Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-19T06:56:37.564Z Has data issue: false hasContentIssue false

9 - Networking technologies for wide-area measurement applications

from Part III - Smart grid and wide-area networks

Published online by Cambridge University Press:  05 January 2013

Yi Deng
Affiliation:
Virginia Polytechnic Institute and State University, USA
Hua Lin
Affiliation:
Virginia Polytechnic Institute and State University, USA
Arun G. Phadke
Affiliation:
Virginia Polytechnic Institute and State University, USA
Sandeep Shukla
Affiliation:
Virginia Polytechnic Institute and State University, USA
James S. Thorp
Affiliation:
Virginia Polytechnic Institute and State University, USA
Ekram Hossain
Affiliation:
University of Manitoba, Canada
Zhu Han
Affiliation:
University of Houston
H. Vincent Poor
Affiliation:
Princeton University, New Jersey
Get access

Summary

Introduction

A wide-area measurement system (WAMS) consists of advanced measurement technology, the latest communication network infrastructure, and integrated operational framework. The supervisory control and data acquisition (SCADA) infrastructure for energy-management system (EMS) has been widely used in power systems for a long time. Some of the functionalities of an EMS are system state monitoring, tie-line bias control, and economic dispatch [1]. However, in recent years, various deficiencies of the existing SCADA-based EMS (such as quasi-steady-state calculation, non-synchronized data acquisition, and relatively low data transmission rate) have been pointed out. These defects make it impossible to sample the global state of a power system in real time. As more and more wide-area blackouts are reported, it is clear that acquiring real-time or wide-area state information would be needed in the future. The state information in terms of phasors of voltages and currents from a distributed wide area in real time is therefore critical for avoiding large-area disturbances by effecting wide-area control based on wide-area measurements.

The main enabler of WAMS is phasor measurement unit (PMU) technology. With the innovation of PMU, the problem of measuring the phasor quantities simultaneously from a wide area of distributed substations, also called ‘synchrophasor’, has been solved. At present, the PMU technology is one of the essential enablers for WAMS. It utilizes the availability of high-precision synchronized clock sources – extracted from global positioning system (GPS) receivers and samples the instantaneous analogue – quantities of voltage and current magnitudes and phase angles.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×