Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-22T06:19:55.781Z Has data issue: false hasContentIssue false

8 - Combinatorics on a resolution tree

Published online by Cambridge University Press:  04 December 2009

C. T. C. Wall
Affiliation:
University of Liverpool
Get access

Summary

Although invariants for a curve with a single branch can be written in sequence, and calculated in terms of the Puiseux characteristic, for curves with several branches it is necessary to work on a tree. In this chapter we consider the dual graph of a tree produced from a plane by an arbitrary sequence of point blowings up. We will see that many invariants can be most conveniently expressed using the algebra of exceptional cycles on the surface T which is the result of the blowings up. This leads to many formulae; some of these complete the development of Chapter 4, others lead to a study of the ‘topological zeta function’.

We also prepare for the discussion of the topology of the Milnor fibration in Chapters 9 and 10. Indeed, on the boundary we have an isomorphism ∂T → ∂S, so ∂T includes the singularity link complement and allows a fairly explicit description of it, and of the Milnor fibration, which we will give in Chapter 9. Here we will introduce the invariants and notation in terms of which the later calculations will be expressed.

The homology of a blow-up

Let C be a curve defined near O2, with branches Bj. We recall that by Theorem 3.4.4, C has a good resolution, which is a map π : TS, where S is a (small enough) disc neighbourhood of the point O2. The map π gives an isomorphism (T − π−1(O)) → (SO), and the collection π−1(C) of curves has normal crossings. Moreover, π is constructed as a composite of maps πi : Ti+1Ti (with T0 = S), each obtained by blowing up a single point Oi, which thus gives rise to an exceptional curve EiTi+1.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×