Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-19T05:18:41.607Z Has data issue: false hasContentIssue false

11 - Solute and particulate fluxes in catchments in Spitsbergen

from Part III - Solute and sedimentary fluxes in subarctic and Arctic environments

Published online by Cambridge University Press:  05 July 2016

Achim A. Beylich
Affiliation:
Geological Survey of Norway
John C. Dixon
Affiliation:
University of Arkansas
Zbigniew Zwoliński
Affiliation:
Adam Mickiewicz University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

André, M.-F. (2003). Do periglacial landscapes evolve under periglacial conditions? Geomorphology, 52, 149164.CrossRefGoogle Scholar
Baranowski, S. (1977a). Subpolarne lodowce Spitsbergenu na tle klimatu tego regionu. Acta Universitatis Wratislsaviensis, 393, Studia Geograficzne, XXXI.Google Scholar
Baranowski, S. (1977b). Naled ice in front of some Spitsbergen glaciers. Journal of Glaciology, 28(98), 211214.CrossRefGoogle Scholar
Beylich, A. A. (2011). Mass transfers, sediment budgets and relief development in cold environments: Results of long-term geomorphologic drainage basin studies in Iceland, Swedish Lapland and Finnish Lapland. Zeitschft fűr Geomorphologie, 55(2), 145174.CrossRefGoogle Scholar
Beylich, A. A., and Warburton, J. (2007). Analysis of Source-to-Sink Fluxes and Sediment Budgets in Changing High-Latitude and High-Altitude Cold Environments: SEDIFLUX Manual. Trondheim, Norway: NGU Reports, 2007.053.Google Scholar
Bhutiyani, M. R. (2000). Sediment load characteristic of a proglacial stream of Siachen Glacier and the erosion rate in Nubra valley in the Karakoram Himalayas, India. Journal of Hydrology, 227, 8492.CrossRefGoogle Scholar
Błaszczyk, M., Jania, J. A., and Kolondra, L. (2013). Fluctuations of tidewater glaciers in Hornsund Fjord (Southern Svalbard) since the beginning of 20th century. Polish Polar Research, 34(4), 327352.CrossRefGoogle Scholar
Bukowska-Jania, E., and Szafraniec, J. (2005). Distribution and morphometric characteristics of icing fields in Svalbard. Polar Research, 24(1–2), 4153.CrossRefGoogle Scholar
Dallmann, W. K. (ed.), Dypvik, H., Gjelberg, J. G., Harland, W. B., Johannessen, E. P., Keilen, H. B., Larssen, G. B., Lønøy, A., Midbøe, P. S., Mørk, A., Nagy, J., Nilsson, I., Nøttvedt, A., Olaussen, S., Pčelina, T. M., Steel, R. J., and Worsley, D. (1999). Lithostratigraphic Lexicon of Svalbard. Oslo: Norsk Polarinstitutt.Google Scholar
Dallmann, W. K., Pipejohn, K., and Blomeier, D. (2004). Geological map of Billefjorden, Central Spitsbergen, Svalbard with geological excursion guide 1:50,000. Norsk Polarinstitutt Tematkart Nr., 36.Google Scholar
Dragon, K., and Marciniak, M. (2010). Chemical composition of groundwater and surface water in the Arctic environment (Petuniabukta region, central Spitsbergen). Journal of Hydrology, 386, 160172.CrossRefGoogle Scholar
Evans, D. J. A., Strzelecki, M., Milledge, D. G., and Orton, C. (2012). Hørbyebreen polythermal glacial landsystem, Svalbard. Journal of Maps, DOI: 10.1080/17445647.2012.680776.CrossRefGoogle Scholar
Ewertowski, M. (2014). Recent transformations in the high-arctic glacier landsystem, Ragnarbreen, Svalbard. Geografiska Annaler, Series A, DOI: 10.1111/geoa.12049.CrossRefGoogle Scholar
Ewertowski, M., Kasprzak, L., Szuman, I., and Tomczyk, A. (2012). Controlled, ice-cored moraines: sediments and geomorphology. An example from Ragnarbreen, Svalbard. Zeitschft fűr Geomorphologie, 56(1), 5374.Google Scholar
Fetterer, F. and Radionov, V., eds. (2000). Environmental Working Group Arctic meteorology and climate atlas. Arctic Climatology Project. Boulder, CO: National Snow and Ice Data Center, CD-ROM.Google Scholar
Forman, S. L., Lubinski, D. J., Ingólfsson, Ó., Zeeberg, J. J., Snyder, J. A., Siegert, M. J., and Mathisov, G. G. (2004). A review of postglacial emergence on Svalbard, Franz Josef Land and Novaya Zemlya, northern Eurasia. Quaternary Science Reviews, 23, 13911434.CrossRefGoogle Scholar
Førland, E. J., and Hanssen-Bauer, I. (2003). Past and future climate variations in the Norwegian Arctic: overview and novel analyses. Polar Research, 22(2), 113124.CrossRefGoogle Scholar
Gibas, J., Rachlewicz, G., and Szczuciński, W. (2005). Application of DC resistivity soundings and geomorphological surveys in studies of modern Arctic glacier marginal zones, Petuniabukta, Spitsbergen. Polish Polar Research, 26(4), 239258.Google Scholar
Gokhman, V. V., and Khodakov, V. G. (1986). Gidrologicheskiye issledovaniya v bassieyne reki Mimer na Spitsbiergienie v 1983 g. Materialy Gidrologicheskich Issledovanij, 55, 161166.Google Scholar
Gurnell, A. M., Hodson, A., Clark, M. J., Bogen, J., Hagen, J. O., and Tranter, M. (1994). Water and sediment discharge from glacier basins: an Arctic and Alpine comparison. In Olive, L. J. et al., eds., Variability in stream erosion and transport. Wallingford: IASH Publications, 22, 325334.Google Scholar
Hagen, J. O., Liestøl, O., Roland, E., and Jorgensen, T. (1993). Glacier Atlas of Svalbard and Jan Mayen. Oslo: NPI, Meddelelser nr. 129.Google Scholar
Hambrey, M. J., Bennett, M. R., Dowdeswell, J. A., Glasser, N. F., and Huddart, D. (1999). Debris entrainment and transfer in polythermal valley glaciers. Journal of Glaciology, 45, 6986.CrossRefGoogle Scholar
Hanssen-Bauer, I., Kristenssen Solås, M., and Steffensen, E. L. (1990). The climate of Spitsbergen. Klima: Det Norske Meteorologiske Institutt Rapport 39/90.Google Scholar
Harland, W. B. (1998). The Geology of Svalbard. London: Geological Society Memoirs, M0017.Google Scholar
Harland, W. B., Cutbill, J. L., Friend, P. F., Gobbett, D. J., Holliday, D. W., Maton, P. I., Parker, J. R., and Wallis, R. H. (1974). The Billefjorden Fault Zone, Spitsbergen. Norsk Polarinstitutt Skrifter, 161.Google Scholar
Humlum, O., Elberling, B., Hormes, A., Fjordheim, K., Hansen, O. H., and Heinemeier, J. (2005). Late-Holocene glacier growth in Svalbard, documented by subglacial relict vegetation and living soil microbes. The Holocene, 15(3), 396407.CrossRefGoogle Scholar
Jansson, P., Hock, R., and Schneider, T. (2003). The concept of glacier storage – a review. Journal of Hydrology, 282, 116129.CrossRefGoogle Scholar
Jiskoot, H., Murray, T., and Boyle, P. (2000). Controls on the distribution of surge-type glaciers in Svalbard. Journal of Glaciology, 46(154), 412422.CrossRefGoogle Scholar
Karczewski, A. (1989). The development of the marginal zone of the Hørbyebreen, central Spitsbergen. Polish Polar Research, 10(3), 371377.Google Scholar
Karczewski, A. (1995). Contemporary glaciation of the Petuniabukta area against the background of late-Vistulian and Holocene deglaciation (western Olav V Land, Spitsbergen). Quaestiones Geographicae Special Issue, 4, 133138.Google Scholar
Karczewski, A., Kostrzewski, A., and Stankowski, W. (1989). Research problems tackled by expeditions to the region between Billefjorden and Austfjorden of the Adam Mickiewicz University of Poznań over the 1984–1987 period, central Spitsbergen. Polish Polar Research, 10(3), 263266.Google Scholar
Karczewski, A., Borówka, M., Maćkowiak, K., Rygielski, W., and Wojciechowski, A. (1988). Rozwój strefy marginalnej Hørbyebreen i równi pływowej Petuniabukta. Wrocław: Materiały XV Sympozjum Polarnego, 3437.Google Scholar
Karczewski, A. (ed.), Borówka, M., Gonera, P., Kasprzak, L., Kłysz, P., Kostrzewski, A., Lindner, L., Marks, L., Rygielski, W., Stankowski, W., Wojciechowski, A., and Wysokiński, L. (1990). Geomorphology – Petuniabukta, Billefjorden, Spitsbergen, 1:40,000. Poznań: Uniwersytet im. A. Mickiewicza.Google Scholar
Kasprzak, L., and Ewertowski, M. (2007). Ice-cored moraines in the Petunia Bukta area – examples from Ragnar marginal zone. Landform Analysis, 5, 3740.Google Scholar
Kłysz, P., Lindner, L., Marks, L., and Wysokiński, L. (1989). Late Pleistocene and Holocene relief remodeling in the Ebbadalen – Nordenkiöldbreen region in Olav V Land, central Spitsbergen. Polish Polar Research, 10(3), 277301.Google Scholar
Kociuba, W., Janicki, G., and Siwek, K. (2010). Dynamics of changes the bedload outflow from a small glacial catchment (West Spitsbergen). In de Wrachien, D. and Brebbia, C. A., eds., Monitoring, Simulation, Prevention and Remediation of Dense Debris Flow III. Southampton, Boston: WIT Press, 261270.CrossRefGoogle Scholar
Kociuba, W., and Janicki, G. (2014). Continuous measurements of bedload transport rates in a small glacial river catchment in the summer season (Spitsbergen). Geomorphology, 212, 5871, DOI: 10.1016/j.geomorph.2013.05.001.CrossRefGoogle Scholar
Kostrzewski, A., Kapuściński, J., Klimczak, R., Kaniecki, A., Stach, A., and Zwoliński, Z. (1989). The dynamics and rate of denudation of glaciated and non-glaciated catchments, central Spitsbergen. Polish Polar Research, 10(3), 317367.Google Scholar
Kostrzewski, A., Rachlewicz, G., and Zwoliński, Z. (2007). Present-day geomorphological activity in the Arctic. Landform Analysis, 5, 4146.Google Scholar
Kostrzewski, A., and Zwolinski, Z. (1995). Hydraulic geometry of a supraglacial stream. Quaestiones Geographicae Special Issue, 4, 165176.Google Scholar
Leclercq, P. W., and Oerlemans, J. (2012). Global and hemispheric temperature reconstruction from glacier length fluctuations. Climate Dynamics, 30, 10651079.CrossRefGoogle Scholar
Long, A. J., Strzelecki, M. C., Lloyd, J. M., and Bryant, C. L. (2012). Dating High Arctic Holocene relative sea level changes using juvenile articulated marine shells in raised beaches. Quaternary Science Reviews, 48, 6166.CrossRefGoogle Scholar
Liestøl, O. (1969). Glacier surges in West Spitsbergen. Canadian Journal of Earth Sciences, 6(4), 895897.CrossRefGoogle Scholar
Marciniak, M., Dragon, K., and Chudziak, Ł. (2011). O zasilaniu wodą gruntową rzeki polarnej Ebba w rejonie zatoki Petunia na środkowym Spitsbergenie. Biuletyn Państwowego Instytutu Geologicznego, 445, 371382.Google Scholar
Mercier, D., and Laffly, D. (2005). Actual paraglacial progradation of the coastal zone in Kongsfjorden area, West Spitsbergen (Svalbard). In Harris, C and Murton, J., eds., Cryospheric Systems: Glaciers and Permafrost. London: Geological Society Special Publications, 242, 111–117.Google Scholar
Niedźwiedź, T. (2007). Cyrkulacja atmosferyczna. In Marsz, A. A. and Styszyńska, A., eds., Klimat rejonu polskiej stacji polarnej w Hornsundzie. Gdynia: Wydawnictwo Akademii Morskiej, 5463.Google Scholar
Nordli, Ø., Przybylak, R., Ogilvie, A. E. J., and Isaksen, K. (2014). Long-term temperature trends and variability on Spitsbergen: the extended Svalbard Airport temperature series, 1989–2012. Polar Research, 33, DOI: org/10.3402/polar.v33.21349.CrossRefGoogle Scholar
Oerlemans, J. (2007). Extracting a climate signal from 169 glacier records. Science, 308, 675677.CrossRefGoogle Scholar
Overland, J. E., and Serreze, M. C. (2012). Advances in Arctic atmospheric research. In Lemke, P. and Jacobi, H. W., eds., Arctic climate change. New York: Springer, 1127.CrossRefGoogle Scholar
Przybylak, R. (2003). The climate of the Arctic. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
Przybylak, R, Araźny, A., Nordli, Ø., Finkelnburg, R., Kejna, M., Budzik, T., Migała, K., Sikora, S., Puczko, D., Rymer, K., and Rachlewicz, G. (2014). Spatial distribution of fair temperature on Svalbard during 1 year with campaign measurements. International Journal of Climatology, 34(14), 37023719, DOI: 10.1002/joc.3937.CrossRefGoogle Scholar
Rachlewicz, G. (1989). Budowa i klasyfikacja łach w korytach rzek roztokowych na przedpolu lodowca Hørbye – Spitsbergen Środkowy. Toruń: Materiały XVI Sympozjum Polarnego, 122124.Google Scholar
Rachlewicz, G. (2003a). Uwarunkowania środowiskowe obiegu wody w systemie lodowca Hørbye (środkowy Spitsbergen). In Kostrzewski, A. and Szpikowski, J., eds., The Functioning of Geoecosystems of River Catchments, vol. 3. Poznań: Bogucki Wydawnictwo Naukowe, 351365.Google Scholar
Rachlewicz, G. (2003b). Warunki meteorologiczne w Zatoce Petunia (Spitsbergen Środkowy), w sezonach letnich 2000–2001. Problemy Klimatologii Polarnej, 13, 127138.Google Scholar
Rachlewicz, G. (2009a). Contemporary sediment fluxes and relief development in high Arctic glacierized valley systems (Billefjorden, Central Spitsbergen). Wydawnictwo Naukowe UAM, Seria Geografia, 87.Google Scholar
Rachlewicz, G. (2009b). River floods in glacier-covered catchments of the high Arctic: Billefjorden-Wijdefjorden, Svalbard. Norsk Geografisk Tidskrift, 63(2), 115122.CrossRefGoogle Scholar
Rachlewicz, G. (2010). Paraglacial modifications of glacial sediments over millennial to decadal time-scales in the high Arctic (Billefjorden, central Spitsbergen, Svalbard). Quaestiones Geographicae, 29(3), 5967.CrossRefGoogle Scholar
Rachlewicz, G., Kostrzewski, A., Marciniak, M., Szpikowski, J., and Zwoliński, Zb. (2012). The function of contemporary physical geography processes in Polar Regions (Dickson Land, Svalbard). In Churski, P., ed., Contemporary Issues in Polish Geography. Poznań: Bogucki Wydawnictwo Naukowe.Google Scholar
Rachlewicz, G., and Rymer, K. (2013). Interakcja procesów fluwialnych i litoralnych w kształtowaniu rzeźby wybrzeży Svalbardu – przykłady z Billefjorden. In Kostrzewski, A., Zwolinski, Z., and Winowski, M., eds., Geoekosystem wybrzeży morskich 2. Stacja Monitoringu Środowiska Przyrodniczego UAM w Białej Górze, 95100.Google Scholar
Rachlewicz, G., and Styszyńska, A. (2007). Porównanie przebiegu temperatury powietrza w Petuniabukta i Svalbard-Lufthavn (Isfjord, West Spitsbergen) w latach 2001–2003. Problemy Klimatologii Polarnej, 17, 121134.Google Scholar
Rachlewicz, G., and Szczuciński, W. (2000). Ice tectonics and bedrock relief control on glacial sedimentation – an example from Hansbreen, Spitsbergen. Polish Polar Stud., 27th Polar Symposium, Toruń. Toruń: Pracownia Sztuk Plastycznych Sp. z o.o., 259275.Google Scholar
Rachlewicz, G., and Szczuciński, W. (2008). Changes in permafrost active layer thermal structure in dry polar climate (Petuniabukta, Svalbard). Polish Polar Research, 29(3), 261278.Google Scholar
Rachlewicz, G., Szczuciński, W., and Ewertowski, M. (2007). Post−“Little Ice Age” retreat rates of glaciers around Billefjorden in central Spitsbergen, Svalbard. Polish Polar Research, 28(3), 159186.Google Scholar
Serreze, M. C., and Barry, R. G. (1988). Synoptic activity in the Arctic Basin, 1979–85. Journal of Climatology, 1(12), 12761295.2.0.CO;2>CrossRefGoogle Scholar
Serreze, M. C., Walsh, J. E., Chapin, F. S. III, Osterkamp, T., Dyurgerov, M., Romanovsky, V., Oechel, W. C., Morison, J., Zhang, T., and Barry, R. G. (2000). Observational evidence of recent change in the northern high-latitude environment. Climatic Change, 46(1–2), 159207.CrossRefGoogle Scholar
Slaymaker, O. (2008). Sediment budget and sediment flux studies under accelerating global change in cold environments. Zeitschft fűr Geomorphologie, 52(1), 123148.CrossRefGoogle Scholar
Stenborg, T. (1970). Delay of runoff from a glacier basin. Geografiska Annaler, 52A, 130.Google Scholar
Szczuciński, W., and Rachlewicz, G. (2007). Geological setting of the Petuniabukta region. Landform Analysis, 5, 192195.Google Scholar
Szczuciński, W., and Zajączkowski, M. (2012). Factors controlling downward fluxes of particulate matter in glacier-contact and non-glacier contact settings in a subpolar fjord (Billefjorden, Svalbard). In Li, M., Sherwood, C., and Hill, P., eds., Sediments, Morphology and Sedimentary Processes on Continental Shelves, IAS Special Publication No. 44. Chichester: Wiley-Blackwell Publishing, 369386.CrossRefGoogle Scholar
Szpikowski, J., Szpikowska, G., Zwoliński, Z., Rachlewicz, G., Kostrzewski, A., Marciniak, M., and Dragon, K. (2014a). Character and rate of denudation in a high Arctic glacierized catchment (Ebbaelva, Central Spitsbergen). Geomorphology, 218, 252262.CrossRefGoogle Scholar
Szpikowski, J., Szpikowska, G., Zwoliński, Z., and Kostrzewski, A. (2014b). Magnitude of fluvial transport and rate of denudation in a non glacierised catchment in a polar zone, central Spitsbergen. Geografiska Annaler, Series A, Physical Geography, DOI: 10.1111/geoa.12070.CrossRefGoogle Scholar
Treshnikov, A. F., ed. (1985). Atlas Arktiki. Moskwa: GUGK.Google Scholar
Wadham, J. L., Cooper, R. J., Tranter, M., and Hodgkins, R. (2001). Enhancement of glacial solute fluxes in the proglacial zone of a polythermal glacier. Journal of Glaciology, 47, 378386.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×