport. (1984). Arktisk Geomorfologi. Muligheder for vandkraft ved Røde Elv, Godhavn 1983. Field course report in Danish from Institute of Geography, University of Copenhagen. 84 pp.Google Scholar
Naturgeografisk Hovedfagskursusrapport Sdr. Igaliko. (1985). Field course report in Danish from Institute of Geography, University of Copenhagen. 144 pp.Google Scholar
Naturgeografisk Hovedfagskursus. (1991). Tuapat (in Danish) 93–147, intern report, Institute of Geography, University of Copenhagen.Google Scholar
Naturgeografisk Hovedfagskursus. (1995). Mellemfjord, Disko, Grønland. Field course report in Danish from Institute of Geography, University of Copenhagen. 189 pp.Google Scholar
Naturgeografisk Hovedfagskursus. (1999). Field course report in Danish from Institute of Geography, University of Copenhagen.Google Scholar
Naturgeografisk Arktisk Feltkursus Disko, Vestgrønland. (2007). Field course report in Danish from Institute of Geography and Geology, University of Copenhagen. 107 pp.Google Scholar
Naturgeografisk Felt- og Metodekursus. (2009). Sermilik, Sydøstgrønland. Field course report in Danish from Institute of Geography and Geology, University of Copenhagen. 245 pp.Google Scholar
Naturgeografisk Felt- og Metodekursus. (2010). Sermilik, Sydøstgrønland. Field course report in Danish from Institute of Geography and Geology, University of Copenhagen. 135 pp.Google Scholar
Nielsen, N. (1994). Geomorphology of a degrading arctic delta, Sermilik, southeast Greenland. Geografisk Tidsskrift, 94, 4657.CrossRefGoogle Scholar
Pedersen, K. (1988). Bestemmelse af den vandbårne sediment og metaltransport fra Wegener og Tributary Gletschenes opland til Q-Fjord, 1983–1988. Rapport jf. pkt. 6 .14 i Greenex miljøhandlingsplan 11 juni 1988. Intern report in Danish.Google Scholar
Pedersen, K. (1989). Måling af vand og materialetilførsel til A-Fjord fra elven i 989. Rapport jf. pkt. 4.2 i Greenex miljøhandlingsplan 1979–1988. Intern report in Danish.Google Scholar
Rask, M. M. (2014). Sediment transport calculations Zackenberg. Personal communication.Google Scholar
Rasch, M., Elberling, B., Jakobsen, B. H., and Hasholt, B. (2000). High-resolution measurements of water discharge, sediment and solute transport in the River Zackenbergelven, Northeast Greenland. Arctic, Antarctic and Alpine Research, 32(3), 336345.CrossRefGoogle Scholar
Rasch, M., Nielsen, N., Christiansen, C., Balstrøm, T., Gilbert, R., and Desloges, J. (2003). Role of landscape parameters in riverine run-off, and sediment and organic matter yield on Disko Island, West Greenland. Danish Journal of Geography, 103(2), 111.CrossRefGoogle Scholar
Reeh, N. (1994). Calving from Greenland Glaciers: Observations, balance estimates of calving rates, calving laws. In Reeh, N., ed., Report on the Workshop on the Calving Rate of West Greenland Glaciers in Response to Climate Change. Danish Polar Center, Copenhagen, Denmark, 85102.Google Scholar
Reeh, N., Mayer, C., Miller, H., Thomsen, H. H., and Weidick, A. (1999). Present and past climate control on fjord glaciations in Greenland: Implications for IRD-deposition in the sea. Geophysical Research Letters, 26(8), 10391042.CrossRefGoogle Scholar
Russell, A. J., and Stoodly, J. (1994). Suspended sediment variability in a proglacial river draining the western margin of the Greenland Ice Sheet near Kangerlussuaq (Søndre Strømfjord). International Glaciological Society, British Branch Meeting, Edinburgh, September 1994.Google Scholar
Russell, A. J., Van Tatenhove, F. G. M., and Van de Wal, R. S. W. (1995). Effects of ice-front collapse and flood generation on a proglacial river channel near Kangerlussuaq (Søndre Strømfjord), West Greenland. Hydrological Processes, 9, 213226.CrossRefGoogle Scholar
Russell, A. J. (2009). Jökulhlaup (ice dammed lake outburst flood) impact within a valley-confined sandur subject to backwater conditions, Kangerlussuaq, West Greenland. Sedimentary Geology, 215(1–4), 3349.CrossRefGoogle Scholar
Scheller, J. H., and Stephensen, A. B. (2013). Transport af partikulært organisk materiale, partikulært labilt jern, opløst organisk carbon og opløst nitrogen fra Mittivakkatgletscheren, Sydøstgrønland, juli 2013. Bachelor thesis in Danish, Institute of Geosciences and Nature Resource Management, University of CopenhagenGoogle Scholar
Sigsgaard, C. (2014). Calculations of sediment transport Zackenberg. Personal communication.Google Scholar
Sletten, R. (2014). About sediment transport investigations at Thule, University of Washington. Personal communication.Google Scholar
Stott, T. A., and Grove, J. (2001). Short-term discharge and suspended sediment fluctuations in the proglacial Skeldal River, NE Greenland. Hydrological Processes, 15, 407423.CrossRefGoogle Scholar
Stott, T. A. (2002). Bed load transport and channel bed changes in the proglacial Skeldal River, northeast Greenland. Arctic, Antarctic and Alpine Research, 34, 334344.CrossRefGoogle Scholar
Stott, T., Nuttall, A.-M., and Biggs, E. (2014). Observed run-off and suspended sediment dynamics from a minor glacierized basin in south-west Greenland. Geografisk Tidsskrift- Danish Journal of Geography, DOI: 10.1080/00167223.2013.862911.CrossRefGoogle Scholar
Søndergaard, J., Asmund, G., Seitz, M., and Glahder, C. (2012). Naturally elevated spring-time fluxes of zinc and other elements from a sulphide ore deposit area in Citronen Fjord, North Greenland (83o N). Cold Regions Science and Technology, 71, 9094.CrossRefGoogle Scholar
Thorsøe, K. (2002). Sedimenttransport og vandføring I et arktisk landskabssystem. Unpubl. MSc thesis in Danish, Institute of Geography, University of Copenhagen 2002. 83 pp.Google Scholar
Turowski, J. M., Rickenmann, D., and Dadson, S. J. (2010). The partitioning of the total sediment load of a river into suspended load and bed load: a review of empirical data. Sedimentology, 57(4), 11261146.CrossRefGoogle Scholar
Weidick, A. (2000). Topografisk Atlas Grønland, Det Kongelige Danske Geografiske Selskab, in Danish, 84–87, 112115.Google Scholar
Yde, J. C., Knudsen, N. T., and Nielsen, O. B. (2005). Glacier hydrochemistry, solute provenance, and chemical denudation at a surge-type glacier in Kuannersuit Kuusuat, Disko Island, West Greenland. Journal of Hydrology, 300, 172187.CrossRefGoogle Scholar
Yde, J. C., Knudsen, N. T., Hasholt, B., and Mikkelsen, A. B. (2014). Meltwater chemistry and solute export from a Greenland Ice Sheet catchment, Watson River, West Greenland. Journal of Hydrology, 519, 21652179.CrossRefGoogle Scholar

References

Ashworth, P. J., and Ferguson, R. I. (1986). Interrelationships of channel processes, changes and sediments in a proglacial braided river. Geografiska Annaler, 68A, 361371.CrossRefGoogle Scholar
Bartoszewski, S. (1998). Regime of outflow of the Wedel Jarlsberg’s Land rivers (Spitsbergen). Faculty of Biology and Earth Sciences MCSU in Lublin. Habilitation dissertations, 40, 167 pp. (in Polish).Google Scholar
Bartoszewski, S., Gluza, A., Siwek, K., and Zagórski, P. (2009). Temperature and rainfall control of outflow from the Scott Glacier catchment (Svalbard) in the summers of 2005 and 2006. Norsk Geografisk Tidsskrift – Norwegian Journal of Geography, 1502–5292, 63, 107114.CrossRefGoogle Scholar
Beylich, A. A. (2007). Quantitative studies on sediment fluxes and sediment budgets in changing cold environments – potential and expected benefit of coordinated data exchange and the unification of methods. Landform Analysis, 5, 910.Google Scholar
Beylich, A. A., and Kneisel, C. (2009). Sediment budget and relief development in Hrafndalur, subarctic oceanic Eastern Iceland. Arctic, Antarctic, and Alpine Research, 41, 317.CrossRefGoogle Scholar
Beylich, A. A., and Warburton, J., eds. (2007). Analysis of source-to-sink fluxes and sediment budgets in changing high-latitude and high-altitude cold environments. SEDIFLUX Manual. Trondheim: Norwegian Geological Survey Report.Google Scholar
Beylich, A. A., Lamoureux, S. F., and Decaulne, A. (2012). Sediment budgets in cold environments programme: ongoing activities and selected key tasks for the coming years, Geomorphology, 167–168, 23.CrossRefGoogle Scholar
Beylich, A. A., Laute, K., and Liermann, S. 2013. Integrating field measurements and flume experiments for analyzing fluvial bedload transport and channel morphodynamics in steep mountain streams. Geophysical Research Abstracts, 15 (EGU 2013–1179).Google Scholar
Beylich, A. A., and Laute, K. (2013). Combining impact sensor field and laboratory flume measurements with other techniques for studying fluvial bedload transport in steep mountain streams, Geomorphology, 218, 7287CrossRefGoogle Scholar
Beylich, A. A., and Laute, K. (2015). Sediment sources, spatiotemporal variability and rates of fluvial bedload transport in glacier-connected steep mountain valleys in western Norway (Erdalen and Bødalen drainage basins). Geomorphology, 228, 552567CrossRefGoogle Scholar
Bogen, J., and Møen, K. (2003). Bedload measurements with a new passive acoustic sensor. In Bogen, J., Fergus, T., and Walling, D. E., eds., Erosion and Sediment Transport Measurement in Rivers: Technological and Methodological Advances. IAHS Publication, 283. Wallingford: IAHS, pp. 181192.Google Scholar
Bogen, J., Fergus, T., and Walling, D. E., eds. (2003). Erosion and Sediment Transport in Rivers: Technological and Methodological Advances. IAHS Publication, 283. Wallingford: IAHS.Google Scholar
Brandt, M. (1990). Generation, transport and deposition of suspended and dissolved material – Examples from Swedish rivers. Geografiska Annaler, 72A, 273283.CrossRefGoogle Scholar
Bunte, K., and Abt, S. R. (2009). Transport Relationships Between Bedload Traps and a 3-Inch Helley-Smith Sampler in Coarse Gravel-Bed Streams and Development of Adjustment Functions. Report submitted to the Federal Interagency Sedimentation Project, Vicksburg, MS, 138 pp.Google Scholar
Bunte, K., and Abt, S. (2003). Sampler size and sampling time affect measured bedload transport rates and particle sizes measured with bedload traps in gravel-bed streams. In Bogen, J., Fergus, T., and Walling, D. E., eds., Erosion and Sediment Transport Measurement in Rivers. Technological and Methodological Advances. Wallingford: IAHS, 283, pp. 126133.Google Scholar
Bunte, K., Abt, S. R., Potyondy, J. P., and Ryan, S. E. (2004). Measurement of coarse gravel and cobble transport using a portable bedload trap. Journal of Hydraulic Engineering, 130, 879893.CrossRefGoogle Scholar
Bunte, K., Swingle, K. W., and Abt, S. R. (2007). Guidelines for using bedload traps in coarse-bedded mountain streams: Construction, installation, operation, and sample processing: General Technical Report, USDA Forest Service, Rocky Mountain Research Station, 93.Google Scholar
Carson, M. A., and Griffiths, G. A. (1987). Bedload transport in gravel channels. Journal of Hydrology (New Zealand), 26, 1151.Google Scholar
Church, M., and Gilbert, R. (1975). Proglacial fluvial and lacustrine environments. In Jopling, A. V. and McDonald, B. C., eds., Glaciofluvial and Glaciolacustrine Sedimentation. Tulsa, OK: Society of Economic Paleontologists and Mineralogists. Special Publication 23, pp. 22100.CrossRefGoogle Scholar
Church, M., and Hassan, M. A. (2002). Mobility of bed material in Harris Creek. Water Resources Research, 38,1237, doi:10.1029/2001WR000753.CrossRefGoogle Scholar
Church, M., and Zimmermann, A. (2007). Form and stability of step-pool channels: research progress. Water Resour. Res., 43, W03415. http://dx.doi.org/1 0.1029/2006WR005037.CrossRefGoogle Scholar
Comiti, F., and Mao, L. (2012). Recent advances in the dynamics of steep channels. In Church, M., Biron, P., and Roy, A., eds., Gravel Bed Rivers: Processes, Tools, Environments. Chichester: Wiley, pp. 353377.Google Scholar
Downing, J. P., Farley, P. J., Bunte, K., Swingle, K., Ryan, S. E., and Dixon, M. (2003). Acoustic gravel-transport sensor: description and field tests in Little Granite Creek, Wyoming, USA. In Bogen, J., Fergus, T., Walling, D. E., eds., Erosion and Sediment Transport Measurement in Rivers: Technological and Methodological Advances. Wallingford: IAHS Publication 283, pp. 193200.Google Scholar
Emmett, W. W. (1980). A field calibration of the sediment-trapping characteristics of the Helley–Smith bed load sampler. US Geological Survey Professional Paper 1139. Washington DC: U.S. Government Printing Office, 44 pp.CrossRefGoogle Scholar
Ergenzinger, P., and Conrady, J. (1982). A new tracer technique for measuring bedload in natural channels. Catena, 9, 7780.CrossRefGoogle Scholar
Ergenzinger, P., and Schmidt, K.-H., eds. (1994). Dynamics and Geomorphology of Mountain Rivers. Lecture Notes in Earth Sciences, 52. Heidelberg: Springer, Berlin (326 pp.).CrossRefGoogle Scholar
Garcia, C., Laronne, J. B., and Sala, M. (2000). Continuous monitoring of bedload flux in a mountain gravel-bed river. Geomorphology, 34, 2331.CrossRefGoogle Scholar
Gilbert, R., and Church, M. (1983). Contemporary sedimentary environments on Baffin Island, N.W.T., Canada: reconnaissance of lakes on Cumberland Peninsula. Arctic and Alpine Research, 15, 321332.CrossRefGoogle Scholar
Gray, J. R., Laronne, J. B., and Marr, J. D. G. (2010). Bedload-surrogate monitoring technologies. U.S. Geological Survey Scientific Investigations Report 2010–5091. Reston, VA: U.S. Geological Survey (http://pubs/usgs.gov/sir/2010/5091).Google Scholar
Gurnell, A. M., and Clark, M. J. eds. (1987). Glacio-Fluvial Sediment Transfer: An Alpine Perspective. Chichester: Wiley, 524 pp.Google Scholar
Gurnell, A. M., Warburton, J., and Clark, M. J. (1988). A comparison of the sediment transport and yield characteristics of two adjacent glacier basins, Val d’Herens, Switzerland. In Bordas, M. P., and Walling, D.E., eds., Sediment Budgets (Proceedings Porto Alegre Symposium December 1988). Wallingford: IAHS Publication 174, pp. 431441.Google Scholar
Hagen, J. O., and Lefauconnier, B. (1995). Reconstructed runoff from the High Arctic basin Bayelva based on mass balance measurements. Nordic Hydrology, 26, 285296.CrossRefGoogle Scholar
Hammer, K. M., and Smith, N. D. (1983). Sediment production and transport in proglacial stream: Hilda Glacier, Alberta, Canada. Boreas, 12, 91106.CrossRefGoogle Scholar
Hasholt, B. (1976). Hydrology and transport of material in the Sermilik area 1972. Geografisk Tidsskrift, 75, 3039.CrossRefGoogle Scholar
Hassan, M. A., Church, M., Lisle, T. E., Brardinoni, F., Benda, L., and Grant, G. E. (2005). Sediment transport and channel morphology of small, forested streams. Journal of the American Water Resources Association, 41, 853876.CrossRefGoogle Scholar
Hayward, J. A., and Sutherland, A. J. (1974). The Torlesse stream vortex-tube sediment trap. Journal of Hydrology (New Zealand), 13, 4153.Google Scholar
Helley, E. J., and Smith, W. (1971). Development and calibration of a pressure-difference bedload sampler. US Geological Survey Open-File Report, 18 pp.CrossRefGoogle Scholar
Hey, R. D., and Meigh, J. R. (1992). Distribution and sedimentary characteristics of bedload transport in gravel-bed rivers. In Jaeggi, M., and Hunziker, R., eds., Proceedings of the I.A.H.R. International Grain Sorting Seminar. Mitteilungen der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie 117, Zurich: ETH, pp. 371398.Google Scholar
Kjeldsen, O., and Østrem, G. (1980). Materialtrans-portundersokelser i Norske Breelver 1979. NorgesVassdragsogElektrisitetsvesen. Vassdragsdirektoratet Hydrologisk Avdeling Rapport, 80 pp.Google Scholar
Kociuba, W. (2014). Application of Terrestrial Laser Scanning in the assessment of the role of small debris flow in river sediment supply in the cold climate environment. Annales UMCS B, 69, 1, 7991.Google Scholar
Kociuba, W. (2016). Effective Method for Continuous Measurement of Bedload Transport Rates by Means of River Bedload Trap (RBT) in a Small Glacial High Arctic Gravel-Bed River. In Rowiński, P., Marion, A., eds., GeoPlanet: Earth Planetary Sciences, Hydrodynamic and Mass Transport at Freshwater Aquatic Interfaces. Springer, 279292.Google Scholar
Kociuba, W., and Janicki, G. (2013). Fluvial processes. In Zagórski, P., Harasimiuk, M., and Rodzik, J., eds., The Geographical Environment of NW Part of Wedel Jarlsberg Land (Spitsbergen, Svalbard). Lublin: Wydawnictwo UMCS, 192211.Google Scholar
Kociuba, W., and Janicki, G. (2014). Continuous measurements of bedload transport rates in a small glacial river catchment in the summer season (Spitsbergen), Geomorphology, 212, 5871.CrossRefGoogle Scholar
Kociuba, W., and Janicki, G. (2015). Changeability of movable bed-surface particles in natural, gravel-bed channels and its relation to bedload grain size distribution (Scott River, Svalbard). Geografiska Annaler A, 9(3), 507521.CrossRefGoogle Scholar
Kociuba, W., Janicki, G., and Siwek, K. (2010). Dynamics of changes the bed load outflow from a small glacial catchment (West Spitsbergen). In de Wrachien, D., and Brebbia, C. A., eds. Monitoring, Simulation, Prevention and Remediation of Dense Debris Flow III. Southampton, Boston: WIT Press, 261270.CrossRefGoogle Scholar
Kociuba, W., Janicki, G., and Siwek, K. (2014). Variability of sediment transport in the Scott River catchment (Svalbard) during the hydrologically active season of 2009. Quaestiones Geographicae, 33(1), 3949.CrossRefGoogle Scholar
Kociuba, W., Janicki, G., Siwek, K., and Gluza, A. (2012). Bedload transport as an indicator of contemporary transformations of arctic fluvial systems. In de Wrachien, D., Brebbia, C. A., and Mambretti, S., eds., Monitoring, Simulation, Prevention and Remediation of Dense and Debris Flows IV. Southampton, Boston: WIT Press, pp. 125135.CrossRefGoogle Scholar
Laronne, J. B., Alexandrov, Y., Bergman, N., Cohen, H., Garcia, C., Habersack, H., Powell, D. M., and Reid, I. (2003). The continuous monitoring of bed load flux in various fluvial environments. IAHS Publication, 283, 134145.Google Scholar
Lewis, J. (1991). An improved bedload sampler. In Proceedings of the Fifth Federal Interagency Sedimentation Conference, Las Vegas, Nev., Subcommittee of the Interagency Advisory Committee on Water Data, pp. 61–68.Google Scholar
Milhous, R. (1973). Sediment transport in a gravel-bottomed stream. Ph.D. thesis, Oregon State University, Corvallis, USA, 232 pp.Google Scholar
Morche, D., and Schmidt, K. H. (2012). Sediment transport in an alpine river before and after a dambreak flood event Earth Surf. Process. Landforms, 37, 347353.CrossRefGoogle Scholar
Orwin, J. F., and Smart, C. C. (2004). The evidence for paraglacial sedimentation and its temporal scale in the deglacierizing basin of Small River Glacier, Canada. Geomorphology, 58, 175202.CrossRefGoogle Scholar
Orwin, J. F., Lamoureux, S. F., Warburton, J., and Beylich, A. A. (2010). A framework for characterizing fluvial sediment fluxes from source to sink in cold environments. Geografiska Annaler, 92 A, 155176.CrossRefGoogle Scholar
Østrem, G., Bridge, C. W., and Rannie, W. F. (1967). Glacio-hydrology, discharge and sediment transport in the Decade Glacier area, Baffin Island, N.W.T. Geografiska Annaler, 49A, 268282.Google Scholar
Pearce, J. T., Pazzaglia, F. J., Evenson, E. B., Lawson, D. E., Alley, R. B., Germanoski, D., and Denner, J. D. (2003). Bedload component of glacially discharged sediment: Insights from the Matanuska Glacier, Alaska. Geology, 31, 710.2.0.CO;2>CrossRefGoogle Scholar
Powell, D. M., Reid, I., Laronne, J. B., and Frostick, L. E. (1998). Cross stream variability of bed-load flux in narrow and wide ephemeral channels during desert flash floods. In Klingeman, P.C., Beschta, R. L., Komar, P. D., and Bradley, J. B., eds., Gravel-Bed Rivers in the Environment. Highlands Ranch, CO: Water Resources Publications LLC, pp.177196.Google Scholar
Rachlewicz, G. (2007). Floods in high Arctic Valley systems and their geomorfologic effects (examples from Billefjorden, Central Spitsbergen). Landform Analysis, 5, 6670.Google Scholar
Raven, E., Lane, S. N., and Ferguson, R. (2010). Using sediment impact sensors to improve the morphological sediment budget approach for estimating bedload transport rates. Geomorphology, 119, 125134.CrossRefGoogle Scholar
Reid, I., Laronne, J. B., and Powell, M. (2002). The nahal bedload database: sediment dynamics in a gravel-bed ephemeral stream. Earth Surface Processes and Landforms, 20(9), 845857.CrossRefGoogle Scholar
Reid, I., Layman, J. T., and Frostick, L. E. (1980). The continuous measurement of bedload discharge. Journal of Hydraulic Research, 18, 243249.CrossRefGoogle Scholar
Rickenmann, D., and McArdell, B. W. (2007). Continuous measurement of sediment transport in the Erlenbach stream using piezoelectric bedload impact sensors. Earth Surf. Process. Landforms, 32, 13621378.CrossRefGoogle Scholar
Rickenmann, D., Turowski, J. M., Fritschi, B., Klaiber, A., and Ludwig, A. (2012). Bedload transport measurements at the Erlenbach stream with geophones and automated basket samplers. Earth Surf. Process. Landforms, 37, 10001011.CrossRefGoogle Scholar
Sear, D. A., Damon, W., Booker, D. J., and Anderson, D. G. (2000). A load cell based continuous recording bedload trap. Earth Surface Processes and Landforms, 25, 689672.3.0.CO;2-5>CrossRefGoogle Scholar
Tacconi, P., and Billi, P. (1987). Bed load transport measurement by a vortex-tube trap on Virginio Creek, Italy. In Thorne, C. R., Bathurst, J. C., Hey, R.D., eds., Sediment Transport in Gravel-Bed Rivers. Chichester: Wiley, pp. 583615.Google Scholar
Turowski, J. M., Rickenmann, D., and Dadson, S. J. (2010). The partitioning of the total sediment load of a river into suspended load and bedload: a review of empirical data. Sedimentology, 57, 11261146.CrossRefGoogle Scholar
Turowski, J. M., Badoux, A., and Rickenmann, D. (2011). Start and end of bedload transport in gravel-bed streams. Geophys. Res. Lett., 38, L04401. http://dx.doi.org/10.1029/ 2010GL046558.CrossRefGoogle Scholar
Vatne, G., Naas, Ø. T., Skarholen, T., Beylich, A. A., and Berthling, I. (2008). Bed load transport in a steep snowmelt-dominated mountain stream as inferred from impact sensors. Norsk Geografisk Tidsskrift – Norwegian Journal of Geography, 62, 6674.CrossRefGoogle Scholar
Warburton, J. (1990). An alpine proglacial fluvial sediment budget. Geografiska Annaler, 72A, 261272.CrossRefGoogle Scholar
Zwoliński, Z. (1989). Geomorphic adjustment of the Parsęta channel to the present-day river regime. Dokumentacja Geograficzna, 3/4, 144 pp. (in Polish).Google Scholar
Zwoliński, Z. (1993). Dynamics of bed load transport in the Parsęta River channel, Poland. In Marzo, M. and Puigdefábregas, C., eds., Alluvial Sedimentation. International Association of Sedimentologists, Special Publications 17. Chichester: Wiley 7787.CrossRefGoogle Scholar
Zwoliński, Z. (2007). Hydrological polar monitoring – methodical proposition. Monitoring of Natural Environment, 8, 2939 (in Polish).Google Scholar

References

André, M.-F. (2003). Do periglacial landscapes evolve under periglacial conditions? Geomorphology, 52, 149164.CrossRefGoogle Scholar
Baranowski, S. (1977a). Subpolarne lodowce Spitsbergenu na tle klimatu tego regionu. Acta Universitatis Wratislsaviensis, 393, Studia Geograficzne, XXXI.Google Scholar
Baranowski, S. (1977b). Naled ice in front of some Spitsbergen glaciers. Journal of Glaciology, 28(98), 211214.CrossRefGoogle Scholar
Beylich, A. A. (2011). Mass transfers, sediment budgets and relief development in cold environments: Results of long-term geomorphologic drainage basin studies in Iceland, Swedish Lapland and Finnish Lapland. Zeitschft fűr Geomorphologie, 55(2), 145174.CrossRefGoogle Scholar
Beylich, A. A., and Warburton, J. (2007). Analysis of Source-to-Sink Fluxes and Sediment Budgets in Changing High-Latitude and High-Altitude Cold Environments: SEDIFLUX Manual. Trondheim, Norway: NGU Reports, 2007.053.Google Scholar
Bhutiyani, M. R. (2000). Sediment load characteristic of a proglacial stream of Siachen Glacier and the erosion rate in Nubra valley in the Karakoram Himalayas, India. Journal of Hydrology, 227, 8492.CrossRefGoogle Scholar
Błaszczyk, M., Jania, J. A., and Kolondra, L. (2013). Fluctuations of tidewater glaciers in Hornsund Fjord (Southern Svalbard) since the beginning of 20th century. Polish Polar Research, 34(4), 327352.CrossRefGoogle Scholar
Bukowska-Jania, E., and Szafraniec, J. (2005). Distribution and morphometric characteristics of icing fields in Svalbard. Polar Research, 24(1–2), 4153.CrossRefGoogle Scholar
Dallmann, W. K. (ed.), Dypvik, H., Gjelberg, J. G., Harland, W. B., Johannessen, E. P., Keilen, H. B., Larssen, G. B., Lønøy, A., Midbøe, P. S., Mørk, A., Nagy, J., Nilsson, I., Nøttvedt, A., Olaussen, S., Pčelina, T. M., Steel, R. J., and Worsley, D. (1999). Lithostratigraphic Lexicon of Svalbard. Oslo: Norsk Polarinstitutt.Google Scholar
Dallmann, W. K., Pipejohn, K., and Blomeier, D. (2004). Geological map of Billefjorden, Central Spitsbergen, Svalbard with geological excursion guide 1:50,000. Norsk Polarinstitutt Tematkart Nr., 36.Google Scholar
Dragon, K., and Marciniak, M. (2010). Chemical composition of groundwater and surface water in the Arctic environment (Petuniabukta region, central Spitsbergen). Journal of Hydrology, 386, 160172.CrossRefGoogle Scholar
Evans, D. J. A., Strzelecki, M., Milledge, D. G., and Orton, C. (2012). Hørbyebreen polythermal glacial landsystem, Svalbard. Journal of Maps, DOI: 10.1080/17445647.2012.680776.CrossRefGoogle Scholar
Ewertowski, M. (2014). Recent transformations in the high-arctic glacier landsystem, Ragnarbreen, Svalbard. Geografiska Annaler, Series A, DOI: 10.1111/geoa.12049.CrossRefGoogle Scholar
Ewertowski, M., Kasprzak, L., Szuman, I., and Tomczyk, A. (2012). Controlled, ice-cored moraines: sediments and geomorphology. An example from Ragnarbreen, Svalbard. Zeitschft fűr Geomorphologie, 56(1), 5374.Google Scholar
Fetterer, F. and Radionov, V., eds. (2000). Environmental Working Group Arctic meteorology and climate atlas. Arctic Climatology Project. Boulder, CO: National Snow and Ice Data Center, CD-ROM.Google Scholar
Forman, S. L., Lubinski, D. J., Ingólfsson, Ó., Zeeberg, J. J., Snyder, J. A., Siegert, M. J., and Mathisov, G. G. (2004). A review of postglacial emergence on Svalbard, Franz Josef Land and Novaya Zemlya, northern Eurasia. Quaternary Science Reviews, 23, 13911434.CrossRefGoogle Scholar
Førland, E. J., and Hanssen-Bauer, I. (2003). Past and future climate variations in the Norwegian Arctic: overview and novel analyses. Polar Research, 22(2), 113124.CrossRefGoogle Scholar
Gibas, J., Rachlewicz, G., and Szczuciński, W. (2005). Application of DC resistivity soundings and geomorphological surveys in studies of modern Arctic glacier marginal zones, Petuniabukta, Spitsbergen. Polish Polar Research, 26(4), 239258.Google Scholar
Gokhman, V. V., and Khodakov, V. G. (1986). Gidrologicheskiye issledovaniya v bassieyne reki Mimer na Spitsbiergienie v 1983 g. Materialy Gidrologicheskich Issledovanij, 55, 161166.Google Scholar
Gurnell, A. M., Hodson, A., Clark, M. J., Bogen, J., Hagen, J. O., and Tranter, M. (1994). Water and sediment discharge from glacier basins: an Arctic and Alpine comparison. In Olive, L. J. et al., eds., Variability in stream erosion and transport. Wallingford: IASH Publications, 22, 325334.Google Scholar
Hagen, J. O., Liestøl, O., Roland, E., and Jorgensen, T. (1993). Glacier Atlas of Svalbard and Jan Mayen. Oslo: NPI, Meddelelser nr. 129.Google Scholar
Hambrey, M. J., Bennett, M. R., Dowdeswell, J. A., Glasser, N. F., and Huddart, D. (1999). Debris entrainment and transfer in polythermal valley glaciers. Journal of Glaciology, 45, 6986.CrossRefGoogle Scholar
Hanssen-Bauer, I., Kristenssen Solås, M., and Steffensen, E. L. (1990). The climate of Spitsbergen. Klima: Det Norske Meteorologiske Institutt Rapport 39/90.Google Scholar
Harland, W. B. (1998). The Geology of Svalbard. London: Geological Society Memoirs, M0017.Google Scholar
Harland, W. B., Cutbill, J. L., Friend, P. F., Gobbett, D. J., Holliday, D. W., Maton, P. I., Parker, J. R., and Wallis, R. H. (1974). The Billefjorden Fault Zone, Spitsbergen. Norsk Polarinstitutt Skrifter, 161.Google Scholar
Humlum, O., Elberling, B., Hormes, A., Fjordheim, K., Hansen, O. H., and Heinemeier, J. (2005). Late-Holocene glacier growth in Svalbard, documented by subglacial relict vegetation and living soil microbes. The Holocene, 15(3), 396407.CrossRefGoogle Scholar
Jansson, P., Hock, R., and Schneider, T. (2003). The concept of glacier storage – a review. Journal of Hydrology, 282, 116129.CrossRefGoogle Scholar
Jiskoot, H., Murray, T., and Boyle, P. (2000). Controls on the distribution of surge-type glaciers in Svalbard. Journal of Glaciology, 46(154), 412422.CrossRefGoogle Scholar
Karczewski, A. (1989). The development of the marginal zone of the Hørbyebreen, central Spitsbergen. Polish Polar Research, 10(3), 371377.Google Scholar
Karczewski, A. (1995). Contemporary glaciation of the Petuniabukta area against the background of late-Vistulian and Holocene deglaciation (western Olav V Land, Spitsbergen). Quaestiones Geographicae Special Issue, 4, 133138.Google Scholar
Karczewski, A., Kostrzewski, A., and Stankowski, W. (1989). Research problems tackled by expeditions to the region between Billefjorden and Austfjorden of the Adam Mickiewicz University of Poznań over the 1984–1987 period, central Spitsbergen. Polish Polar Research, 10(3), 263266.Google Scholar
Karczewski, A., Borówka, M., Maćkowiak, K., Rygielski, W., and Wojciechowski, A. (1988). Rozwój strefy marginalnej Hørbyebreen i równi pływowej Petuniabukta. Wrocław: Materiały XV Sympozjum Polarnego, 3437.Google Scholar
Karczewski, A. (ed.), Borówka, M., Gonera, P., Kasprzak, L., Kłysz, P., Kostrzewski, A., Lindner, L., Marks, L., Rygielski, W., Stankowski, W., Wojciechowski, A., and Wysokiński, L. (1990). Geomorphology – Petuniabukta, Billefjorden, Spitsbergen, 1:40,000. Poznań: Uniwersytet im. A. Mickiewicza.Google Scholar
Kasprzak, L., and Ewertowski, M. (2007). Ice-cored moraines in the Petunia Bukta area – examples from Ragnar marginal zone. Landform Analysis, 5, 3740.Google Scholar
Kłysz, P., Lindner, L., Marks, L., and Wysokiński, L. (1989). Late Pleistocene and Holocene relief remodeling in the Ebbadalen – Nordenkiöldbreen region in Olav V Land, central Spitsbergen. Polish Polar Research, 10(3), 277301.Google Scholar
Kociuba, W., Janicki, G., and Siwek, K. (2010). Dynamics of changes the bedload outflow from a small glacial catchment (West Spitsbergen). In de Wrachien, D. and Brebbia, C. A., eds., Monitoring, Simulation, Prevention and Remediation of Dense Debris Flow III. Southampton, Boston: WIT Press, 261270.CrossRefGoogle Scholar
Kociuba, W., and Janicki, G. (2014). Continuous measurements of bedload transport rates in a small glacial river catchment in the summer season (Spitsbergen). Geomorphology, 212, 5871, DOI: 10.1016/j.geomorph.2013.05.001.CrossRefGoogle Scholar
Kostrzewski, A., Kapuściński, J., Klimczak, R., Kaniecki, A., Stach, A., and Zwoliński, Z. (1989). The dynamics and rate of denudation of glaciated and non-glaciated catchments, central Spitsbergen. Polish Polar Research, 10(3), 317367.Google Scholar
Kostrzewski, A., Rachlewicz, G., and Zwoliński, Z. (2007). Present-day geomorphological activity in the Arctic. Landform Analysis, 5, 4146.Google Scholar
Kostrzewski, A., and Zwolinski, Z. (1995). Hydraulic geometry of a supraglacial stream. Quaestiones Geographicae Special Issue, 4, 165176.Google Scholar
Leclercq, P. W., and Oerlemans, J. (2012). Global and hemispheric temperature reconstruction from glacier length fluctuations. Climate Dynamics, 30, 10651079.CrossRefGoogle Scholar
Long, A. J., Strzelecki, M. C., Lloyd, J. M., and Bryant, C. L. (2012). Dating High Arctic Holocene relative sea level changes using juvenile articulated marine shells in raised beaches. Quaternary Science Reviews, 48, 6166.CrossRefGoogle Scholar
Liestøl, O. (1969). Glacier surges in West Spitsbergen. Canadian Journal of Earth Sciences, 6(4), 895897.CrossRefGoogle Scholar
Marciniak, M., Dragon, K., and Chudziak, Ł. (2011). O zasilaniu wodą gruntową rzeki polarnej Ebba w rejonie zatoki Petunia na środkowym Spitsbergenie. Biuletyn Państwowego Instytutu Geologicznego, 445, 371382.Google Scholar
Mercier, D., and Laffly, D. (2005). Actual paraglacial progradation of the coastal zone in Kongsfjorden area, West Spitsbergen (Svalbard). In Harris, C and Murton, J., eds., Cryospheric Systems: Glaciers and Permafrost. London: Geological Society Special Publications, 242, 111–117.Google Scholar
Niedźwiedź, T. (2007). Cyrkulacja atmosferyczna. In Marsz, A. A. and Styszyńska, A., eds., Klimat rejonu polskiej stacji polarnej w Hornsundzie. Gdynia: Wydawnictwo Akademii Morskiej, 5463.Google Scholar
Nordli, Ø., Przybylak, R., Ogilvie, A. E. J., and Isaksen, K. (2014). Long-term temperature trends and variability on Spitsbergen: the extended Svalbard Airport temperature series, 1989–2012. Polar Research, 33, DOI: org/10.3402/polar.v33.21349.CrossRefGoogle Scholar
Oerlemans, J. (2007). Extracting a climate signal from 169 glacier records. Science, 308, 675677.CrossRefGoogle Scholar
Overland, J. E., and Serreze, M. C. (2012). Advances in Arctic atmospheric research. In Lemke, P. and Jacobi, H. W., eds., Arctic climate change. New York: Springer, 1127.CrossRefGoogle Scholar
Przybylak, R. (2003). The climate of the Arctic. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
Przybylak, R, Araźny, A., Nordli, Ø., Finkelnburg, R., Kejna, M., Budzik, T., Migała, K., Sikora, S., Puczko, D., Rymer, K., and Rachlewicz, G. (2014). Spatial distribution of fair temperature on Svalbard during 1 year with campaign measurements. International Journal of Climatology, 34(14), 37023719, DOI: 10.1002/joc.3937.CrossRefGoogle Scholar
Rachlewicz, G. (1989). Budowa i klasyfikacja łach w korytach rzek roztokowych na przedpolu lodowca Hørbye – Spitsbergen Środkowy. Toruń: Materiały XVI Sympozjum Polarnego, 122124.Google Scholar
Rachlewicz, G. (2003a). Uwarunkowania środowiskowe obiegu wody w systemie lodowca Hørbye (środkowy Spitsbergen). In Kostrzewski, A. and Szpikowski, J., eds., The Functioning of Geoecosystems of River Catchments, vol. 3. Poznań: Bogucki Wydawnictwo Naukowe, 351365.Google Scholar
Rachlewicz, G. (2003b). Warunki meteorologiczne w Zatoce Petunia (Spitsbergen Środkowy), w sezonach letnich 2000–2001. Problemy Klimatologii Polarnej, 13, 127138.Google Scholar
Rachlewicz, G. (2009a). Contemporary sediment fluxes and relief development in high Arctic glacierized valley systems (Billefjorden, Central Spitsbergen). Wydawnictwo Naukowe UAM, Seria Geografia, 87.Google Scholar
Rachlewicz, G. (2009b). River floods in glacier-covered catchments of the high Arctic: Billefjorden-Wijdefjorden, Svalbard. Norsk Geografisk Tidskrift, 63(2), 115122.CrossRefGoogle Scholar
Rachlewicz, G. (2010). Paraglacial modifications of glacial sediments over millennial to decadal time-scales in the high Arctic (Billefjorden, central Spitsbergen, Svalbard). Quaestiones Geographicae, 29(3), 5967.CrossRefGoogle Scholar
Rachlewicz, G., Kostrzewski, A., Marciniak, M., Szpikowski, J., and Zwoliński, Zb. (2012). The function of contemporary physical geography processes in Polar Regions (Dickson Land, Svalbard). In Churski, P., ed., Contemporary Issues in Polish Geography. Poznań: Bogucki Wydawnictwo Naukowe.Google Scholar
Rachlewicz, G., and Rymer, K. (2013). Interakcja procesów fluwialnych i litoralnych w kształtowaniu rzeźby wybrzeży Svalbardu – przykłady z Billefjorden. In Kostrzewski, A., Zwolinski, Z., and Winowski, M., eds., Geoekosystem wybrzeży morskich 2. Stacja Monitoringu Środowiska Przyrodniczego UAM w Białej Górze, 95100.Google Scholar
Rachlewicz, G., and Styszyńska, A. (2007). Porównanie przebiegu temperatury powietrza w Petuniabukta i Svalbard-Lufthavn (Isfjord, West Spitsbergen) w latach 2001–2003. Problemy Klimatologii Polarnej, 17, 121134.Google Scholar
Rachlewicz, G., and Szczuciński, W. (2000). Ice tectonics and bedrock relief control on glacial sedimentation – an example from Hansbreen, Spitsbergen. Polish Polar Stud., 27th Polar Symposium, Toruń. Toruń: Pracownia Sztuk Plastycznych Sp. z o.o., 259275.Google Scholar
Rachlewicz, G., and Szczuciński, W. (2008). Changes in permafrost active layer thermal structure in dry polar climate (Petuniabukta, Svalbard). Polish Polar Research, 29(3), 261278.Google Scholar
Rachlewicz, G., Szczuciński, W., and Ewertowski, M. (2007). Post−“Little Ice Age” retreat rates of glaciers around Billefjorden in central Spitsbergen, Svalbard. Polish Polar Research, 28(3), 159186.Google Scholar
Serreze, M. C., and Barry, R. G. (1988). Synoptic activity in the Arctic Basin, 1979–85. Journal of Climatology, 1(12), 12761295.2.0.CO;2>CrossRefGoogle Scholar
Serreze, M. C., Walsh, J. E., Chapin, F. S. III, Osterkamp, T., Dyurgerov, M., Romanovsky, V., Oechel, W. C., Morison, J., Zhang, T., and Barry, R. G. (2000). Observational evidence of recent change in the northern high-latitude environment. Climatic Change, 46(1–2), 159207.CrossRefGoogle Scholar
Slaymaker, O. (2008). Sediment budget and sediment flux studies under accelerating global change in cold environments. Zeitschft fűr Geomorphologie, 52(1), 123148.CrossRefGoogle Scholar
Stenborg, T. (1970). Delay of runoff from a glacier basin. Geografiska Annaler, 52A, 130.Google Scholar
Szczuciński, W., and Rachlewicz, G. (2007). Geological setting of the Petuniabukta region. Landform Analysis, 5, 192195.Google Scholar
Szczuciński, W., and Zajączkowski, M. (2012). Factors controlling downward fluxes of particulate matter in glacier-contact and non-glacier contact settings in a subpolar fjord (Billefjorden, Svalbard). In Li, M., Sherwood, C., and Hill, P., eds., Sediments, Morphology and Sedimentary Processes on Continental Shelves, IAS Special Publication No. 44. Chichester: Wiley-Blackwell Publishing, 369386.CrossRefGoogle Scholar
Szpikowski, J., Szpikowska, G., Zwoliński, Z., Rachlewicz, G., Kostrzewski, A., Marciniak, M., and Dragon, K. (2014a). Character and rate of denudation in a high Arctic glacierized catchment (Ebbaelva, Central Spitsbergen). Geomorphology, 218, 252262.CrossRefGoogle Scholar
Szpikowski, J., Szpikowska, G., Zwoliński, Z., and Kostrzewski, A. (2014b). Magnitude of fluvial transport and rate of denudation in a non glacierised catchment in a polar zone, central Spitsbergen. Geografiska Annaler, Series A, Physical Geography, DOI: 10.1111/geoa.12070.CrossRefGoogle Scholar
Treshnikov, A. F., ed. (1985). Atlas Arktiki. Moskwa: GUGK.Google Scholar
Wadham, J. L., Cooper, R. J., Tranter, M., and Hodgkins, R. (2001). Enhancement of glacial solute fluxes in the proglacial zone of a polythermal glacier. Journal of Glaciology, 47, 378386.CrossRefGoogle Scholar

References

Asselman, N. E. M. (2000). Fitting and interpretation of sediment rating curves. Journal of Hydrology, 234, 228248.CrossRefGoogle Scholar
Astakhov, V., and Isayeva, L. (1988). The “Ice Hill”: an example of “retarded deglaciation” in Siberia. Quaternary Science Reviews, 7, 2940.CrossRefGoogle Scholar
Colby, B. R. (1956). Relationship of sediment discharge to streamflow. U.S. Geological Survey Open File Report 56–27, Washington, DC, 169 p.Google Scholar
Ferguson, R. (1986). Hydraulics and hydraulic geometry. Progress in Physical Geography, 10, 131.CrossRefGoogle Scholar
Guggenberger, G., Rodionov, A., Shibistova, O., Grabe, M., Kazansky, O., Fuchs, H., Mikheyeva, N., Zrazhevskaya, G., and Flessa, H. (2008). Storage and mobility of black carbon in permafrost soils of the forest tundra ecotone in Northern Siberia. Global Change Biology, 14, 13671381.CrossRefGoogle Scholar
Lebedeva, L., and Semenova, O. (2011). Evaluation of climate change impact on soil and snow processes in small watersheds of European part of Russia using various scenarios of climate. Die Bodenkultur, 62(1–4), 7782.Google Scholar
Old, G., Lawler, D., and Snorrason, Á. (2005). Discharge and suspended sediment dynamics during two jökulhlaups in the Skaftáriver, Iceland, Earth Surface. Processes and Landforms, 30, 14411460.CrossRefGoogle Scholar
Peel, M., Finlayson, B., and McMahon, T. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences, 11, 16331644.CrossRefGoogle Scholar
RD 52.08.104–2002 (2002). Methodical guide. Suspended sediment concentration. Moscow: Meas. Tech., 32 pp.Google Scholar
Rodionov, A., Flessa, H., Grabe, M., Kazansky, O., Shibistova, O., and Guggenberger, G. (2007). Organic carbon and total nitrogen variability in permafrost-affected soils in a forest tundra ecotone. European Journal of Soil Science, 58, 12601272.CrossRefGoogle Scholar
Sergievskaya, Ya., Poznarkova, S., and Tananaev, N. (2012). Monitoring of the depth of seasonal thawing in the lower reaches of the Yenisey river at site CALM R-40 of Igarka town // Tenth International Conference on Permafrost: Resources and Risks of Permafrost Areas in a Changing World. Vol.4/1: Extended Abstracts. Fort Dialog-Iset: Ekaterinburg, Russia, 514515.Google Scholar
Tananaev, N. (2014a). Estimation of the annual discharge of suspended matter by the rivers of North Siberia and the Far East. Oceanology, 54 (5), 650659.CrossRefGoogle Scholar
Tananaev, N. (2014b). Fitting sediment rating curves using regression analysis: a case study of Russian Arctic rivers, IAHS Publ. 367, Wallingford, UK: IAHS Press, 193198.Google Scholar
Tananaev, N., and Debolskiy, M. (2014). Turbidity observations in sediment flux studies: Examples from Russian rivers in cold environments. Geomorphology, 218, 6371.CrossRefGoogle Scholar
US EPA Method 180.1. (1993). Determination of turbidity by nephelometry. Revision 2.0.August 1993. Cincinnati, OH: U.S. Environment Protection Agency, 10 p.Google Scholar
Vinogradov, Yu., Semenova, O., and Vinogradova, T. (2011). An approach to the scaling problem in hydrological modelling: the deterministic modelling hydrological system. Hydrological Processes, 25 (7), 10551073.CrossRefGoogle Scholar

References

Beylich, A. A. (2000). Geomorphology, sediment budget, and relief development in Austdalur, AustfirOir, east Iceland. Arctic, Antarctic and Alpine Research, 32, 466477.CrossRefGoogle Scholar
Beylich, A. A. (2008). Mass transfers, sediment budget and relief development in the Latnjavagge catchment, Arctic-oceanic Swedish Lapland. Zeitschrift fűr Geomorphologie N.F., 52, 149197.CrossRefGoogle Scholar
Beylich, A. A. (2011). Mass transfers, sediment budgets and relief development in cold environments: results of long-term geomorphologic drainage basin studies in Swedish Lapland, and Finish Lapland. Zeitschrift fȕr Geomorphologie, NF55, 145174.CrossRefGoogle Scholar
Beylich, A. A. (2012). Major controls of mass transfers and relief development in four cold-climate catchment systems in eastern Iceland, Swedish Lapland and Finish Lapland (synthesis paper). NGF Abstracts and Proceedings of the Geological Society of Norway, 1, 87123.Google Scholar
Beylich, A. A., Kolstrup, E., Thyrsted, T., Linde, N., Pedersen, L. B., and Dynesius, L. (2004a). Chemical denudation in Arctic-alpine Latnjavagge, (Swedish Lapland) in relation to regolith as assessed by radio magnetotelluric-geophysical profiles. Geomorphology, 57, 303319CrossRefGoogle Scholar
Beylich, A. A., Kolstrup, E., Thyrsted, T., and Gintz, D. (2004b). Water chemistry and its diversity in relation to local factors in the Latnjavagge drainage basin, arctic-oceanic Swedish Lapland. Geomorphology, 58, 125143.CrossRefGoogle Scholar
Beylich, A. A., Sandberg, O., Molau, U., and Wache, S. (2006). Intensity and spatio-temporal variability of fluvial sediment transfers in an Arctic-oceanic periglacial environment in northernmost Swedish Lapland (Latnjavagge catchment). Geomorphology, 80, 114130.CrossRefGoogle Scholar
Caine, N. (1971). A conceptual model for alpine slope process study. Arctic and Alpine Research, 3, 319329.CrossRefGoogle Scholar
Caine, N. (1974). The geomorphic processes of the alpine environment. In Ives, J. D. and Barry, R. G., eds., Arctic and Alpine Environments. London: Methuen, pp. 721748.Google Scholar
Campbell, S. W., Dixon, J. C., Darmody, R. G., and Thorn, C. E. (2001). Spatial variation of early season surface water chemistry in Kärkevagge, Swedish Lapland. Geografiska Annaler, 83A, 169178.CrossRefGoogle Scholar
Campbell, S. W., Dixon, J. C., Thorn, C. E., and Darmody, R. G. (2002). Chemical denudation rates in Kärkevagge Swedish Lapland. Geografiska Annaler, 84A, 179185CrossRefGoogle Scholar
Darmody, R. G., Campbell, S. W. Dixon, J. C., and Thorn, C. E. (2002). Enigmatic efflorescence in Kärkevagge, Swedish Lapland. Geografiska Annaler, 84A, 187192.CrossRefGoogle Scholar
Decaulne, A., Eggertsson, Ó., and Saemundsson, T. (2015). The use of dendrogeomorphology to recognize the spatio-temporal distribution of snow avalanches in N-Iceland-case studies from Dalsmynni, Ljósavatnsskard and Fnjóskadalur. In Beylich, A. A., Dixon, J. C., and Zwolinski, Z., eds., Source-to-Sink Fluxes in Undisturbed Cold Environments. Cambridge: Cambridge University Press.Google Scholar
Dixon, J. C. (2015). A contemporary assessment of sediment and solute transfers in Kärkevagge, Swedish Lapland. In Beylich, A. A., Dixon, J. C., and Zwolinski, Z., eds., Source-to-Sink Fluxes in Undisturbed Cold Environments. Cambridge: Cambridge University Press.Google Scholar
Etzelmüller, B., and Hagen, J. O. (2005). Glacier-permafrost interaction in arctic and alpine mountain environments with examples from southern Norway and Svalbard. In Harris, C. and Murton, J. B., eds., Cryospheric Systems: Glaciers and Permafrost. London: Geological Society of London, Special Publication 242, pp. 1127.Google Scholar
French, H. M. (2007). The Periglacial Environment, 3rd ed. Chichester: John Wiley and Sons.CrossRefGoogle Scholar
Germain, B., and Hétu, B (2015). Hillslope processes and related sediment fluxes on a fine-grained scree slope of eastern Canada. In Beylich, A. A., Dixon, J. C., and Zwolinski, Z., eds., Source-to-Sink Fluxes in Undisturbed Cold Environment. Cambridge: Cambridge University Press.Google Scholar
Harris, C., and Murton, J., eds. (2005). Cryospheric Systems: Glaciers and Permafrost. London: The Geological Society, Special publication, 242.Google Scholar
Hasholt, B. (2015). Sediment and solute transport from Greenland. In Beylich, A. A., Dixon, J. C., and Zwolinski, Z.., eds., Source-to-Sink Fluxes in Undisturbed Cold Environments. Cambridge: Cambridge University Press.Google Scholar
Hasholt, B., Bobroviskaya, N., Bogen, J., McNamara, J., Mernild, S. H., Milburn, D., and Walling, D. E. (2006). Sediment transport to the Arctic Ocean and adjoining cold oceans. Nordic Hydrology, 37, 413432.CrossRefGoogle Scholar
Kociuba, W. (2015). Measurements of bedload flux in a high Arctic environment. In Beylich, A. A., Dixon, J. C., and Zwolinski, Z., eds., Source-to-Sink Fluxes in Undisturbed Cold Environments. Cambridge: Cambridge University Press.Google Scholar
Rachlewicz, G. (2009). Contemporary sediment fluxes and relief changes in high Arctic glacierized valley systems (Billefjorden, central Spitsbergen). Poznaniu: Uniwersytet im Adama Mickiewicza W. Seria Geografia NR 87.Google Scholar
Rachlewicz, G., Szpikowska, G., Szpikowski, J., and Zwolinski, Z. (2015). Solute and particulate fluxes in catchments in Spitsbergen. In Beylich, A. A., Dixon, J. C., and Zwolinski, Z., eds., Source-to-Sink Fluxes in Undisturbed Cold Environments. Cambridge: Cambridge University Press.Google Scholar
Ridefelt, H., Ǻkerman, J., Beylich, A. A., Boelhouwers, J., Kolstrup, E., and Nyberg, R. (2009). 56 years of solifluction measurements in the Abisko Mountains, northern Sweden – Analysis of temporal and spatial variations of slow soil surface movement. Geografiska Annaler, 91A, 215232.CrossRefGoogle Scholar
Tananaev, N. (2015). Sediment transfer and fluxes in continental Russian Arctic watersheds. In Beylich, A. A., Dixon, J. C., and Zwolinski, Z., eds., Source-to-Sink Fluxes in Undisturbed Cold Environments. Cambridge: Cambridge University Press.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×