Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-18T23:54:02.643Z Has data issue: false hasContentIssue false

8 - Hillslope processes and related sediment fluxes on a fine-grained scree slope of Eastern Canada

from Part III - Solute and sedimentary fluxes in subarctic and Arctic environments

Published online by Cambridge University Press:  05 July 2016

Achim A. Beylich
Affiliation:
Geological Survey of Norway
John C. Dixon
Affiliation:
University of Arkansas
Zbigniew Zwoliński
Affiliation:
Adam Mickiewicz University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Archambault, B. (1991). Étude d’un glacier rocheux relique de la vallée de Mont-Saint-Pierre, Gaspésie. MSc, Département de Géographie, université de Montréal.Google Scholar
Ballantyne, C. K. (2002). A general model of paraglacial landscape response. The Holocene, 12, 371376.CrossRefGoogle Scholar
Bebi, P., Kulakowski, D., and Rixen, C. (2009). Snow avalanche disturbances in forest ecosystems – State of research and implications for management. Forest Ecology and Management, 257, 18831892.CrossRefGoogle Scholar
Beylich, A. (2008). Mass transfer, sediment budget and relief development in the Latnjavagge catchment, Arctic-oceanic Swedish Lapland. Zeithschrift für Geomorphologie, Supplementary issue 52, 149197.CrossRefGoogle Scholar
Beylich, A. A., and Sandberg, O. (2005). Geomorphic effects of the extreme rainfall event of 20–21 July, 2004 in the Latnjavagge catchment, northern Swedish Lapland. Geografiska Annaler, 87A, 409419.CrossRefGoogle Scholar
Blikra, L. H., and Nemec, W. (1998). Postglacial colluvium in western Norway: depositional processes, facies and paleoclimatic record. Sedimentology, 45, 909959.CrossRefGoogle Scholar
Bogaart, P. W., Van Balen, R. T., Kasse, C., and Vandenberghe, J. (2003). Process-based modelling of fluvial system response to rapid climate change II. Application to the River Maas (The Netherlands) during the Last Glacial-Interglacial Transition. Quaternary Science Reviews, 22, 20972110.CrossRefGoogle Scholar
Caine, N. (1974). The geomorphic processes of the alpine environment. In Barry, R. G. and Ives, J. D., eds., Arctic and Alpine Environments. London: Methuen, pp. 721748.Google Scholar
Caine, N. (1981). A source of bias in rates of surface soil movement as estimated from marked particles. Earth Surface Processes and Landforms, 6, 6975.CrossRefGoogle Scholar
Curry, A. M. (2000). Holocene reworking of drift-mantled hillslopes in glen Docherty, Northwest Highlands, Scotland. The Holocene, 10, 509518.CrossRefGoogle Scholar
de Vernal, A., Guiot, J., and Turon, J.-L. (1993). Late and postglacial environments of the Gulf of St. Lawrence: marine and terrestrial palynological evidence. Géographie physique et Quaternaire, 47, 167180.Google Scholar
Dubé, S. (1999). Impacts dendroécologiques et fréquence séculaire des avalanches sur trois versants boisés de la Gaspésie septentrionale. MA thesis, Department of Geography, Université Laval.Google Scholar
Dubé, S., Filion, L., and Hétu, B. (2004). Tree-ring reconstruction of high-magnitude snow avalanches in the northern Gaspé Peninsula, Quebec. Arctic, Antarctic, and Alpine Research, 36, 555564.CrossRefGoogle Scholar
Eaton, L. S., Morgan, B. A., Kochel, R. C., and Howard, A. D., (2003). Quaternary deposits and landscape evolution of the central Blue Ridge of Virginia. Geomorphology, 56, 139154.CrossRefGoogle Scholar
Fortin, G., and Hétu, B. (2009). Les extremes meteorologiques hivernaux et leurs influences sur la couverture neigeuse dans les monts Chic-Chocs, Gaspésie, Canada. Geographical Techniques, Special issue, 181–186.Google Scholar
Fortin, G., Hétu, B., and Germain, D. (2011). Climat hivernal et régime avalancheux dans les corridors routiers de la Gaspésie septentrionale (Québec, Canada). Climatologie, 8, 926.CrossRefGoogle Scholar
Gagnon, R. M. (1970). Le climat des Chic-Chocs. Montréal: Ministère des Richesses Naturelles du Québec, Service de la Météorologie. Rapport M.-P. 36.Google Scholar
Gardner, J. S. (1979). The movement of material on debris slopes in the Canadian Rocky Mountains. Zeitschrift für Geomorphologie, N.F. 23, 4557.Google Scholar
Gauthier, F., Hétu, B., and Bergeron, N. (2013). Impacts géomorphologiques des chutes de blocs de glace sur les versants du nord de la Gaspésie (Québec, Canada). Canadian Journal of Earth Sciences, 54, 406422.CrossRefGoogle Scholar
Germain, D., Filion, L., and Hétu, B. (2005). Snow avalanche activity after fire and logging disturbances, northern Gaspé Peninsula, Québec, Canada. Canadian Journal of Earth Sciences, 42, 21032116.CrossRefGoogle Scholar
Germain, D., Filion, L., and Hétu, B. (2009). Snow avalanche regime and climatic conditions in the Chic-Choc Range, eastern Canada. Climatic Change, 92, 41167.CrossRefGoogle Scholar
Germain, D., Hétu, B., and Filion, L. (2010). Tree-ring based reconstruction of past snow avalanche events and risk assessment in northern Gaspé Peninsula (Québec, Canada). In Stoffel, M., Bollschweiler, M., Butler, D. R., and Luckman, B., eds., Tree Rings and Natural Hazards: A State-of-the-Art. Heidelberg: Springer Science, pp. 5173.CrossRefGoogle Scholar
Germain, D., and Ouellet, M.-A. (2013). Subaerial sediment-water flows on hillslopes: Essential research questions and classification challenges. Progress in Physical Geography, 37, 813833.CrossRefGoogle Scholar
Girard, J.-F. (1993). La migration des débris de surface sur deux talus d’éboulis en milieu tempéré, Gaspésie, Québec, Canada. MSc thesis, Department of Geography, Université de Montréal.Google Scholar
Govers, G., and Poesen, J. (1998). Field experiments on the transport of rock fragments by animal trampling on scree slopes. Geomorphology, 23, 193203.CrossRefGoogle Scholar
Graveline, M.-H. (2012). Analyse multirisques des aléas d’écroulement des carapaces de glace et d’avalanche de neige sur le site d’Aqua Velva en bordure de la route 132, Gaspésie septentrionale, Québec. MSc thesis, Département de Géographie, Université du Québec à Montréal.Google Scholar
Hales, T. C., and Roering, J. J. (2005). Climate-controlled variations in scree production, Southern Alps, New Zealand. Geology, 33, 701704.CrossRefGoogle Scholar
Hétu, B. (1987). L’influence du contexte géomorphologique quaternaire sur la dynamique postglaciaire des versants raides de la Gaspésie septentrionale. PhD thesis, Department of Geography, Université de Montréal.Google Scholar
Hétu, B. (1990). Évolution récente d’un talus d’éboulis en milieu forestier, Gaspésie, Québec. Géographie physique et Quaternaire, 44, 199215.CrossRefGoogle Scholar
Hétu, B. (1991). Éboulis stratifiés actifs près de Manche-d’Épée, Gaspésie (Québec, Canada). Zeitschrift für Geomorphologie, N.S. 35, 439461.CrossRefGoogle Scholar
Hétu, B. (1992). Coarse cliff-top Aeolian sedimentation in Northern Gaspésie, Québec (Canada). Earth Surface Processes and Landforms, 17, 95108.CrossRefGoogle Scholar
Hétu, B. (1995). Le litage des éboulis stratifiés cryonivaux en Gaspésie (Québec, Canada): rôle de la sédimentation nivéo-éolienne et des transits supranivaux. Permafrost and Periglacial Processes, 6, 147171.CrossRefGoogle Scholar
Hétu, B., (2004). Talus d’éboulis: environnement et histoire, p. 199216. In Bertran, P., ed., Dépôts de pente continentaux. Dynamique et Faciès. Association française pour l’étude du Quaternaire, volume hors-série de la revue Quaternaire, 258 p.Google Scholar
Hétu, B., & Gray, J. T., (1980). Évolution postglaciaire des versants de la région de Mont‑Louis, Gaspésie, Québec. Géographie physique et Quaternaire, 34, 7784.Google Scholar
Hétu, B., and Gray, J. T. (1985). Le modelé d’érosion glaciaire de la Gaspésie septentrionale. Géographie physique et Quaternaire, 39, 4766.CrossRefGoogle Scholar
Hétu, B., and Gray, J. T. (2000a). Effects of environmental change on scree development throughout the postglacial period in the Chic-Choc Mountains in the northern Gaspé Peninsula, Québec. Geomorphology, 32, 335355.CrossRefGoogle Scholar
Hétu, B., and Gray, J. T. (2000b). Les étapes de la déglaciation dans le nord de la Gaspésie (Québec, Canada): les marges glaciaires des Dryas ancien et récent. Géographie physique et Quaternaire, 54, 540.CrossRefGoogle Scholar
Hétu, B., Gray, J. T., Gangloff, P., and Archambault, B. (2003). Postglacial talus-derived rock glaciers in the Gaspé Peninsula, Québec (Canada). Proceedings – 8th International Conference on Permafrost, Zurich, Switzerland, July 20–25, 2003. Edited by Phillips, M., Springman, S. M. and Arenson, L. U.; International Permafrost Association, 8(1): 389–394.Google Scholar
Hétu, B., and Vandelac, P. (1989). La dynamique des éboulis schisteux au cours de l’hiver, Gaspésie septentrionale, Québec. Géographie physique et Quaternaire, 43, 389406.CrossRefGoogle Scholar
Hétu, B., van Steijn, H., and Vandelac, P. (1994). Les coulées de pierres glacées: un nouveau type de coulées de pierraille sur les talus d’éboulis. Géographie physique et Quaternaire, 48, 322.CrossRefGoogle Scholar
Hinchliffe, S., and Ballantyne, C. K. (1998). The structure and sedimentology of relict talus, Trotternish, northern Skye, Scotland. Earth Surface Processes and Landforms, 23, 545560.3.0.CO;2-E>CrossRefGoogle Scholar
Jacob, N., (2001). Fréquence, intensité et déclenchement des coulées de débris en milieu forestier, Gaspésie septentrionale, Québec. Université Laval, Mémoire de maîtrise, 76 p.Google Scholar
Jakob, M., and Friele, P. 2010. Frequency and magnitude of debris flows on Cheekye River, British Columbia. Geomorphology, 114, 382395.CrossRefGoogle Scholar
Kirkby, M. J., and Statham, I. 1975. Surface stone movement and scree formation. Journal of Geology, 83, 349362.CrossRefGoogle Scholar
Kotarba, A., and Strömquist, L. (1984). Transport, sorting and deposition processes of alpine debris slope deposits in the Polish Tatra Mountains. Geografiska Annaler, 66A; 285294.CrossRefGoogle Scholar
Labelle, C., and Richard, P. J. H. (1984). Histoire postglaciaire de la végétation dans la région de Mont-Saint-Pierre, Gaspésie, Québec. Géographie physique et Quaternaire, 38, 257274.CrossRefGoogle Scholar
Lafortune, M., Filion, L., and Hétu, B. (1997). Dynamique d’un front forestier sur un talus d’éboulis actif en climat tempéré froid (Gaspésie, Québec). Géographie physique et Quaternaire, 51, 6780.CrossRefGoogle Scholar
Luckman, B. H. (2010). Dendrogeomorphology and snow avalanche research. In Stoffel, M., Bollschweiler, M., Butler, D. R., and Luckman, B., eds., Tree Rings and Natural Hazards: A State-of-the-Art. Heidelberg: Springer. pp. 2734CrossRefGoogle Scholar
Marcoux, N., and Richard, P. J. H. (1995). Végétation et fluctuations climatiques postglaciaires sur la côte septentrionale gaspésienne, Canadian Journal of Earth Sciences, 32, 7996.CrossRefGoogle Scholar
Matthews, J. A., Dahl, S.-O., Berrisford, M. S., Nesje, A., Quentin Dresser, P., and Dumayne-Peaty, L. (1997). A preliminary history of Holocene colluvial (debris-flow) activity, Leirdalen, Jotunheimen, Norway. Journal of Quaternary Science, 12, 117129.3.0.CO;2-1>CrossRefGoogle Scholar
McCarroll, D., Shakesby, R. A., and Matthews, J. A. (2002). Enhanced rockfall activity during the Little Ice Age: further lichenometric evidence from a Norwegian talus. Permafrost and Periglacial Processes, 12, 157164.CrossRefGoogle Scholar
Nemec, W., and Kazanci, N. (1999). Quaternary colluvium in west-central Anatolia: sedimentary facies and paleoclimatic significance. Sedimentology, 46, 139170.CrossRefGoogle Scholar
Nesje, A., Kvamme, A. R., and Sonstegaard, E. (1994). A record of late Holocene avalanche activity in Frudalen, Sogndalsdalen, western Norway. Norsk Geologisk Tidsskrift, 74, 108113.Google Scholar
Ouellet, M.-A., and Germain, D. (2014). Hyperconcentrated flows on a forested alluvial fan of Eastern Canada: geomorphic characteristics, return period, and triggering scenario, Earth Surface Processes and Landforms, 39, 18761887.CrossRefGoogle Scholar
Pawlik, L. (2013). The role of trees in the geomorphic system of forested hillslopes – A review. Earth-Science Reviews, 126, 250265.CrossRefGoogle Scholar
Pérez, F. L. (1993). Talus movement in the High Equatorial Andes: a synthesis of ten years of data. Permafrost and Periglacial Processes, 4, 199215.CrossRefGoogle Scholar
Pérez, F. L., (2012). Biogeomorphological influence of slope processes and sedimentology on vascular talus vegetation in the southern Cascades, California. Geomorphology, 138, 2948CrossRefGoogle Scholar
Rapp, A. (1960). Recent development of mountain slopes in Käkevagge and surroundings, northern Scandinavia. Geografiska Annaler, 42A, 65200.Google Scholar
Richard, P. J. H., and Larouche, A. (1994). Histoire postglaciaire de la végétation et du climat dans la région de Rimouski, Québec. Paléo-Québec, 22, 49111.Google Scholar
Sass, O., and Krautblatter, K. (2007). Debris flow-dominated and rockfall-dominated talus slopes: genetic models derived from GPR measurements. Geomorphology, 86, 176–19.CrossRefGoogle Scholar
Sawada, M., Gajewski, K., de Vernal, A., and Richard, P. (1999). Comparison of marine and terrestrial Holocene climatic reconstructions from northeastern North America. The Holocene, 9, 267277.CrossRefGoogle Scholar
Schrott, l., Hufschmidt, G., Hankammer, M., Hoffmann, T., and Dikau, R. (2003). Spatial distribution of sediment storage types and quantification of valley fill deposits in an alpine basin, Reintal, Bavarian Alps, Germany. Geomorphology, 55, 4563.CrossRefGoogle Scholar
Schumm, S. A. (1967). Rates of surficial rock creep on hillslopes in western Colorado. Science, 155, 560561.CrossRefGoogle ScholarPubMed
Slaymaker, O. (2008). Sediment budget and sediment flux studies under accelerating global change in cold environments. Zeitschrift für Geomorphologie, Supplementary Issue 52, 123148.CrossRefGoogle Scholar
Slivitzky, A., Pierre St-Julien, P., and Lachambre, G. (1991). Synthèse géologique du Cambro-ordovicien du nord de la Gaspésie. Service géologique de Québec, Ministère de l'énergie et des ressources, rapport ET 88–14Google Scholar
Stoffel, M., Schneuwly, D., Bollschweiler, M., Lièvre, I., Delaloye, R., Myint, M., and Monbaron, M. (2005). Analyzing rockfall activity (1600–2002) in a protection forest – a case study using dendrogeomorphology. Geomorphology, 68, 224241.CrossRefGoogle Scholar
Van Steijn, H. (2002). Long-term landform evolution: evidence from talus studies. Earth Surface Processes and Landforms, 27, 11891199.CrossRefGoogle Scholar
Van Steijn, H., Bertran, P., Francou, B., Hétu, B., and Texier, J.-P. (1995). Models for the genetic and environmental interpretation of stratified slope deposits: review. Permafrost and Periglacial Processes, 6, 125146.CrossRefGoogle Scholar
Van Steijn, H., Boelhouwers, J., Harris, S., and Hétu, B. (2002). Recent research on the nature, origin and climatic relations of blocky and stratified slope deposits. Progress in Physical Geography, 26, 551575.CrossRefGoogle Scholar
Whitehouse, I. E., and McSaveney, M. J. (1983). Diachronous talus surface in the Southern Alps, New Zealand, and their implications to talus accumulation. Arctic and Alpine Research, 15, 1, 5364.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×