Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-14T08:40:01.563Z Has data issue: false hasContentIssue false

27 - Environmental drivers, spatial variability, and rates of chemical and mechanical fluvial denudation in selected glacierized and nonglacierized cold climate catchment geosystems: from coordinated field data generation to integration and modeling

from Part VI - Quantitative analysis of solute and sedimentary fluxes in cold climate environments

Published online by Cambridge University Press:  05 July 2016

Achim A. Beylich
Affiliation:
Geological Survey of Norway
John C. Dixon
Affiliation:
University of Arkansas
Zbigniew Zwoliński
Affiliation:
Adam Mickiewicz University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ballantyne, C. K. (2002). Paraglacial geomorphology. Quaternary Science Reviews, 21, 19352017.CrossRefGoogle Scholar
Barsch, D. (1981). Studien zur gegenwärtigen Geomorphodynamik im Bereich der Oobloyah Bay, N-Ellesmere Island, N.W.T., Kanada. Heidelberger Geographische Arbeiten, 69, 123161.Google Scholar
Barsch, D., Gude, M., Mäusbacher, R., Schukraft, G., and Schulte, A. (1994). Recent fluvial sediment budgets in glacial and periglacial environments, NW Spitsbergen. Zeitschrift für Geomorphologie N.F., Supplementband 97, 111122.Google Scholar
Becht, M. (1995). Untersuchungen zur aktuellen Reliefentwicklung in alpinen Einzugsgebieten. Münchener Geographische Abhandlungen, A47, München: Geobuch.Google Scholar
Beylich, A. A. (1999). Hangdenudation und fluviale Prozesse in einem subarktisch-ozeanisch geprägten, permafrostfreien Periglazialgebiet mit pleistozäner Vergletscherung. Prozessgeomorphologische Untersuchungen im Bergland der Austfirđir (Austdalur, Ost-Island). Berichte aus der Geowissenschaft. Aachen: Shaker.Google Scholar
Beylich, A. A. (2003). Present morphoclimates and morphodynamics in Latnjavagge, the northern Swedish Lapland and Austdalur, East Iceland. Jökull, 52, 3354.CrossRefGoogle Scholar
Beylich, A. A. (2007). Quantitative studies on sediment fluxes and sediment budgets in changing cold environments – potential and expected benefit of coordinated data exchange and the unification of methods. Landform Analysis, 5, 910.Google Scholar
Beylich, A. A. (2009). Chemical and mechanical fluvial denudation rates in cold environments – Comparison of denudation rates from three catchments in sub-Arctic Eastern Iceland, sub-Arctic Finnish Lapland and Arctic Swedish Lapland. Jökull, 59, 1932.CrossRefGoogle Scholar
Beylich, A. A. (2011). Mass transfers, sediment budgets and relief development in cold environments: Results of long-term geomorphologic drainage basin studies in Iceland, Swedish Lapland and Finnish Lapland. Zeitschrift für Geomorphologie, 55, 145174.CrossRefGoogle Scholar
Beylich, A. A. (2012). Major controls of mass transfers and relief development in four cold-climate catchment systems in Eastern Iceland, Swedish Lapland and Finnish Lapland (Synthesis Paper). NGF Abstracts and Proceedings of the Geological Society of Norway, 1, 87123.Google Scholar
Beylich, A. A., Etienne, S., Etzelmüller, B., Gordeev, V. V., Käyhkö, J., Rachold, V., Russell, A. J., Schmidt, K.-H., Sæmundsson, Th., Tweed, F. S., and Warburton, J. (2005). Sedimentary source-to-sink fluxes in cold environments – information on the European Science Foundation (ESF) Network SEDIFLUX. Zeitschrift für Geomorphologie N.F., Suppl.-Vol. 138, 229234.Google Scholar
Beylich, A. A., Etienne, S., Etzelmüller, B., Gordeev, V. V., Käyhkö, J., Rachold, V., Russell, A. J., Schmidt, K.-H., Sæmundsson, Th., Tweed, F. S., and Warburton, J. (2006a). The European Science Foundation (ESF) Network SEDIFLUX – An introduction and overview. Geomorphology, 80(1–2), 37.CrossRefGoogle Scholar
Beylich, A. A., Gärtner-Roer, I., Decaulne, A., and Morche, D. (2014). Sediment flux and sediment budget studies in cold environments: New approaches and techniques. Geomorphology, 218, 12.CrossRefGoogle Scholar
Beylich, A. A., and Gintz, D. (2004). Effects of high-magnitude/low-frequency fluvial events generated by intense snowmelt or heavy rainfall in Arctic periglacial environments in northern Swedish Lapland and northern Siberia. Geografiska Annaler, 86A, 1129.CrossRefGoogle Scholar
Beylich, A. A., and Kneisel, Ch. (2009). Sediment budget and relief development in Hrafndalur, subarctic oceanic eastern Iceland. Arctic, Antarctic, and Alpine Research, 41(1), 317.CrossRefGoogle Scholar
Beylich, A. A., Kolstrup, E., Linde, N., Pedersen, L. B., Thyrsted, T., Gintz, D., and Dynesius, L. (2003). Assessment of chemical denudation rates using hydrological measurements, water chemistry analysis and electromagnetic geophysical data. Permafrost and Periglacial Processes, 14, 387397.CrossRefGoogle Scholar
Beylich, A. A., Kolstrup, E., Thyrsted, T. and Gintz, D. (2004a). Water chemistry and its diversity in relation to local factors in the Latnjavagge drainage basin, Arctic-oceanic Swedish Lapland. Geomorphology, 58, 125143.CrossRefGoogle Scholar
Beylich, A. A., Kolstrup, E., Thyrsted, T., Linde, N., Pedersen, L. B., and Dynesius, L. (2004b). Chemical denudation in Arctic-alpine Latnjavagge (Swedish Lapland) in relation to regolith as assessed by radio magnetotelluric-geophysical profiles. Geomorphology, 57, 303319.CrossRefGoogle Scholar
Beylich, A. A., Lamoureux, S. F., and Decaulne, A. (2009). Sediment budgets in cold environments – The SEDIBUD Program. Introduction. Arctic, Antarctic, and Alpine Research, 41, 12.CrossRefGoogle Scholar
Beylich, A. A., Lamoureux, S. F., and Decaulne, A. (2011). Developing frameworks for studies on sedimentary fluxes and budgets in changing cold environments. Quaestiones Geographicae, 30(1), 518.CrossRefGoogle Scholar
Beylich, A. A., Lamoureux, S. F., and Decaulne, A. (2012). The SEDIBUD (Sediment Budgets in Cold Environments) Programme: Ongoing activities and selected key tasks for the coming years. Geomorphology, 167–168, 23.CrossRefGoogle Scholar
Beylich, A. A., and Laute, K. (2012a). Spatial variations of surface water chemistry and chemical denudation in the Erdalen drainage basin, Nordfjord, western Norway. Geomorphology, 167–168, 7790.CrossRefGoogle Scholar
Beylich, A. A., and Laute, K. (2012b). Seasonal and annual variations of surface water chemistry, solute fluxes and chemical denudation in a steep and glacier-fed mountain catchment in western Norway (Erdalen, Nordfjord). Catena, 96, 1227.CrossRefGoogle Scholar
Beylich, A. A., and Laute, K. (2014). Combining impact sensor field and laboratory flume measurements with other techniques for studying fluvial bedload transport in steep mountain streams. Geomorphology, 218, 7287.CrossRefGoogle Scholar
Beylich, A. A., and Laute, K. (2015). Sediment sources, spatiotemporal variability and rates of fluvial bedload transport in glacier-connected steep mountain valleys in western Norway (Erdalen and Bødalen drainage basins). Geomorphology, 228, 552567.CrossRefGoogle Scholar
Beylich, A. A., Liermann, S., and Laute, K. (2010). Fluvial transport during thermally and pluvially induced peak runoff events in a glacier-fed mountain catchment in western Norway. Geografiska Annaler, 92A, 237246.CrossRefGoogle Scholar
Beylich, A. A., and Sandberg, O. (2005). Geomorphic effects of the extreme rainfall event of 20–21 July, 2004 in the Latnjavagge catchment, northern Swedish Lapland. Geografiska Annaler, 87A, 409419.CrossRefGoogle Scholar
Beylich, A. A., Sandberg, O., Molau, U., and Wache, S. (2006b). Intensity and spatio-temporal variability of fluvial sediment transfers in an Arctic-oceanic periglacial environment in northernmost Swedish Lapland (Latnjavagge catchment). Geomorphology, 80, 114130.CrossRefGoogle Scholar
Beylich, A. A., Schmidt, K.-H., Neuvonen, S., Forbrich, I., and Schildt, A. (2006c). Solute fluxes in the Kidisjoki catchment, subarctic Finnish Lapland. Géomorphologie: Relief, Processus, Environment, 3, 205212.Google Scholar
Beylich, A. A., and Warburton, J., eds. (2007). Analysis of source-to-sink fluxes and sediment budgets in changing high-latitude and high-altitude cold environments. SEDIFLUX Manual. NGU Report 2007.053, Trondheim: NGU.Google Scholar
Carrivick, J. L., and Tweed, F. S. (2013). Proglacial lakes: character, behavior and geological importance. Quaternary Science Reviews, 78, 3452.CrossRefGoogle Scholar
Hinderer, M. (2012). From gullies to mountain belts: a review of sediment budgets at various scales. Sedimentary Geology, 280, 2169.CrossRefGoogle Scholar
Jäckli, H. (1957). Gegenwartsgeologie des Bündnerischen Rheingebietes. Beitrag zur Geologischen Karte der Schweiz. Geotechnische Serie 36.Google Scholar
Kociuba, W. (2014). Application of terrestrial laser scanning in the assessment of the role of small debris flows in river sediment supply in the cold climate environment. Annals UMCS Biol., 69, 7991.Google Scholar
Laute, K., and Beylich, A. A. (2012). Influences of the Little Ice Age glacier advance on hillslope morphometry and development in paraglacial valley systems around the Jostedalsbreen ice cap in Western Norway. Geomorphology, 167–168, 5169.CrossRefGoogle Scholar
Laute, K., and Beylich, A. A. (2013). Holocene hillslope development in glacially formed valley systems in Nordfjord, western Norway. Geomorphology, 188, 1230.CrossRefGoogle Scholar
Laute, K., and Beylich, A. A. (2014a). Environmental controls, rates and mass transfers of contemporary hillslope processes in the headwaters of two glacier-connected drainage basins in western Norway. Geomorphology, 216, 93113.CrossRefGoogle Scholar
Laute, K., and Beylich, A. A. (2014b). Morphometric and meteorological controls on recent snow avalanche distribution and activity at hillslopes in steep mountain valleys in western Norway. Geomorphology, 218, 1634.CrossRefGoogle Scholar
Liermann, S., Beylich, A. A., and van Welden, A. (2012). Contemporary suspended sediment transfer and accumulation processes in the small proglacial Sætrevatnet sub-catchment, Bødalen, western Norway. Geomorphology, 167–168, 91101.CrossRefGoogle Scholar
Milliman, J. D., and Farnsworth, K. L. (2011). River Discharge to the Coastal Ocean. A Global Synthesis. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Orwin, J. F., Lamoureux, S. F., Warburton, J., and Beylich, A. A. (2010). A framework for characterizing fluvial sediment fluxes from source to sink in cold environments. Geografiska Annaler, 92A, 155176.CrossRefGoogle Scholar
Rapp, A. (1960). Recent development of mountain slopes in Kärkevagge and surroundings, Northern Scandinavia. Geografiska Annaler, 42, 71200.Google Scholar
Reid, L. M., and Dunne, T. (1996). Rapid Evaluation of Sediment Budgets. Reiskirchen: Catena Verlag.Google Scholar
Slaymaker, O. (2003). The sediment budget as conceptual framework and management tool. Hydrobiologia, 494(1), 7182.CrossRefGoogle Scholar
Slaymaker, O. (2006). Towards the identification of scaling relations in drainage basin sediment budgets. Geomorphology, 80, 819.CrossRefGoogle Scholar
Slaymaker, O. (2008). Sediment budget and sediment flux studies under accelerating global change in cold environments. Zeitschrift für Geomorphologie N.F., 52, Supplementary Issue 1, 123148.CrossRefGoogle Scholar
Slaymaker, O., Spencer, T., and Dadson, S. (2009). Landscape and landscape-scale processes as the unfilled niche in the global environmental change debate: an introduction. In Slaymaker, O., Spencer, T., and Embleton-Hamann, C., eds., Geomorphology and Global Environmental Change. Cambridge: Cambridge University Press, pp. 136.CrossRefGoogle Scholar
Summerfield, M. A. (1991). Global Geomorphology. An Introduction to the Study of Landforms. Essex: Longman.Google Scholar
Swanson, F. J., Janda, R. J., Dunne, T., and Swanston, D. N., eds. (1982). Sediment budgets and routing in forested drainage basins. Portland, OR: U.S. Department of Agriculture Forest Service, Pacific Northwest Forest and Range Experiment Station General Technical Report, PNW-141.CrossRefGoogle Scholar
Warburton, J. (2007). Sediment budgets and rates of sediment transfers across cold environments in Europe: a commentary. Geografiska Annaler, 89A(1), 95100.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×