Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-22T06:22:24.612Z Has data issue: false hasContentIssue false

9 - Decomposition of the link complement and the Milnor fibre

Published online by Cambridge University Press:  04 December 2009

C. T. C. Wall
Affiliation:
University of Liverpool
Get access

Summary

In this chapter we begin the deeper study of the topology attached to the Milnor fibration. One key problem is to obtain an understanding of the monodromy. A major tool for this is a canonical decomposition of the Milnor fibre. Because the decomposition is intrinsic, it gives a better picture of the topology than we attained in Chapter 5, particularly when the curve has several branches. We discuss the decomposition theorems in this chapter, leaving the application to monodromy to Chapter 10. Although we present an introductory account of these matters, we will necessarily assume a higher level of mathematical sophistication than was the case in earlier chapters.

We may use the carousel of Section 5.3 or the resolution tree of Section 3.6 to obtain a decomposition. We will see directly that the same is obtained from each approach, but this fact is underpinned by major theorems of great generality. Although we do not need these results, we describe them to set our discussions in a wider context. We thus begin with a section stating the general decomposition theorems in 2- and 3-dimensional topology which underlie the constructions.

We now explain what we mean by ‘decomposition’. A decomposition of a connected manifold M is effected by cutting along submanifolds of codimension 1. If T is a connected submanifold which separates M into two pieces, then if M1,M2 are the closures of the two complementary regions, the result of cutting is defined to be the disjoint union of M1 and M2.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×