Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-22T09:29:41.968Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 June 2014

Agustín Udías
Affiliation:
Universidad Complutense, Madrid
Raúl Madariaga
Affiliation:
Ecole Normale Supérieure, Paris
Elisa Buforn
Affiliation:
Universidad Complutense, Madrid
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Source Mechanisms of Earthquakes
Theory and Practice
, pp. 284 - 299
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abercrombie, R. E. and Rice, J. R. (2005). Can observations of earthquake scaling constrain slip weakening?Geophys. J. Int., 162, 406–424.CrossRefGoogle Scholar
Adda Bedia, M. and Madariaga, R. (2008). Seismic radiation from a kink on an antiplane fault. Bull. Seism. Soc. Am., 98, 2291–2302.CrossRefGoogle Scholar
Aki, K. (1966). Generation and propagation of G waves from the Niigata earthquake of June 16, 1964. Estimation of earthquake movement, released energy and stress–strain drop from G wave spectrum. Bull. Earthq. Res. Inst., 44, 23–88.Google Scholar
Aki, K. (1967). Scaling law of seismic spectrum. J. Geophys. Res., 73, 5359–5376.CrossRefGoogle Scholar
Aki, K. (1979). Characterization of barriers on an earthquake fault. J. Geophys. Res., 84, 6140–6148.CrossRefGoogle Scholar
Aki, K. (1984). Asperities, barriers, characteristic earthquakes and strong motion prediction. J. Geophys. Res., 89, 5867–5872.CrossRefGoogle Scholar
Aki, K. and Richards, P. G. (1980). Quantitative Seismology. Theory and Methods. Two volumes. San Francisco: W. H. FreemanGoogle Scholar
Ampuero, J. P. and Rubin, A. M. (2008). Earthquake nucleation on rate and state faults – aging and slip laws. J. Geophys. Res., 113, B01302, .CrossRefGoogle Scholar
Andrews, D. J. (1976). Rupture velocity of plain stress shear cracks. J. Geophys. Res., 81, 5679–5687.CrossRefGoogle Scholar
Andrews, D. J. (1989). Mechanics of fault junctions. J. Geophys. Res., 94, 9389–9397.CrossRefGoogle Scholar
Andrews, D. J. (1999). Test of two methods for faulting in finite-difference calculations. Bull. Seism. Soc. Am., 89, 931–937.Google Scholar
Aochi, H. and Madariaga, R. (2003). The 1999 Izmit, Turkey, earthquake: non-planar fault structure, dynamic rupture process, and strong ground motion. Bull. Seismol. Soc. Am., 93, 1249–1266.CrossRefGoogle Scholar
Aochi, H., Fukuyama, E., and Matsu'ura, M. (2000). Spontaneous rupture propagation on a non-planar fault in 3-D elastic medium. Pure Appl. Geophys. 157, 2003–2027.CrossRefGoogle Scholar
Archuleta, R. J. (1984). A faulting model for the 1979 Imperial Valley earthquake. J. Geophys. Res., 89, 4559–4585.CrossRefGoogle Scholar
Arias, R., Madariaga, R. and Adda-Bedia, M. (2011). Singular elasto-static field near a fault kink. Pageoph., 168, 2167–2179.CrossRefGoogle Scholar
Avallone, A., Marzario, M., Cirella, A., Piatanesi, A., Rovelli, A., Di Alessandro, C. et al. (2011). Very high rate (10 Hz) GPS seismology for moderate-magnitude earthquakes: the case of the MW 6.3 L'Aquila (Central Italy) event. J. Geophys. Res., 116, B02305, .CrossRefGoogle Scholar
Backus, G. E. (1977). Interpreting the seismic glut moments of total degree two or less. Geophys. J. Roy Astr. Soc., 51, 1–25.CrossRefGoogle Scholar
Backus, G. E. and Mulcahy, M. (1976a). Moment tensors and other phenomenological descriptions of seismic waves. I. Continuous displacements. Geophys. J. Roy Astr. Soc., 46, 341–361.CrossRefGoogle Scholar
Backus, G. E. and Mulcahy, M. (1976b). Moment tensors and other phenomenological descriptions of seismic waves. II. Discontinuous displacements. Geophys. J. Roy Astr. Soc., 47, 301–330.CrossRefGoogle Scholar
Barbot, S., Lapusta, N. and Avouac, J. P. (2012). Under the hood of the earthquake machine: toward predictive modeling of the seismic cycle. Science, 336, 707–710.CrossRefGoogle ScholarPubMed
Barenblatt, G. I. (1959a). The formation of equilibrium cracks during brittle fracture. General ideas and hypotheses. Axially-symmetric cracks. J. Appl. Math. Mech., 23, 622–636.CrossRefGoogle Scholar
Barenblatt, G. I. (1959b). On equilibrium cracks, formed in brittle fracture. Doklady, USSR Academy of Sciences, 127, 47–50 (in Russian).Google Scholar
Barenblatt, G. I. (1962). The mathematical theory of equilibrium cracks in brittle fracture. Adv. Appl. Mech., 7, 55–129.CrossRefGoogle Scholar
Barka, A., Akyüz, H. S., Altunel, E., Sunal, G., Cakir, Z., Dikbas, A. et al. (2002). The surface rupture and slip distribution of the August 17, 1999 Izmit earthquake, M 7.4, North Anatolian Fault. Bull. Seism. Soc. Am., 92, 43–60.CrossRefGoogle Scholar
Båth, M. (1965). Lateral inhomogeneities of the upper mantle. Tectonophys., 2, 483–514.CrossRefGoogle Scholar
Beeler, N. M. and Tullis, T. E. (1996). Self-healing slip pulses in dynamic rupture models due to velocity dependent strength. Bull. Seism. Soc. Am., 86, 1130–1148.Google Scholar
Beeler, N. M., Tullis, T. E. and Weeks, J. D. (1994). The roles of time and displacement in the evolution effect in rock friction. Geophys. Res. Lett., 21, 1987–1990.CrossRefGoogle Scholar
Ben Menahem, A. (1961). Radiation of seismic surface waves from finite moving sources. Bull. Seism. Soc Am., 51, 401–453.Google Scholar
Ben Menahem, A. (1962). Radiation of seismic body waves from finite moving sources in the earth. J. Geophys. Res., 67, 396–474.CrossRefGoogle Scholar
Ben Menahem, A. and Singh, S. J. (1981). Seismic Waves and Sources. Berlin: Springer.CrossRefGoogle Scholar
Berckhemer, H. (1962). Die Ausdehnung der Bruchfläche im Erdbebenherd und ihr Einfluss auf das seismiche Wellenspektrum. Gerland Beitr. Geophys., 71, 5–26.Google Scholar
Bernard, P. and Madariaga, R. (1984). A new asymptotic method for the modeling of near-field accelerograms. Bull. Seism. Soc. Am., 74, 539–557,Google Scholar
Bilich, A., Cassidy, J. F. and Larson, K. (2008). GPS seismology: application to the 2002 MW 7.9 Denali fault earthquakes. Bull. Seism. Soc. Am., 98, 593–606.CrossRefGoogle Scholar
Bizzarri, A. and Cocco, M. (2003). Slip-weakening behavior during the propagation of dynamic ruptures obeying rate- and state-dependent friction laws. J. Geophys. Res., 108, . Issn: 0148-0227.CrossRefGoogle Scholar
Bizzarri, A. and Das, S. (2012). Mechanics of 3-D shear cracks between Rayleigh and shear wave rupture speeds. Earth Planet. Sci. Lett., 357–358, 397–404.CrossRefGoogle Scholar
Boatwright, J. (1978). Detailed spectral analysis of two small New York state earthquakes, Bull. Seism. Soc. Am., 68, 1117–1131.Google Scholar
Bodin, P. and Brune, J. N. (1996). On the scaling of slip and rupture for shallow strike-slip earthquakes: quasi-static models and dynamic rupture propagation. Bull. Seism. Soc. Am., 86, 1292–1299.Google Scholar
Boore, D. M., Stephens, C. and Joyner, W. B. (2002). Comments on baseline correction of digital strong-motion data: examples from the 1999 Hector Mine, California, earthquake. Bull. Seism. Soc. Am., 92, 1543–1560.CrossRefGoogle Scholar
Bouchon, M. (1981). A simple method to calculate Green's function for elastic layered media. Bull. Seism. Soc. Am., 71, 959–971.Google Scholar
Bouchon, M. (1982). The complete synthesis of seismic crustal phases at regional distances. J. Geophys. Res. B, 87, 2156–2202.CrossRefGoogle Scholar
Bouchon, M. (1997). The state of stress on some faults of the San Andreas system as inferred from near-field strong motion data. J. Geophys. Res., 102, 1731–1744.CrossRefGoogle Scholar
Bouchon, M. and Vallée, M. (2003). Observation of long supershear rupture during the M = 8.1 Kunlunshan (Tibet) earthquake. Science, 301, 824–826.CrossRefGoogle Scholar
Bouchon, M., Bouin, M., Karabulut, H., Toksöz, M. N., Dietrich, M. and Rosakis, A. J. (2001). How fast is rupture during an earthquake? New insights from the 1999 Turkey earthquakes. Geophys. Res. Lett., 28, 2723–2726.CrossRefGoogle Scholar
Bouchon, M., Durand, V., Marsan, D., Karabulut, H. and Schmittbuhl, J. (2012). The long precursory phase of most large interplate earthquakes. Nature Geosci., 6, 299–302.CrossRefGoogle Scholar
Bouchon, M., Toksoz, N., Karabulut, H., Bouin, M.-P., Dieterich, M., Aktar, M. et al. (2002). Space and time evolution of rupture and faulting during the 1999 Izmit (Turkey) earthquake. Bull. Seism. Soc. Am. 92, 256–266.CrossRefGoogle Scholar
Brace, W. F. and Walsh, J. B. (1962). Some direct measurements of the surface energy of quartz and orthoclase. Amer. Mineral., 47, 111–112.Google Scholar
Bracewell, R. (1965). The Fourier Transform and its Applications. New York: MacGraw-Hill.Google Scholar
Brantut, N. and Rice, J. R. (2011). How pore fluid pressurization influences crack tip processes during dynamic rupture. Geophys. Res. Lett., 38, L24314, .CrossRefGoogle Scholar
Brillinger, D. R., Udías, A. and Bolt, B. A. (1980). A probability model for regional focal mechanism solutions. Bull. Seism. Soc. Am., 70, 149–170.Google Scholar
Broberg, K. B. (1999). Cracks and Fracture. San Diego, CA: Academic Press.Google Scholar
Brodsky, E. E., Gilchrist, J. G., Sagy, A. and Colletini, C. (2011). Faults smooth gradually as a function of slip. Earth Planet. Sci. Lett., 302, 185–193.CrossRefGoogle Scholar
Brune, J. N. (1970). Tectonic stress and the spectra of seismic shear waves from earthquakes. J. Geophys. Res., 75, 4997–5009.CrossRefGoogle Scholar
Brune, J. N. (1971). Correction. J. Geophys. Res. 76, 5002.Google Scholar
Buforn, E. (1994). Métodos para la determinación del mecanismo focal de los terremotos. Fisica de la Tierra, 6, 113–139.Google Scholar
Burridge, R. (1969). The numerical solution of certain integral equations with non-integral kernel arising in the theory of cracks propagation and elastic wave diffraction. Phil. Trans. Roy. Soc. A, 265, 353–381.CrossRefGoogle Scholar
Burridge, R. and Halliday, G. S. (1977). Dynamic shear cracks with friction as models for shallow focus earthquakes. Geophys. J. Roy. Astr. Soc., 25, 261–283.CrossRefGoogle Scholar
Burridge, R. and Knopoff, L. (1964). Body force equivalents for seismic dislocations. Bull. Seism. Soc. Am., 54, 1875–1888.Google Scholar
Burridge, R. and Knopoff, L. (1967). Model and theoretical seismicity. Bull. Seism. Soc. Am., 57, 341–371.Google Scholar
Byerly, P. (1928). The nature of the first motion in the Chilean earthquake of November 11, 1922. Am. J. Sci. (series 5), 16, 232–236.Google Scholar
Candela, T., Renard, F., Klinger, Y., Mair, K., Schmittbuhl, J. and Brodsky, E. E. (2012). Roughness of fault surfaces over nine decades of length scales. J. Geophys. Res., 117, .CrossRefGoogle Scholar
Carlson, J. M. and Langer, J. S. (1989). Properties of earthquakes generated by fault dynamics. Phys Rev. Lett. 32, 2632–2635.CrossRefGoogle Scholar
Cesca, S., Buforn, E. and Dahm, T. (2006). Moment tensor inversion of shallow earthquakes in Spain. Geophys. J. Int., 166, 839–854.CrossRefGoogle Scholar
Cesca, S., Heimann, S., Stammler, K. and Dahm, T. (2010). Automated point and kinematic source inversion at regional distances. J. Geophys. Res., 115, B06304, .CrossRefGoogle Scholar
Chapman, C. H. (1978). A new method for computing synthetic seismograms. Geophys. J. Roy. Astr. Soc., 54, 481–518.CrossRefGoogle Scholar
Chen, Y. T. and Xu, L. S. (2000). A time-domain inversion technique for the tempo-spatial distribution of slip on a finite fault with applications to recent large earthquakes in the Tibetan plateau. Geophys. J. Int., 143, 407–416.CrossRefGoogle Scholar
Cocco, M. and Bizzari, A. (2002). On the slip-weakening behavior of rate and state friction laws. Geophys. Res. Lett., 29, 1516.CrossRefGoogle Scholar
Cochard, A. and Madariaga, R. (1994). Dynamic faulting under rate depending friction. Pageoph., 142, 419–445.CrossRefGoogle Scholar
Cochard, A. and Madariaga, R. (1996). Complexity of seismicity due to high rate-dependent friction. J. Geophys. Res., 101, 25 321–25 336.CrossRefGoogle Scholar
Corish, S. C., Bradley, R. and Olsen, K. B. (2007). Assessment of a nonlinear dynamic rupture inversion technique. Bull. Seismol. Soc. Am., 97, 901–914.CrossRefGoogle Scholar
Cottrell, A. H. and Bilby, B. (1949). Dislocation theory of yielding and strain ageing of iron. Proc. Phys. Soc. A, 62, 49–62.CrossRefGoogle Scholar
Coutant, O. (1990). Programme de simulation numerique AXITRA, Rapport LGIT. University Joseph Fourier, Grenoble, France.
Cowie, P. A. and Scholz, C. H. (1992). Displacement–length scaling relationship for faults: data synthesis and discussion. J. Struct. Geol., 14, 1149–1156.CrossRefGoogle Scholar
Cruz-Atienza, V. M. and Virieux, J. (2004). Dynamic rupture simulation of non-planar faults with a finite-difference approach. Geophys. J. Int., 158, 939–954.CrossRefGoogle Scholar
Custodio, S., Liu, P. and Archuleta, R. J. (2005). The 2004 MW 6.0 Parkfield, California, earthquake: inversion of near-source ground motion using multiple data sets. Geophys. Res. Lett., 32, L23312, .CrossRefGoogle Scholar
Dahlen, F. A. and Tromp, J. (1998). Theoretical Global Seismology. Princeton: Princeton University Press.Google Scholar
Dahm, T. (1996). Relative moment tensor inversion based on ray theory: theory and synthetic tests. Geophys. J. Int., 124, 245–257.CrossRefGoogle Scholar
Dahm, T. and Krüger, F. (1999). Higher-degree moment tensor inversion using far-field broad-band recordings: theory and evaluation of the method with application to the 1994 Bolivia earthquake. Geophys. J. Int., 137, 35–50.CrossRefGoogle Scholar
Dahm, T., Manthei, G. and Eisenblatter, J. (1999). Automated moment tensor inversion to estimate source mechanisms of hydraulically induced micro-seismicity in salt rock. Tectonophys., 306, 1–17, .CrossRefGoogle Scholar
Dalguer, L. A. and Day, S. M. (2006). Comparison of fault representation methods in finite difference simulations of dynamic rupture. Bull. Seism. Soc. Am., 96, 1764–1778.CrossRefGoogle Scholar
Dalguer, L. A. and Day, S. M. (2007). Staggered-grid split-node method for spontaneous rupture simulation. J. Geophys. Res. 112, B02302, .CrossRefGoogle Scholar
Das, S. (1980). A numerical method for determination of source time functions for general 3 dimensional rupture propagation. Geophys. J. Roy. Astr. Soc., 62, 591–604.CrossRefGoogle Scholar
Das, S. and Aki, K. (1977a). Fault planes with barriers: a versatile earthquake model. J. Geophys. Res., 82, 5648–5670.CrossRefGoogle Scholar
Das, S. and Aki, K. (1977b). A numerical study of two dimensional spontaneous rupture propagation. Geophys. J. Roy. Astr. Soc., 50, 643–668.CrossRefGoogle Scholar
Das, S. and Kostrov, B. V. (1983). Breaking of a single asperity: rupture process and seismic radiation. J. Geophys. Res., 88, 4277–4288.CrossRefGoogle Scholar
Das, S. and Kostrov, B. V. (1997). Determination of the polynomial moments of the seismic moment rate density distribution with positivity constraints. Geophys. J. Int., 131, 115–126.CrossRefGoogle Scholar
Day, S. M. (1982). Three dimensional simulation of spontaneous rupture, the effect of non uniform prestress. Bull. Seism. Soc. Am., 72, 1881–1902.Google Scholar
Delouis, B., Lundgren, P., Salichon, J. and Giardini, D. (2000). Joint inversion of InSAR and teleseismic data for the slip history of the 1999 Izmit (Turkey) earthquake. Geophys. Res. Lett., 27, 3389–3392.CrossRefGoogle Scholar
Deschamps, A., Lyon-Caen, H. and Madariaga, R. (1980). Mise au point sur les méthodes de calcul de séismogrammes synthétiques de long périod. Ann. Géophys., 36, 167–178.Google Scholar
Di Carli, S., Francois-Holden, C., Peyrat, S. and Madariaga, R. (2010). Dynamic inversion of the 2000 Tottori earthquake based on elliptical subfault approximations. J. Geophys. Res., 115, B12 328, .CrossRefGoogle Scholar
Di Toro, G., Han, R., Hirose, T., De Paola, N., Mizoguchi, S. N. K., Ferri, F. et al. (2011). Fault lubrication during earthquakes, Nature, 471, 494–498.CrossRefGoogle ScholarPubMed
Dieterich, J. H. (1979a). Modeling of rock friction. 1. Experimental results and constitutive equations. J. Geophys. Res., 84, 2161–2168.CrossRefGoogle Scholar
Dieterich, J. H. (1979b). Modeling of rock friction. 2. Simulation of preseismic slip. J. Geophys. Res., 84, 2169–2175.CrossRefGoogle Scholar
Dieterich, J. H. (1992). Earthquake nucleation on faults with rate and state-dependent strength. Tectonophys., 21, 115–134.CrossRefGoogle Scholar
Dieterich, J. H. (2007) Application of rate-and-state-dependent friction to models of fault slip and earthquake occurrence. In: Earthquake Seismology, eds. Schubert, G., and Kanamori, H., Treatise on Geophysics, vol. 4, pp.107–129. Amsterdam: Elsevier.Google Scholar
Doornbos, D. J. (1982). Seismic moment tensors and kinematic source parameters. Geophys. J. Roy. Astr. Soc., 69, 235–251.CrossRefGoogle Scholar
Dreger, D. S. (1994). Empirical Green's function study of the January 17, 1994 Northridge, California earthquake. Geophys. Res. Lett., 21, 2633–2636.CrossRefGoogle Scholar
Dreger, D. S. and Helmberger, D. V. (1993). Determination of source parameters at regional distances with three-component sparse network data. J. Geophys. Res., 98, 8107–8125.CrossRefGoogle Scholar
Duan, B. (2010). Role of initial stress rotations in rupture dynamics and ground motion: a case study with implications for the Wenchuan earthquake. J. Geophys. Res., 115, B05301, .CrossRefGoogle Scholar
Duan, B. and Oglesby, D. D. (2006). Heterogeneous fault stresses from previous earthquakes and the effect on dynamics of parallel strike–slip faults. J. Geophys. Res., 111, .CrossRefGoogle Scholar
Dugdale, D. S. (1960). Yielding of steel sheets containing slits. J. Mech. Phys. Solids, 8, 100–104.CrossRefGoogle Scholar
Dunham, E. M. and Archuleta, R. J. (2004). Evidence of supershear transient during the 2002 Denali Fault earthquake. Bull. Seism. Soc. Am., 94, S256–S268.CrossRefGoogle Scholar
Dziewonski, A. M. and Anderson, D. L. (1981). Preliminary reference Earth model. Phys. Earth Planet. Int., 25, 297–356.CrossRefGoogle Scholar
Dziewonski, A. M. and Woodhouse, J. H. (1983). Studies of the seismic source using normal mode theory. In: Earthquakes: Observation, Theory and Interpretation, eds. Kanamori, H. and Boschi, E., pp. 45–137. New York: North Holland.Google Scholar
Dziewonski, A. M., Chou, T. A. and Woodhouse, J. H. (1981). Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. J. Geophys. Res., 86, 2825–2852.CrossRefGoogle Scholar
Ellsworth, W. L. and Beroza, G. C. (1995). Seismic evidence for an earthquake nucleation phase. Science, 268, 851–865.CrossRefGoogle ScholarPubMed
Engdahl, E. R., and Villaseñor, A. (2002). Global seismicity: 1900–1999. In: International Handbook of Earthquake and Engineering Seismology, eds. Lee, W. H. K., Kanamori, H., Jennings, P. C. and Kisslinger, C., Part A, pp. 665–690. London: Academic Press.CrossRefGoogle Scholar
Eshelby, J. D. (1957). The determination of the elastic field of an ellipsoidal inclusion and related problems. Proc. Roy. Soc. A, 241, 376–396.CrossRefGoogle Scholar
Eshelby, J. D. (1959). The elastic field outside an ellipsoidal inclusion. Proc. Royal Soc. A, 252, 561–569.CrossRefGoogle Scholar
Fossum, A. F. and Freund, L. B. (1975). Non uniformly moving shear crack model of a shallow focus earthquake mechanism. J. Geophys. Res., 80, 3343–3347.CrossRefGoogle Scholar
Freund, L. B. (1972a). Crack propagation in an elastic solid subjected to general loading. I. Constant rate of extension. J. Mech. Phys. Solids, 20, 129–140.CrossRefGoogle Scholar
Freund, L. B. (1972b). Energy flux into the tip of an extending crack in an elastic solid. J. Elasticity, 2, 341–349.CrossRefGoogle Scholar
Freund, L. B. (1979). The mechanics of dynamic shear crack propagation. J. Geophys. Res., 84, 2199–2209.CrossRefGoogle Scholar
Fröhlich, C. (2006). Deep Earthquakes. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Fuchs, K. and Müller, G. (1971). Computation of synthetic seismograms with the reflectivity method and comparison with observations. Geophys. J. Roy. Astr. Soc., 23, 417–433.CrossRefGoogle Scholar
Fukuyama, E. and Irikura, K. (1986). Rupture process of the 1983 Japan Sea (Akita-Oki) earthquake using a wave form inversion method. Bull. Seism. Soc. Am., 76, 1623–1649.Google Scholar
Fukuyama, E. and Madariaga, R. (1998). Rupture dynamics of a planar fault in a 3D elastic medium: rate and slip weakening friction. Bull. Seism. Soc. Am., 88, 1–17.Google Scholar
Fukuyama, E. and Mikumo, T. (1993). Dynamic rupture analysis: inversion for the process of the 1990 Izu-Oshima, Japan, earthquake (M = 6.5). J. Geophys. Res., 98, 6529–6542.CrossRefGoogle Scholar
Gel'fand, I. M. and Shilov, G. E. (1964). Generalized Functions. New York: Academic Press.Google Scholar
Gershanik, S. (1996). Sismología. La Plata: Universidad Nacional de la Plata.Google Scholar
Gilbert, F. (1970). Excitation of the normal modes of the Earth by earthquakes sources. Geophys. J. Roy. Astr. Soc., 22, 223–226.CrossRefGoogle Scholar
Goldsby, L. and Tullis, T. E. (2011). Flash heating leads to low frictional strength of crustal rocks at earthquake slip rates. Science, 334, 216–218.CrossRefGoogle ScholarPubMed
Griffith, A. (1921). The phenomenon of rupture and flow in solids. Phil. Trans. Roy. Soc., 221, 163–198.CrossRefGoogle Scholar
Guatteri, M., and Spudich, P. (2000). What can strong-motion data tell us about slip-weakening fault-friction laws?Bull. Seism. Soc. Am., 90, 98–116.CrossRefGoogle Scholar
Gubbins, D. (1990). Seismology and Plate Tectonics. Cambridge: Cambridge University Press.Google Scholar
Gutenberg, B. and Richter, C. F. (1942). Earthquake magnitude, intensity, energy and acceleration. Bull. Seism. Soc. Am., 32, 163–191.Google Scholar
Gutenberg, B. and Richter, C. F. (1954). Seismicity of the Earth and Associated Phenomena. 2nd edn. Princeton: Princeton University Press.Google Scholar
Gutenberg, B. and Richter, C. F. (1956). Earthquake magnitude, intensity, energy and acceleration (second paper). Bull. Seism. Soc. Am., 46, 105–145.Google Scholar
Han, R., Shimamoto, T., Hirose, T., Ree, J. H. and Ando, J. (2007). Ultralow friction of carbonate faults caused by thermal decomposition. Science, 316, 878–881.CrossRefGoogle ScholarPubMed
Hanks, T. C. (1977). Earthquake stress-drops, ambient tectonics stresses and stresses that drive plates. Pure Appl. Geophysics, 115, 441–458.CrossRefGoogle Scholar
Hanks, T. C. and Kanamori, H. (1979). A moment magnitude scale. J. Geophys. Res, 84, 2348–2350.CrossRefGoogle Scholar
Hanks, T. C. and Wyss, M. (1972). The use of body-wave spectra in the determination of seismic source parameters. Bull. Seism. Soc. Am., 62, 561–589.Google Scholar
Harris, R., and Day, S. (1993), Dynamics of fault interaction: parallel strike–slip faults. J. Geophys. Res., 98, 4461–4472.CrossRefGoogle Scholar
Harris, R. A., Barall, M., Archuleta, R., Dunham, E., Aagaard, B., Ampuero, J. P. et al. (2009). The SCEC/USGS dynamic earthquake rupture code verification exercise. Seismol. Res. Lett., 80, 119–126.CrossRefGoogle Scholar
Hartzell, S. H. (1978). Earthquake aftershocks as Green’s functions. Geophys. Res. Lett., 5, 1–4.CrossRefGoogle Scholar
Hartzell, S. H. and Heaton, T. H. (1983). Inversion of strong ground motion and teleseismic waveform data for the fault rupture history of the 1979 Imperial Valley, California, earthquake. Bull. Seism. Soc. Am., 73, 1553–1583.Google Scholar
Haskell, N. A. (1964). Total energy and energy spectral density of elastic wave radiation from propagating faults. Bull. Seism. Soc. Am., 54, 1811–1841.Google Scholar
Haskell, N. A. (1966). Total energy and energy spectral density of elastic wave radiation from propagating faults, Part II. Bull. Seism. Soc. Am., 56, 125–140.Google Scholar
Havskov, J. and Ottemöller, L. (2010). Routine Data Processing in Earthquake Seismology. Berlin: Springer.CrossRefGoogle Scholar
Heaton, T. H. (1990). Evidence for and implications of self-healing pulses of slip in earthquake rupture. Phys. Earth Planet. Int., 64, 1–20.CrossRefGoogle Scholar
Heimann, S. (2001). A robust method to estimate kinematic earthquake source parameters. Doctoral thesis, University of Hamburg.
Helmberger, D. V. (1974). Generalized ray theory for shear dislocations. Bull. Seism. Soc. Am., 64, 45–64.Google Scholar
Herrero, A. and Bernard, P. (1994). A kinematic self-similar rupture process for earthquakes. Bull. Seism. Soc. Am., 72, 2037–2062.Google Scholar
Hirasawa, T. and Stauder, W. (1965). On the seismic body waves from a finite moving source. Bull. Seism. Soc. Am., 55, 237–262.Google Scholar
Houston, H., Benz, H., and Vidale, J. E. (1998). Time functions of deep earthquakes from broadband and short period stacks. J. Geophys. Res., 103, 29 895–29 913.CrossRefGoogle Scholar
Hudson, J. A. (1980). The Excitation and Propagation of Elastic Waves. Cambridge: Cambridge University Press.Google Scholar
Husseini, M. I. and Randall, M. J. (1976). Rupture velocity and radiation efficiency. Bull. Seism. Soc. Am., 66, 1173–1187.Google Scholar
Husseini, M. J., Jovanovich, D. B., Randall, M. J. and Freund, L. B. (1975). The fracture energy of earthquakes. Geophys. J. Roy. Astr. Soc., 43, 367–385.CrossRefGoogle Scholar
Ida, Y. (1972). Cohesive forces across the tip of a longitudinal shear crack and Griffith's specific surface energy. J. Geophys. Res., 77, 3796–3805.CrossRefGoogle Scholar
Ida, Y. (1973). Stress concentration and unsteady propagation of longitudinal shear cracks. J. Geophys. Res., 78, 3418–3429.CrossRefGoogle Scholar
Ide, S. (2002). Estimation of radiated energy of finite-source earthquake models. Bull. Seism. Soc. Am., 92, 2994–3005.CrossRefGoogle Scholar
Ide, S. and Takeo, M. (1997). Determination of constitutive relations of fault slip based on seismic wave analysis. J. Geophys. Res., 102, 27 379–27 391.CrossRefGoogle Scholar
Ide, S., Beroza, G., Prejean, S. and Ellsworth, W. (2003). Apparent break in earthquake scaling due to path and site effects on deep borehole recordings. J. Geophys. Res., 108, .CrossRefGoogle Scholar
Irwin, G. R. (1957). Analysis of stresses and strains near the end of a crack transversing a plate. J. Appl. Mech., 64, 361–364.Google Scholar
Jeffreys, H. (1931). On the cause of oscillatory movements in seismograms. Mon. Not. Roy. Astr. Soc. Geophys. Suppl., 2, 407–416.CrossRefGoogle Scholar
Johnson, L. R. and Nadeau, R. M. (2002). Asperity model of an earthquake: static problem. Bull. Seism. Soc. Am., 92, 672–686.CrossRefGoogle Scholar
Johnson, L. R. and Nadeau, R. M. (2005). Asperity model of an earthquake: dynamic problem. Bull. Seism. Soc. Am., 95, 75–108.CrossRefGoogle Scholar
Jost, M. L. and Herrmann, R. B. (1989). A student's guide to and review of moment tensors. Seism. Res. Lett., 60, 37–57.Google Scholar
Kame, N. and Yamashita, T. (1997). Dynamic nucleation process of shallow earthquake faulting on a fault zone. Geophys. J. Int., 128, 204–216.CrossRefGoogle Scholar
Kame, N. and Yamashita, T. (1999a). A new light on arresting mechanism of dynamic earthquake faulting. Geophys. Res. Lett., 26, 1997–2000.CrossRefGoogle Scholar
Kame, N. and Yamashita, T. (1999b). Simulation of the spontaneous growth of a dynamic crack without constraints on the crack tip path. Geophys. J. Int., 139, 345–358.CrossRefGoogle Scholar
Kanamori, H. (2004). The diversity of the physics of earthquakes. Proc. Japan Acad. B, 80, 297–316.CrossRefGoogle Scholar
Kanamori, H. and Anderson, D. L. (1975). Theoretical basis of some empirical relations in seismology. Bull. Seism. Soc. Am., 65, 1073–1095.Google Scholar
Kanamori, H. and Brodsky, E. E. (2004). The physics of earthquakes. Rep. Progr. Phys., 67, 1429–1496.CrossRefGoogle Scholar
Kanamori, H. and Given, J. W. (1981). Use of long period surface waves for rapid determination of earthquake source parameters. Phys. Earth Planet. Int., 27, 8–31.CrossRefGoogle Scholar
Kanamori, H. and Steward, G. S. (1978). Seismological aspects of the Guatemala earthquake of February 4, 1976. J. Geophys. Res., 83, 3427–3434.CrossRefGoogle Scholar
Kaneko, Y., Avouac, J. P. and Lapusta, N. (2010). Towards inferring earthquake patterns from geodetic observations of interseismic coupling. Nature Geosci., 3, 363–369.CrossRefGoogle Scholar
Kasahara, K. (1963). Computer program for a fault plane solution. Bull. Seism. Soc. Am., 53, 1–13.Google Scholar
Kasahara, K. (1981). Earthquake Mechanics. Cambridge: Cambridge University Press.Google Scholar
Kennet, B. L. N. (1981). Seismic waves in a stratified half space – II. Theoretical seismograms. Geophys. J. Roy. Astr. Soc., 61, 1–10.CrossRefGoogle Scholar
Kennet, B. L. N. (2001). The Seismic Wavefield. Vol. I: Introduction and Theoretical Development. Cambridge: Cambridge University Press.Google Scholar
Kennet, B. L. N. and Engdahl, E. R. (1991). Traveltime for global earthquake location and phase identification. Geophys. J. Int., 105, 429–465.CrossRefGoogle Scholar
Keylis-Borok, B. V. (1956). Methods and results of the investigation of earthquake mechanism. Publ. Bureau Central Seism. Inter. Ser A. Trav. Scient., 19, 205–14.Google Scholar
Keylis-Borok, B. V. (1959). On the estimation of the displacement in an earthquake source and of source dimensions. Ann. Geofisica, 12, 205–214.Google Scholar
Keylis-Borok, V. I., Pistetskii-Shapiro, I. I., Pisarenko, V. F. and Zhelankina, T. S. (1972). Computer determination of earthquake mechanism. In: Computational Seismology. New York: Plenum Publishing.Google Scholar
Kikuchi, M. and Kanamori, H. (1982). Inversion of complex body waves. Bull. Seism. Soc. Am., 72, 491–506.Google Scholar
Kikuchi, M. and Kanamori, H. (1991). Inversion of complex body waves III. Bull. Seism. Soc. Am., 81, 2335–2350.Google Scholar
Knopoff, L. (1958). Energy release in earthquakes. Geophys. J. Roy. Astr. Soc., 1, 44–52.CrossRefGoogle Scholar
Knopoff, L. (1961). Analytical calculation of the fault-plane problem. Publ. Dominion Observatory, 24, 309–315.Google Scholar
Knopoff, L. (1967). The mathematics of the seismic source. Institute of Geophysics, University of Karlsruhe (unpublished lecture notes).
Knopoff, L. and Gilbert, F. (1960). First motions from seismic sources. Bull. Seism. Soc. Am., 50, 117–134.Google Scholar
Knopoff, L. and Randall, M. (1970). The compensated vector linear dipole: a possible mechanism for deep earthquakes. J. Geophys. Res., 75, 4957–4963.CrossRefGoogle Scholar
Koch, K. (1991). Moment tensor inversion of local earthquake data. Investigation of the method and its numerical stability with model calculations. Geophys. J. Int., 106, 305–319.CrossRefGoogle Scholar
Kostrov, B. V. (1964). Self-similar problems of propagation of shear cracks. J. Appl. Math. Mech., 28, 1077–1087.CrossRefGoogle Scholar
Kostrov, B. V. (1966). Unsteady propagation of longitudinal cracks. J. Appl. Math. Mech., 30, 1241–1248.CrossRefGoogle Scholar
Kostrov, B. V. (1975). On the crack propagation with variable velocity. Int. J. Fracture, 11, 47–56.CrossRefGoogle Scholar
Kostrov, B. V. and Das, S. (1982). Idealized models of fault behavior prior to dynamic rupture. Bull. Seism. Soc. Am., 72, 679–703.Google Scholar
Kostrov, B. V. and Das, S. (1988). Principles of Earthquake Source Mechanics. Cambridge: Cambridge University Press.Google Scholar
Kostrov, B. V. and Nikitin, L. V. (1970). Some general problems of mechanics of brittle fracture. Archiwum Mechaniki Stosowanej, 22, 749–776.Google Scholar
Lamb, H. (1904). On the propagation of tremors over the surface of an elastic solid. Phil. Trans. Roy. Soc. A, 203, 1–42.CrossRefGoogle Scholar
Lancieri, M., Madariaga, R. and Bonilla, F. (2012). Spectral scaling of the aftershocks of the Tocopilla 2007 earthquake in northern Chile. Geophys. J. Int., 188, 469–480.CrossRefGoogle Scholar
Lapwood, E. R. (1949). The disturbance to a line source in a semi-infinite elastic medium. Phil. Trans. Roy. Soc. London. A, 242, 63–100.CrossRefGoogle Scholar
Larson, K. (2009). GPS seismology. J. Geod., 83, 227–233.CrossRefGoogle Scholar
Lay, T. and Wallace, T. C. (1995). Modern Global Seismology. Academic Press.Google Scholar
Liu, P., Archuleta, R. J. and Hartzell, S. H. (2006). Prediction of broadband ground-motion time histories: hybrid low/high-frequency method with correlated random source parameters. Bull. Seism. Soc. Am., 96, 2118–2130.CrossRefGoogle Scholar
Love, A. E. H. (1927). The Mathematical Theory of Elasticity. 4th edn. Cambridge: Cambridge University Press.Google Scholar
Luco, J. E. and Apsel, R. J. (1982). On the Green’s functions for a layered half-space: Part I. Bull. Seism. Soc. Am., 72, 275–302.Google Scholar
Luco, J. E. and Apsel, R. J. (1983). On the Green function for a layered half-space: Part II. Bull. Seism. Soc. Am., 73, 909–929.Google Scholar
Ma, S., Custodio, S., Archuleta, R. and Liu, P. (2008). Dynamic modeling of the 2004 MW 6.0 Parkfield, California, earthquake. J. Geophys. Res., 113, B02 301, .CrossRefGoogle Scholar
MacCaffrey, R., Abers, G. and Zwick, P. (1991). Inversion of teleseismic body waves. In: Digital Seismogram Analysis and Wave Form Inversion, ed. Lee, W. H. K.. IASPEI Software Library, vol. 3, pp. 81–166.Google Scholar
Madariaga, R. (1976). Dynamics of an expanding circular fault. Bull. Seism. Soc. Am., 66, 639–666.Google Scholar
Madariaga, R. (1977). High frequency radiation from crack (stress drop) models of earthquake faulting. Geophys. J. Roy. Astr. Soc., 51, 525–651.CrossRefGoogle Scholar
Madariaga, R. (1979). On the relation between seismic moment and stress drop in the presence of stress and strength heterogeneity. J. Geophys. Res., 84, 2243–2250.CrossRefGoogle Scholar
Madariaga, R. (2009). Seismic source theory. In: Earthquake Seismology (Treatise on Geophysics, vol. 4), eds. Kanamori, H. and Schubert, G., pp. 59–82. Amsterdam: Elsevier.Google Scholar
Madariaga, R. and Cochard, A. (1994). Seismic source dynamics, heterogeneity and friction. Ann. Geofis., 37, 1349–1375.Google Scholar
Madariaga, R. and Olsen, K. B. (2000). Criticality of rupture dynamics in three dimensions. Pageoph., 157, 1981–2001.CrossRefGoogle Scholar
Madariaga, R. and Olsen, K. B. (2002). Earthquake dynamics. In: Int. Handbook of Earthquake and Engineering Seismology, vol. 81A, pp. 175–194.
Madariaga, R., Olsen, K. B. and Archuleta, R. (1998). Modeling dynamic rupture in a 3D earthquake fault model. Bull. Seism. Soc. Am., 88, 1182–1197.Google Scholar
Mai, P. M. and Beroza, G. C. (2002). A spatial random field model to characterize complexity in earthquake slip. J. Geophys. Res., 107, .CrossRefGoogle Scholar
Marone, C. (1998). Laboratory-derived friction laws and their application to seismic faulting. Ann. Rev. Earth Planet. Sci., 26, 643–696.CrossRefGoogle Scholar
McGarr, A. and Fletcher, J. B. (2003). Maximum slip in earthquake fault zones, apparent stress, and stick-slip friction. Bull. Seism. Soc. Am., 93, 2355–2362.CrossRefGoogle Scholar
McGuire, J. J. (2004). Estimating finite source properties of small earthquake ruptures. Bull. Seism. Soc. Am., 94, 377–393.CrossRefGoogle Scholar
McGuire, J. J., Zhao, Li and Jordan, H. (2001). Teleseismic inversion for the second-degree moment of earthquake space–time distributions. Geophys. J. Int., 145, 661–678.CrossRefGoogle Scholar
Mendiguren, J. (1977). Inversion of surface wave data in source mechanism studies. J. Geophys. Res., 82, 889–894.CrossRefGoogle Scholar
Menke, W. (2012). Geophysical Data Analysis: Discrete Inverse Theory. 3rd edn. Waltham, Massachusetts: Academic Press.Google Scholar
Mikumo, T. (1992). Dynamic fault rupture and stress recovery processes in continental crust under depth dependent shear strength and frictional parameters. Tectonophys., 211, 201–222.CrossRefGoogle Scholar
Mikumo, T. (1994). Dynamic fault rupture of moderate size earthquakes inferred from the results of kinematic wave form inversion. Ann. Geofis., 37, 1377–1389.Google Scholar
Mikumo, T. and Miyatake, T. (1978). Dynamic rupture process on a three-dimensional fault with non-uniform friction and near field seismic waves. Geophys. J. Roy. Astr. Soc., 54, 417–438.CrossRefGoogle Scholar
Mikumo, T. and Miyatake, T. (1995). Heterogenous distribution of dynamic stress drop and relative fault strength recovered from the results of wave form inversion: the 1984 Morgan Hill, California earthquake. Bull. Seism. Soc. Am., 85, 178–193.Google Scholar
Mikumo, T., Fukuyama, E., Olsen, K. B. and Yagi, Y. (2003). Stress breakdown time and critical weakening slip inferred from the slip-velocity function on earthquakes faults. Bull. Seism. Soc. Am., 93, 264–282.CrossRefGoogle Scholar
Mizoguchi, K., Hirose, T., Shimamoto, T., and Fukuyama, E. (2007). Reconstruction of seismic faulting by high-velocity friction experiments: an example of the 1995 Kobe earthquake. Geophys. Res. Lett., 34, L01 308, .CrossRefGoogle Scholar
Molnar, P., Tucker, B. E. and Brune, J. N. (1973). Corner frequency of P and S waves and models of earthquakes sources. Bull. Seism. Soc. Am., 63, 101–104.Google Scholar
Morse, P. M. and Feshbach, H. (1953). Methods of Theoretical Physics. New York: McGraw-Hill.Google Scholar
Müller, G. (1985). The reflectivity method: a tutorial. J. Geophys., 58, 153–174.Google Scholar
Muskhelishvili, N. I. (1973). Singular Integral Equations. Groningen, Netherlands: P. Noordho.Google Scholar
Nabelek, J. L. (1984). Determination of earthquake source parameters from inversion of body waves. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts.
Nakano, H. (1923). Notes on the nature of forces which give rise to the earthquakes motion. Seism. Bull. Cent. Meteor. Obs. Japan, 1, 92–120.Google Scholar
Nielsen, S. and Madariaga, R. (2003). On the self-healing fracture mode. Bull. Seism. Soc. Am., 93, 2375–2388.CrossRefGoogle Scholar
Nishimura, G. (1937). On the elastic waves due to pressure variations on the inner surface of a spherical cavity in an elastic solid. Bull. Earthq. Res. Inst. Tokyo, 15, 614–635.Google Scholar
Noda, H., Dunham, E. M., and Rice, J. R. (2009). Earthquake ruptures with thermal weakening and the operation of major faults at low overall stress levels, J. Geophys. Res., 114, B07 302, .CrossRefGoogle Scholar
Ogata, Y. (1988). Statistical models for earthquake occurrences and residual analysis for point processes, J. Amer. Statist. Assoc., 83, 401, 9–27.CrossRefGoogle Scholar
Ohnaka, M. (2000). Physical scaling relation between the size of an earthquake and its nucleation zone size. Pageoph., 157, 2259–2282.CrossRefGoogle Scholar
Ohnaka, M. (2013). The Physics of Rock Failure and Earthquakes. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Okada, Y. (1992). Internal deformation due to shear and tensile faults in a half-space. Bull. Seism. Soc. Am., 82, 1018–1040.Google Scholar
Okubo, P. G. (1989). Dynamic rupture modeling with laboratory-derived constitutive relations. J. Geophys. Res., 94, 12 321–12 335.CrossRefGoogle Scholar
Olsen, K. B., Madariaga, R. and Archuleta, R. J. (1997). Three-dimensional dynamic simulation of the 1992 Landers earthquake. Science, 278, 834–838.CrossRefGoogle Scholar
Olsen, K. B., Day, S. M., Dalguer, L. A., Mayhew, J., Cui, Y., Zhu, J. et al. (2009). ShakeOut-D: ground motion estimates using an ensemble of large earthquakes on the southern San Andreas fault with spontaneous. rupture propagation. Geophys. Res. Lett., 36, L04 303, .CrossRefGoogle Scholar
Olson, H., Orcutt, J. A. and Frazier, G. A. (1984). The discreet wavenumber/finite element method for synthetic seismograms. Geophys. J. Roy. Astr. Soc., 77, 421–460.CrossRefGoogle Scholar
Omori, F. (1894). On the aftershocks of earthquakes. J. Coll. Sci., Imperial University of Tokyo, 7, 111–200.Google Scholar
Palmer, A. C. and Rice, J. R. (1973). The growth of slip surfaces in the progressive failure of over-consolidated clay. Proc. Roy. Soc. A, 332, 527–548.CrossRefGoogle Scholar
Panza, G. (1985). Synthetic seismograms: the Rayleigh waves modal summation. J. Geophys., 58, 125–145.Google Scholar
Passelègue, F. X., Schubnel, A., Nielsen, S., Bhat, H. S., and Madariaga, R. (2013). From sub-Rayleigh to supershear ruptures during stick–slip experiments on rocks. Science, 340, 1208–1211.CrossRefGoogle ScholarPubMed
Peyrat, S. (2001). Modélisation des tremblements de terre: rupture, rayonnement et inversion. Thèse de Doctorat, Université Paris Sud.
Peyrat, S. and Olsen, K. B. (2004). Nonlinear dynamic rupture inversion of the 2000 Western Tottori, Japan, earthquake, .
Peyrat, S., Olsen, K. B. and Madariaga, R. (2001). Dynamic modeling of the 1992 Landers earthquake. J. Geophys. Res., 106, 26 467–26 482.CrossRefGoogle Scholar
Peyrat, S., Olsen, K. B.. and Madariaga, R. (2004). Which dynamic parameters can be estimated from strong ground motion?Pageoph., 161, 2155–2169.CrossRefGoogle Scholar
Poliakov, A., Dmowska, R., and Rice, J. R. (2002). Dynamic shear rupture interactions with fault bends and off-axis secondary faulting, J. Geophys. Res., 107, 2295, .CrossRefGoogle Scholar
Prawirodirjo, L. and Bock, Y. (2004). Instantaneous global plate motion model from 12 years of continuous GPS observations. J. Geophys. Res., 109, .Google Scholar
Pro, C. (2002). Estudio del efecto de directividad en la forma de ondas. Tesis Doctoral, Universidad Complutense de Madrid.
Pujol, J. and Herrmann, R. H. (1990). Student's guide to point sources in homogeneous media. Seism. Res. Lett., 61, 209–224.Google Scholar
Reasenberg, P. and Oppenheimer, D. (1985). FPFIT, FPPLOT and FPPAGE: Fortran computer programs for calculating and displaying earthquake fault-plane solutions. US Geological Survey, Open File Report, pp. 85–739.
Reches, Z. and Lockner, D. A. (1994). Nucleation and growth of faults in brittle rocks. J. Geophys. Res., 99, 18 159–18 173.CrossRefGoogle Scholar
Reid, H. F. (1911). The elastic rebound theory of earthquakes. Bull. Dept. Geol., University of California, 6, 412–444.Google Scholar
Rice, J. R. (1968). A path independent integral and the approximate analysis of strain concentration by notches and cracks. J. Appl. Mech., 35, 379–386.CrossRefGoogle Scholar
Rice, J. R. (1980). The mechanics of earthquake rupture. In: Physics of Earth's Interior, eds. Dziewonski, A. M. and Boschi, E., pp. 555–649. North Holland, Amsterdam.Google Scholar
Rice, J. R. and Ruina, A. L. (1983). Stability of steady frictional slipping. J. Appl. Mech., 50, 343–349.CrossRefGoogle Scholar
Rice, J. R., Lapusta, N. and Ranjith, K. (2001). Rate and state dependent friction and the stability of sliding between elastically deformable solids. J. Mech. Phys. Sol., 49, 1865–1898.CrossRefGoogle Scholar
Romanowicz, B. (1982). Moment tensor inversion of long period Rayleigh waves. A new approach. J. Geophys. Res., 87, 5395–5407.CrossRefGoogle Scholar
Romanowicz, B. (1992). Strike–slip earthquakes on quasi-vertical transcurrent faults: inferences for general scaling relations. Geophys. Res. Lett., 19, 1944–1988.CrossRefGoogle Scholar
Rosakis, A., Samadrula, J. O. and Coker, D. (1999). Cracks faster than the shear wave speed. Science, 248, 1337–1340.CrossRefGoogle Scholar
Rubin, A. M. and Ampuero, J.-P. (2005). Earthquake nucleation on (aging) rate and state faults, J. Geophys. Res., 110, B11 312, .CrossRefGoogle Scholar
Ruina, A. (1983). Slip instability and state variable friction law. J. Geophys. Res., 88, 10 359–10 370.CrossRefGoogle Scholar
Ruiz, S. and Madariaga, R. (2013). Kinematic and dynamic inversion of the 2008 Northern Iwate earthquake. Bull. Seism. Soc. Am., 103, 694–708.CrossRefGoogle Scholar
Sambridge, M. (1999). Geophysical inversion with a neighbourhood algorithm – I. Searching a parameter space. Geophys. J. Int., 138, 479–494.CrossRefGoogle Scholar
Sambridge, M. (2001). Finding acceptable models in nonlinear inverse problems using a neighbourhood algorithm. Inverse Problems, 17, 387–403.CrossRefGoogle Scholar
Sato, T. and Hirasawa, T. (1973). Body wave spectra from propagating shear cracks. J. Phys. Earth, 21, 415–431.CrossRefGoogle Scholar
Savage, J. C. (1966). Radiation from a realistic model of faulting. Bull. Seism. Soc. Am., 56, 577–592.Google Scholar
Savage, J. C. (1972). Relation of corner frequency to fault dimensions. J. Geophys. Res., 77, 3788–3795.CrossRefGoogle Scholar
Savage, J. C. and Burford, R. O. (1973). Geodetic determination of relative plate motion in central California. J. Geophys. Res., 78, 832–845.CrossRefGoogle Scholar
Savage, J. C. and Wood, M. D. (1971). The relation between apparent stress and stress drop. Bull. Seism. Soc. Am., 61, 1381–1388.Google Scholar
Scherbaum, F. (1996). Of Poles and Zeros. Fundamentals of Digital Seismology. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
Schmedes, J., Archuleta, R. J. and Lavallée, D. (2010). Correlation of earthquake source parameters inferred from dynamic rupture simulations, J. Geophys. Res., 115, CrossRefGoogle Scholar
Schmedes, J., Archuleta, R. J., and Lavallée, D. (2013). A kinematic rupture model generator incorporating spatial interdependency of earthquake source parameters. Geophys. J. Int., 192, 1116–1131.CrossRefGoogle Scholar
Scholz, C. H. (1990). The Mechanics of Earthquakes and Faulting, Cambridge: Cambridge University Press.Google Scholar
Scholz, C. H. (2007). Fault mechanics. In: Treatise on Geophysics, ed. Watts, A. B., vol. 6, pp. 441–483. Amsterdam: Elsevier.CrossRefGoogle Scholar
Schwab, F., Nakanishi, K., Cuscito, M., Panza, G. F., Liang, G. and Frez, J. (1984). Surface wave computations and the synthesis of theoretical seismograms at high frequencies. Bull. Seism. Soc. Am., 74, 1555–1578.Google Scholar
Shimazaki, K. (1986). Small and large earthquakes: the effect of the thickness of the seismogenic layer and the free surface. Earthquake Source Mechanics, AGU Geophys. Mon., 37. American Geophysical Union, pp. 209–216.Google Scholar
Silver, P. G. and Jordan, T. H. (1982). Optimal estimation of scalar seismic moment. Geophys. J. Roy. Astr. Soc., 70, 755–787.CrossRefGoogle Scholar
Silver, P. G. and Jordan, T. H. (1983). Total moment spectra of fourteen large earthquakes. J. Geophys. Res., 88, 3273–3299.CrossRefGoogle Scholar
Sin Vigny, C., Socquet, A., Peyrat, S., Ruegg, J.-C., Metois, M., Madariaga, R. et al. (2011). The 2010 MW 8.8 Maule mega-thrust earthquake of Central Chile, monitored by GPS. Science, 331, 1417–1421.CrossRefGoogle Scholar
Sipkin, S. A. (1982). Estimation of earthquake source parameters by the inversion of wave form data: synthetic waveforms. Phys. Earth Planet. Inter., 30, 242–259.CrossRefGoogle Scholar
Sipkin, S. A. (1986). Estimation of earthquake source parameters by the inversion of waveform data. Global seismicity, 1981–1983. Bull. Seism. Soc. Am., 76, 1515–1541.Google Scholar
Sipkin, S. A. (1994). Rapid determination of global moment-tensor solutions. Geophys. Res. Letters, 21, 1667–1670.CrossRefGoogle Scholar
Somerville, P., Irikura, K., Graves, R., Sawada, S., Wald, D., Kagawa, Y. I. T. et al. (1999). Characterizing crustal earthquake slip models for the prediction of strong ground motion. Seism. Res. Letters, 70, 59–80.CrossRefGoogle Scholar
Spudich, P. and Cranswick, E. (1984). Direct observation of rupture propagation during the 1979 Imperial Valley earthquake using a short baseline accelerometer array. Bull. Seism. Soc. Am., 74, 2083–2114.Google Scholar
Spudich, P. and Frazer, L. N. (1984). Use of ray theory to calculate high-frequency radiation from earthquake sources having spatially variable rupture velocity and stress drop. Bull. Seismol. Soc. Am., 74, 2061–2082.Google Scholar
Steketee, J. A. (1958). Some geophysical applications of the theory of dislocations. Can. J. Phys. 36, 1168–1198.CrossRefGoogle Scholar
Strelitz, R. A. (1978). Moment tensor inversion and source models. Geophys. J. Roy. Astr. Soc., 52, 359–364.CrossRefGoogle Scholar
Strelitz, R. A. (1989). Choosing the best double couple from a moment tensor inversion. Geophys. J. Int., 99, 811–815.CrossRefGoogle Scholar
Stump, B. W. and Johnson, L. R. (1977). The determination of source properties by linear inversion of seismograms. Bull. Seism. Soc. Am., 67, 1489–1502.Google Scholar
Suzuki, W., Aoi, S. and Sekiguchi, H. (2009). Rupture process of the 2008 northern Iwate intraslab earthquake derived from strong-motion records. Bull. Seism. Soc. Am., 99, 2825–2835.CrossRefGoogle Scholar
Tago, J., Cruz-Atienza, V. M., Virieux, J., Etienne, V. and Sánchez-Sesma, F. J. (2012). A 3D hp-adaptive discontinuous Galerkin method for modeling earthquake dynamics. J. Geophys. Res., 117, B09 312, .CrossRefGoogle Scholar
Tapley, W. C. and Tull, J. E. (1992). Guide to the UNIX version of SAC. Lawrence Livermore National Laboratory, University of California.
Tarantola, A. (1987). Inverse Problem Theory: Methods for Data Fitting and Model Parameter Estimation. Amsterdam: Elsevier.Google Scholar
Thio, H. K. and Kanamori, H. (1995). Moment-tensor inversions for local earthquakes using surface waves recorded at TERRAscope. Bull. Seism. Soc. Am., 85, 1021–1038.Google Scholar
Tinti, E., Spudich, P. and Cocco, M. (2005a). Earthquake fracture energy inferred from kinematic rupture models on extended faults, J. Geophys. Res., 110, B12 303, .CrossRefGoogle Scholar
Tinti, E., Fukuyama, E., Piatanesi, A. and Cocco, M. (2005b). A kinematic source time function compatible with earthquake dynamics. Bull. Seism. Soc. Am., 95, 1211–1223.CrossRefGoogle Scholar
Tinti, E., Cocco, M., Fukuyama, E. and Piatanesi, A. (2009). Dependence of slip weakening distance (D) on final slip during dynamic rupture of earthquakes. Geophys. J. Int., 177, 1205–1220.CrossRefGoogle Scholar
Toda, S., Stein, R. S., Sevilgen, V. and Lin, J. (2011). Coulomb 3.3 graphic-rich deformation and stress-change software for earthquake, tectonic, and volcano research and teaching – User guide. US Geological Survey Open File Report 2011-1060, 63 pp., available at .
Tsuboi, C. (1956). Earthquake energy, earthquake volume, aftershock area and strength of the earth's crust. J. Phys. Earth, 4, 63–66.CrossRefGoogle Scholar
Tsutsumi, A. and Miyamoto, T. (1997). High-velocity frictional properties of gabbro. Geophys. Res. Lett., 24, 699–702.CrossRefGoogle Scholar
Twardzik, C., Madariaga, R., Das, S. and Custodio, S. (2012). Robust features of the source process for the 2004 Parkfield, California, earthquake from strong-motion seismograms. Geophys. J. Int., 191, 1245–1254.Google Scholar
Udías, A. (1971). Source parameters of earthquakes from spectra of Rayleigh waves. Geophys. J. Roy. Astr. Soc., 22, 353–376.CrossRefGoogle Scholar
Udías, A. (1989). Development of fault plane studies for the mechanism of earthquakes. In: Observatory Seismology, ed. Litehisser, J. J., pp. 243–256. Berkeley: University of California Press.Google Scholar
Udías, A. (1999). Principles of Seismology. Cambridge: Cambridge University Press.Google Scholar
Udías, A. and Buforn, E. (1988). Single and joint fault-plane solutions from first data. In: Seismological Algorithms, ed. Doornbos, D., pp. 443–453. London: Academic Press.Google Scholar
Vallée, M. and Bouchon, M. (2004). Imaging coseismic rupture in far field by slip patches. Geophys. J. Int., 156, 615–630.CrossRefGoogle Scholar
Vallée, M., Landès, M., Shapiro, N. M. and Klinger, Y. (2008). The 2001/11/14 Kokoxili (Tibet) earthquake: high frequency seismic radiation originates from the transitions between subRayleigh and supershear rupture velocity regimes. J. Geophys. Res., 113, B07 305, .CrossRefGoogle Scholar
Virieux, J. and Madariaga, R. (1982). Dynamic faulting studied by a finite difference method. Bull. Seism. Soc. Am., 72, 345–369.Google Scholar
Vvedenskaya, A. V. (1956). Determination of displacement fields for earthquakes by means of the dislocation theory. Izv. Akad. Nauka SSSR, Geofiz., 3, 277–284 (in Russian).Google Scholar
Wald, D. J. and Heaton, T. H. (1994). Spatial and temporal distribution of slip for the 1992 Landers, California, earthquake. Bull. Seismol. Soc. Am., 84, 668–691.Google Scholar
Weertman, J. (1967). Uniformly moving transonic and supersonic dislocations. J. Appl. Phys., 38, 5293–5302.CrossRefGoogle Scholar
Wesnouzky, S. G. (1998). The Gutenberg–Richter or characteristic earthquake distribution, which is it?Bull. Seism. Soc. Am., 88, 1940–1959.Google Scholar
Wickens, A. J. and Hogdson, J. H. (1967). Computer reevaluation of earthquake mechanism solutions. Publ. Dominion Observatory, 33, 1–560.Google Scholar
Wyss, M. and Brune, J. N. (1967). The Alaska earthquake of March 28, 1964. A complex multiple event. Bull. Seism. Soc. Am., 57, 1017–1023.Google Scholar
Wyss, M. and Brune, J. N. (1968). Seismic moment, stress and source dimensions for earthquakes in the California-Nevada region. J. Geophys. Res., 73, 4681–4694.CrossRefGoogle Scholar
Xia, K., Rosakis, A. J. and Kanamori, H. (2004). Laboratory earthquakes: the sub-Rayleigh-to-supershear transition. Science, 303, 1859–861.CrossRefGoogle ScholarPubMed
Yagi, Y. and Kikuchi, M. (2000). Source rupture process of the Kocaeli, Turkey, earthquake of August 17, 1999, obtained by joint inversion of near-field data and teleseismic data. Geophys. Res. Lett., 27, 1969–1972.CrossRefGoogle Scholar
Yamashita, T. and Ohnaka, M. (1991). Nucleation process of unstable rupture in the brittle regime: theoretical approach based on experimentally inferred relations. J. Geophys. Res., 96, 8351–8367.CrossRefGoogle Scholar
Yoffe, E. (1951). The moving Griffith crack. Phil. Mag., 42, 739–750.CrossRefGoogle Scholar
Zheng, G. and Rice, J. R. (1998). Conditions under which velocity-weakening friction allows a self healing versus a cracklike mode of rupture. Bull. Seism. Soc. Am., 88, 1466–1483.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Agustín Udías, Universidad Complutense, Madrid, Raúl Madariaga, Ecole Normale Supérieure, Paris, Elisa Buforn, Universidad Complutense, Madrid
  • Book: Source Mechanisms of Earthquakes
  • Online publication: 05 June 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139628792.014
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Agustín Udías, Universidad Complutense, Madrid, Raúl Madariaga, Ecole Normale Supérieure, Paris, Elisa Buforn, Universidad Complutense, Madrid
  • Book: Source Mechanisms of Earthquakes
  • Online publication: 05 June 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139628792.014
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Agustín Udías, Universidad Complutense, Madrid, Raúl Madariaga, Ecole Normale Supérieure, Paris, Elisa Buforn, Universidad Complutense, Madrid
  • Book: Source Mechanisms of Earthquakes
  • Online publication: 05 June 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139628792.014
Available formats
×