Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-19T09:26:08.751Z Has data issue: false hasContentIssue false

10 - Convergent evolution in brain “shape” and locomotion in primates

Published online by Cambridge University Press:  10 August 2009

Willem De Winter
Affiliation:
Leiden Experts on Advanced Pharmacokinetics & Pharmacodynamics, Archimedesweg 31, 2333 CM, Leiden, The Netherlands
Fred Anapol
Affiliation:
University of Wisconsin, Milwaukee
Rebecca Z. German
Affiliation:
University of Cincinnati
Nina G. Jablonski
Affiliation:
California Academy of Sciences, San Francisco
Get access

Summary

Introduction

For many years, comparative studies have indicated that the sizes of mammalian brain components are mostly related to the size of the brain as a whole, suggesting that all mammals share smaller or larger versions of essentially the “same” brain (Preuss 1995). This prompted the view that mammalian brain evolution can be represented along a one-dimensional scale of encephalization or “general intelligence” (e.g., Jerison, 1973; Eisenberg, 1981; Harvey and Krebs 1990). Recently, such allometric regularities in brain morphology have been attributed to a highly conservative, uniformly mammalian “Bauplan,” which is thought to constrain the possible evolutionary responses to selection for specific neural reorganizations to those stemming from an orderly expansion of the brain as a whole (Finlay and Darlington, 1995; Finlay et al., 1998). From 1993 to 2001, I had both the privilege and the pleasure to work closely with Charles Oxnard, adapting his hypothesis-free approach to multivariate morphometrics (e.g., Oxnard, 1984), combined with modern data visualization techniques, to the comparative study of the brain in mammals. This allowed us to analyze a large number of brain variables across a broad range of mammals simultaneously (de Winter 1997).

We were able to show that the relative proportions of different systems of functionally integrated brain structures vary independently between different mammalian orders, demonstrating separate evolutionary radiations in mammalian brain organization (de Winter and Oxnard, 1996, 1997, 2001; de Winter, 1997).

Type
Chapter
Information
Shaping Primate Evolution
Form, Function, and Behavior
, pp. 206 - 226
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ankel-Simons, F. (1983). A Survey of Living Primates and Their Anatomy. New York, NY: MacMillan
Baker, J. (1999). Supraspinal postural control: the medial “postural” system. In: Fundamental Neuroscience, ed. M. J. Zigmond, F. E. Bloom, S. C. Landis, J. L. Roberts, and L. R. Squire. San Diego, CA: Academic Press. pp. 913–930
Barton, R. A. and Harvey, P. H. (2000). Mosaic evolution of brain structure in mammals. Nature, 405, 1055–1058CrossRefGoogle ScholarPubMed
Bastian, A. J., Mugnaini, E., and Thach. W. T. (1999). Cerebellum. In: Fundamental Neuroscience, ed. M. J. Zigmond, F. E. Bloom, S. C. Landis, J. L. Roberts, and L. R. Squire. San Diego, CA: Academic Press. pp. 973–992
Bergeson, D. (1998). Patterns of suspensory feeding in Alouatta palliata, Ateles geoffroyi, and Cebus capucinus. In: Primate Locomotion: Recent Advances, ed. E. Strasser, J. G. Fleagle, A. Rosenberger, and H. McHenry. New York, NY: Plenum PressCrossRef
Brooks, V. B. (1986). The Neural Basis of Motor Control. New York, NY: Oxford University Press
Butler, A. B. and Hodos, W. (1996). Comparative Vertebrate Neuroanatomy. New York, NY: Wiley-Liss
Cant, J. G. H. (1986). Locomotor and feeding postures of spider and howling monkeys. Folia Primatol., 46, 1–14CrossRefGoogle Scholar
Cartmill, M. (1974). Rethinking primate origins. Science, 184, 436–443CrossRef
Charles-Dominique, P. (1977). Ecology and Behaviour of Nocturnal Primates. London: Duckworth
Charles-Dominique, P. and Martin, R. D. (1970). Evolution of lorises and lemurs. Nature, 227, 257–260CrossRefGoogle ScholarPubMed
Cleveland, W. S. (1993). Visualizing Data. Summit, NJ: Hobart Press
de Winter, W. (1997). Perspectives on Mammalian Brain Evolution. Ph.D. thesis, University of Western Australia
Winter, W. and Oxnard, C. E. (1996). Multivariate morphometrics of the primate brain and its mammalian context. Proc. Int. Primat. Soc., 16, 478Google Scholar
Winter, W. and Oxnard, C. E. (1997). The primate brain and its mammalian context: a morphometric study of volumetric measures of individual brain components. Amer. J. Phys. Anthropol., Suppl. 24, 243Google Scholar
Winter, W. and Oxnard, C. E. (2001). Evolutionary radiations and convergences in the structural organization of mammalian brains. Nature, 409, 710–714CrossRefGoogle ScholarPubMed
Deacon, T. W. (1990). Rethinking mammalian brain evolution. Amer. Zool., 30, 629–705CrossRefGoogle Scholar
Dunbar, R. I. M. (1992). Neocortex size as a constraint on group size in primates. J. Hum. Evol., 20, 469–493CrossRefGoogle Scholar
Eisenberg, J. F. (1981). The Mammalian Radiations. London: Athlone
Erikson, G. E. (1963). Brachiation in New World monkeys and in anthropoid apes. Symp. Zool. Soc. Lond., 10, 134–164Google Scholar
Finlay, B. L. and Darlington, R. B. (1995). Linked regularities in the development and evolution of mammalian brains. Science, 268, 1578–1584CrossRefGoogle ScholarPubMed
Finlay, B. L., Hersman, M. N., and Darlington, R. B. (1998). Patterns of vertebrate neurogenesis and the paths of vertebrate evolution. Brain Behav. Evol., 52, 232–242CrossRefGoogle ScholarPubMed
Fleagle, J. G. (1976). Locomotion and posture of the Malayan siamang and implications for hominoid evolution. Folia Primatol., 26, 245–269CrossRefGoogle ScholarPubMed
Fleagle, J. G. (1999). Primate Adaptation and Evolution, 2nd edn. San Diego, CA: Academic Press
Fuster, J. M. (1989). The Prefrontal Cortex. 2nd edn. New York, NY: Raven Press
Goldman-Rakic, P. S. (1995). Anatomical and functional circuits in prefrontal cortex of nonhuman primates. Adv. Neurol., 66, 51–63Google ScholarPubMed
Harvey, P. H. and Krebs, J. R. (1990). Comparing brains. Science, 249, 140–146CrossRefGoogle ScholarPubMed
Hastie, T., Tibshirani, R., and Friedman, J. (2001). The Elements of Statistical Learning. New York, NY: Springer
Hershkovitz, P. (1973). Living New World Monkeys (Platyrrhini). Chicago, IL: University of Chicago Press
Houk, J. C. (1995). Information processing in modular circuits. In: Models of Information Processing in the Basal Ganglia, ed. J. C. Houk, J. L. Davies, and D. G. Beiser. Cambridge, MA: MIT Press. pp. 3–9
Jerison, H. J. (1973). Evolution of the Brain and Intelligence. New York, NY: Academic Press
Krzanowski, W. J., and Marriott, F. H. C. (1994). Multivariate Statistics. London: Edward Arnold
Marin, O., Smeets, W. J. A. J., and Gonzalez, A. (1998). Evolution of basal ganglia in tetrapods. Trends Neurosci., 21, 487–494CrossRefGoogle ScholarPubMed
Martin, R. D. (1990). Primate Origins and Evolution. Princeton, NJ: Princeton University Press
Meldrum, D. J. (1998). Tail-assisted hind limb suspension as a transitional behavior in the evolution of the platyrrhine prehensile tail. In: Primate Locomotion: Recent Advances, ed. E. Strasser, J. G. Fleagle, A. Rosenberger, and H. McHenry. New York, NY: Plenum Press. pp. 145–156CrossRef
Middleton, F. A. and Strick, P. L. (1994). Anatomical evidence for cerebellar and basal ganglia involvement in higher cognitive function. Science, 266, 458–461CrossRefGoogle ScholarPubMed
Mink, J. W. (1999). Basal ganglia. In: Fundamental Neuroscience, ed. M. J. Zigmond, F. E. Bloom, S. C. Landis, J. L. Roberts, and L. R. Squire. San Diego, CA: Academic Press. pp. 951–972
Mittermeier, R. A. (1978). Locomotion and posture in Ateles geoffroyi and A. paniscus. Folia Primatol., 30, 161–193CrossRefGoogle Scholar
Oxnard, C. E. (1984). The Order of Man: a Biomathematical Anatomy of the Primates. New Haven, CT: Yale University Press
Oxnard, C. E., Crompton, R. H., and Lieberman, S. S. (1990). Animal Lifestyles and Anatomies: the Case of the Prosimian Primates. Seattle, WA: University of Washington Press
Passingham, R. E. (1975). The brain and intelligence. Brain Behav. Evol., 11, 1–15CrossRefGoogle ScholarPubMed
Preuss, T. M. (1995). The role of the neurosciences in primate evolutionary biology. In: Primates and Their Relatives in Phylogenetic Perspective, ed. R. D. E. MacPhee. New York, NY: Plenum Press. pp. 333–362
Schieber, M. H. (1999). Voluntary descending control. In: Fundamental Neuroscience, ed. M. J. Zigmond, F. E. Bloom, S. C. Landis, J. L. Roberts, and L. R. Squire. San Diego, CA: Academic Press. pp. 931–950
Schultz, W., Apicella, P., Romo, R., and Scarnati, E. (1995). Context-dependent activity in primate striatum reflecting past and future behavioral events. In: Models of Information Processing in the Basal Ganglia, ed. J. C. Houk, J. L. Davies, and D. G. Beiser. Cambridge, MA: MIT Press. pp. 11–26
Shepherd, G. M. (1994). Neurobiology. New York, NY: Oxford University Press
Stephan, H., Frahm, H. D., and Baron, G. (1981). New and revised data on volumes of brain structures in insectivores and primates. Folia Primatol., 35, 1–29CrossRefGoogle ScholarPubMed
Stephan, H., Baron, G., and Frahm, H. D. (1991). Insectivora. London: Springer-Verlag
Strick, P. L., Dum, R. P., and Picard, N. (1995). Macro-organization of the circuits connecting the basal ganglia with the cortical motor areas. In: Models of Information Processing in the Basal Ganglia, ed. J. C. Houk, J. L. Davies and D. G. Beiser. Cambridge, MA: MIT Press. pp. 117–129
Tuttle, R. (1975). Parallelism, brachiation and hominid phylogeny. In: Phylogeny of Primates, ed. W. P. Luckett and F. S. Szalay. New York, NY: Plenum Press. pp. 447–480
Voogd, J. and Glickstein, M. (1998). The anatomy of the cerebellum. Trends Neurosci, 21, 370–375CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×