Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-27T04:39:49.564Z Has data issue: false hasContentIssue false

Chapter 9 - Frontotemporal Dementia

Published online by Cambridge University Press:  21 June 2019

Rob Butler
Affiliation:
Waitemata DHB and North Shore Hospital, Auckland
Cornelius Katona
Affiliation:
Helen Bamber Foundation
Get access

Summary

The first description of a patient with progressive language disturbance and left superior temporal gyrus atrophy was by Pick in 1892, although it was not until 1911 that Alzheimer coined the term Pick bodies to describe a specific histopathological finding in such focal dementia cases. The concept of ‘Pick’s disease’ later emerged in 1925 and 1926 with a description by Gans [1] (in Holland) and then Onari and Spatz (in Germany) [2]. It took a further 30 years to recognise that only around 20% of cases had the characteristic Pick’s pathology [3] and, later, that a multitude of other pathologies were associated with atrophy of the frontal and/or temporal lobes [4,5].

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ganz, A. (1953) ‘De ziekten van Pick en van Alzheimer’. Tijhchriji Voor Geneeskd 17: 1953–5.Google Scholar
Onari, K., Spatz, H. (1926) ‘Anatomische Beiträge zur Lehre von der Pickschen Umschriebene-Grosshirnrinden-Atrophie’. Z Gesamte Neurol Psychiatr 101: 470511.CrossRefGoogle Scholar
Escourolle, R. (1958) La maladie de Pick. Etude critique d’ensemble et synthese anatomo-clinique. Paris: R. Foulon.Google Scholar
Brun, A. (1987) ‘Frontal lobe degeneration of non-Alzheimer type: I. Neuropathology’. Arch Gerontol Geriatr 6(3): 193208.Google Scholar
Mann, D. M., South, P. W., Snowden, J. S., Neary, D. (1993) ‘Dementia of frontal lobe type: Neuropathology and immunohistochemistry’. J Neurol Neurosurg Psychiatry 56(6): 605–14.Google Scholar
Neary, D., Snowden, J. S., Gustafson, L., et al. (1998) ‘Frontotemporal lobar degeneration: A consensus on clinical diagnostic criteria’. Neurology 51(6): 1546–54.Google Scholar
Warren, J. D., Rohrer, J. D., Rossor, M. N. (2013) ‘Frontotemporal dementia’. BMJ 347: f4827.CrossRefGoogle ScholarPubMed
Onyike, C. U., Diehl-Schmid, J. (2013) ‘The epidemiology of frontotemporal dementia’. Int Rev Psychiatry 25(2): 130–7.Google ScholarPubMed
Coyle-Gilchrist, I. T. S., Dick, K. M., Vázquez, P., et al. (2016) ‘Prevalence, characteristics, and survival of frontotemporal lobar degeneration syndromes’. Neurology 86: 1736–43.Google Scholar
Rascovsky, K., Hodges, J. R., Knopman, D., et al. (2011) ‘Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia’. Brain 134(Pt 9): 2456–77.Google Scholar
Gorno-Tempini, M. L., Hillis, A. E., Weintraub, S., et al. (2011) ‘Classification of primary progressive aphasia and its variants’. Neurology 76(11): 1006–14.CrossRefGoogle ScholarPubMed
Lough, S., Kipps, C. M., Treise, C., et al. (2006) ‘Social reasoning, emotion and empathy in frontotemporal dementia’. Neuropsychologia 44(6): 950–8.Google Scholar
Sturm, V. E., McCarthy, M. E., Yun, I., et al. (2011) ‘Mutual gaze in Alzheimer’s disease, frontotemporal and semantic dementia couples’. Soc Cogn Affect Neurosci 6(3): 359–67.CrossRefGoogle ScholarPubMed
Velakoulis, D., Walterfang, M., Mocellin, R., et al. (2009) ‘Frontotemporal dementia presenting as schizophrenia-like psychosis in young people: Clinicopathological series and review of cases’. Br J Psychiatry 194(4): 298305.Google Scholar
Hodges, J. R., Davies, R. R., Xuereb, J. H., et al. (2004) ‘Clinicopathological correlates in frontotemporal dementia’. Ann Neurol 56(3): 399406.Google Scholar
Woollacott, I. O. C., Rohrer, J. D. (2016) ‘The clinical spectrum of sporadic and familial forms of frontotemporal dementia’. J Neurochem 138(S1): 631.Google Scholar
Mesulam, M.-M. (1982) ‘Slowly progressive aphasia without generalized dementia’. Ann Neurol 11(6): 592–8.Google Scholar
Mesulam, M. M. (2001) ‘Primary progressive aphasia’. Ann Neurol 49(4): 425–32.Google Scholar
Mesulam, M.-M. (2003) ‘Primary progressive aphasia – A language-based dementia’. N Engl J Med 349(16): 1535–42.Google Scholar
Harris, J. M., Gall, C., Thompson, J. C., et al. (2013) ‘Classification and pathology of primary progressive aphasia’. Neurology 81(21): 1832–9.CrossRefGoogle ScholarPubMed
Rohrer, J. D., Guerreiro, R., Vandrovcova, J., et al. (2009) ‘The heritability and genetics of frontotemporal lobar degeneration’. Neurology 73(18): 1451–6.CrossRefGoogle ScholarPubMed
Fletcher, P. D., Warren, J. D. (2011) ‘Semantic dementia: A specific network-opathy’. J Mol Neurosci 45(3): 629–36.CrossRefGoogle ScholarPubMed
Warrington, E. K. (1975) ‘The selective impairment of semantic memory’. Q J Exp Psychol 27(4): 635–57.Google Scholar
Rohrer, J. D., Knight, W. D., Warren, J. E., et al. (2008) ‘Word-finding difficulty: A clinical analysis of the progressive aphasias’. Brain 131(Pt 1): 838.Google Scholar
Rohrer, J. D., Warren, J. D., Modat, M., et al. (2009) ‘Patterns of cortical thinning in the language variants of frontotemporal lobar degeneration’. Neurology 72(18): 1562–9.Google Scholar
Chan, D., Anderson, V., Pijnenburg, Y., et al. (2009) ‘The clinical profile of right temporal lobe atrophy’. Brain 132(5): 1287–98.Google Scholar
Thompson, S. A., Patterson, K., Hodges, J. R. (2003) ‘Left/right asymmetry of atrophy in semantic dementia: Behavioral-cognitive implications’. Neurology 61(9): 1196–203.Google Scholar
Rohrer, J. D., Rossor, M. N., Warren, J. D. (2010) ‘Syndromes of nonfluent primary progressive aphasia: A clinical and neurolinguistic analysis’. Neurology 75(7): 603–10.Google Scholar
Grossman, M., Moore, P., Grossman, M. (2005) ‘A longitudinal study of sentence comprehension difficulty in primary progressive aphasia’. J Neurol Neurosurg Psychiatry 76: 644–9.CrossRefGoogle ScholarPubMed
Frattali, C., Duffy, J. R., Litvan, I., et al. (2003) ‘Yes/no reversals as neurobehavioral sequela: A disorder of language, praxis, or inhibitory control?Eur J Neurol 10(1): 103–6.CrossRefGoogle ScholarPubMed
Snowden, J. S., Neary, D. (1993) ‘Progressive language dysfunction and lobar atrophy’. Dement Geriatr Cogn Disord 4(3–4): 226–31.CrossRefGoogle ScholarPubMed
Josephs, K. A., Duffy, J. R., Strand, E. A., et al. (2006) ‘Clinicopathological and imaging correlates of progressive aphasia and apraxia of speech’. Brain 129(6): 1385–98.Google Scholar
Rohrer, J. D., Caso, F., Mahoney, C., et al. (2013) ‘Patterns of longitudinal brain atrophy in the logopenic variant of primary progressive aphasia’. Brain Lang 127(2): 121–6.Google Scholar
Rohrer, J. D., Rossor, M. N., Warren, J. D. (2012) ‘Alzheimer’s pathology in primary progressive aphasia’. Neurobiol Aging 33(4): 744–52.Google Scholar
Mesulam, M.-M., Weintraub, S., Rogalski, E. J., et al. (2014) ‘Asymmetry and heterogeneity of Alzheimer’s and frontotemporal pathology in primary progressive aphasia’. Brain 137(Pt 4): 1176–92.CrossRefGoogle ScholarPubMed
Strong, M. J., Abrahams, S., Goldstein, L. H., et al. (2017) ‘Amyotrophic lateral sclerosis-frontotemporal spectrum disorder (ALS-FTSD): Revised diagnostic criteria’. Amyotroph Lateral Scler Frontotemporal Degener 18(3–4): 153–74.CrossRefGoogle ScholarPubMed
Josephs, K. A., Whitwell, J. L., Murray, M. E., et al. (2013) ‘Corticospinal tract degeneration associated with TDP-43 type C pathology and semantic dementia’. Brain 136(Pt 2): 455–70.Google Scholar
Graham, N. L., Bak, T. H., Hodges, J. R. (2003) ‘Corticobasal degeneration as a cognitive disorder’. Mov Disord 18(11): 1224–32.CrossRefGoogle ScholarPubMed
Josephs, K. A., Boeve, B. F., Duffy, J. R., et al. (2005) ‘Atypical progressive supranuclear palsy underlying progressive apraxia of speech and nonfluent aphasia’. Neurocase 11(4): 283–96.Google Scholar
Josephs, K. A., Duffy, J. R. (2008) ‘Apraxia of speech and nonfluent aphasia: A new clinical marker for corticobasal degeneration and progressive supranuclear palsy’. Curr Opin Neurol 21(6): 688–92.Google Scholar
Snowden, J. S., Adams, J., Harris, J., et al. (2015) ‘Distinct clinical and pathological phenotypes in frontotemporal dementia associated with MAPT, PGRN and C9orf72 mutations’. Amyotroph Lateral Scler Frontotemporal Degener 16(7–8): 497505.Google Scholar
Tolboom, N., Koedam, E. L. G. E., Schott, J. M., et al. (2010) ‘Dementia mimicking Alzheimerʼs disease owing to a tau mutation: CSF and PET findings’. Alzheimer Dis Assoc Disord 24(3): 1.Google Scholar
Momeni, P., Wickremaratchi, M. M., Bell, J., et al. (2010) ‘Familial early onset frontotemporal dementia caused by a novel S356T MAPT mutation, initially diagnosed as schizophrenia’. Clinic Neurol Neurosurg 112(10): 917–20.Google Scholar
Benussi, A., Padovani, A., Borroni, B. (2015) ‘Phenotypic heterogeneity of monogenic frontotemporal dementia’. Front Aging Neurosci 7: 171.CrossRefGoogle ScholarPubMed
Gass, J., Cannon, A., Mackenzie, I. R., et al. (2006) ‘Mutations in progranulin are a major cause of ubiquitin-positive frontotemporal lobar degeneration’. Hum Mol Genet 15(20): 29883001.Google Scholar
van Swieten, J. C., Heutink, P. (2008) ‘Mutations in progranulin (GRN) within the spectrum of clinical and pathological phenotypes of frontotemporal dementia’. Lancet Neurol 7(10): 965–74.Google Scholar
Le Ber, I. (2013) ‘Genetics of frontotemporal lobar degeneration: An up-date and diagnosis algorithm’. Rev Neurolo (Paris) 169(10): 811–9.Google Scholar
Le Ber, I., Camuzat, A., Hannequin, D., et al. (2008) ‘Phenotype variability in progranulin mutation carriers: A clinical, neuropsychological, imaging and genetic study’. Brain 131(3): 732–46.Google Scholar
Momeni, P., DeTucci, K., Straub, R. E., et al. (2010) ‘Progranulin (GRN) in two siblings of a Latino family and in other patients with schizophrenia’. Neurocase 16(3): 273–9.Google Scholar
Siuda, J., Fujioka, S., Wszolek, Z. K. (2014) ‘Parkinsonian syndrome in familial frontotemporal dementia’. Parkinsonism Relat Disord 20(9): 957–64.CrossRefGoogle ScholarPubMed
Beck, J., Poulter, M., Hensman, D., et al. (2013) ‘Large C9orf72 hexanucleotide repeat expansions are seen in multiple neurodegenerative syndromes and are more frequent than expected in the UK population’. Am J Hum Genet 92(3): 345–53.Google Scholar
Snowden, J. S., Rollinson, S., Thompson, J. C., et al. (2012) ‘Distinct clinical and pathological characteristics of frontotemporal dementia associated with C9ORF72 mutations’. Brain 135(Pt 3): 693708.Google Scholar
Mahoney, C. J., Beck, J., Rohrer, J. D., et al. (2012) ‘Frontotemporal dementia with the C9ORF72 hexanucleotide repeat expansion: Clinical, neuroanatomical and neuropathological features’. Brain 135(3): 736–50.CrossRefGoogle ScholarPubMed
Boeve, B. F., Boylan, K. B., Graff-Radford, N. R., et al. (2012) ‘Characterization of frontotemporal dementia and/or amyotrophic lateral sclerosis associated with the GGGGCC repeat expansion in C9ORF72’. Brain 135(3): 765–83.Google Scholar
Turner, M. R., Al-Chalabi, A., Chio, A., et al. (2017) ‘Genetic screening in sporadic ALS and FTD’. J Neurol Neurosurg Psychiatry 88(12): 1042–4.Google Scholar
Merrilees, J. (2007) ‘A model for management of behavioral symptoms in frontotemporal lobar degeneration’. Alzheimer Dis Assoc Disord 21(4): S64–9.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×