Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-16T12:07:44.514Z Has data issue: false hasContentIssue false

2 - Nonlinear dynamics in biochemical and biophysical systems: from enzyme kinetics to epilepsy

Published online by Cambridge University Press:  14 August 2009

Jan Walleczek
Affiliation:
Stanford University, California
Get access

Summary

Introduction

Biological systems provide many examples of well-studied, self-organized nonlinear dynamical behavior including biochemical oscillations, cellular or tissue-level oscillations or even dynamical diseases (Goldbeter, 1996). The latter include such phenomena as cardiac arrhythmias, Parkinson's disease and epilepsy. Part of the reason for progress in understanding these phenomena has been the willingness of investigators to communicate and share insights across disciplinary boundaries, even when this communication is hampered by differing jargon or concepts unfamiliar to the nonexpert. The common language of nonlinear systems theory has helped to facilitate this cross-disciplinary conversation as well as to provide a new definition of what it means to say that two things are dynamically ‘similar’ or even ‘the same’.

In this chapter, we compare the dynamics of a well-studied biochemical oscillator, the peroxidase-oxidase reaction, with that of epilepsy, a dynamical disease (Milton and Black, 1995). We are so accustomed to the normal way of reasoning in science that it seems wrong, somehow, to point out the similarities between, on the one hand, the oscillations in substrate concentration during an enzyme-catalyzed reaction and, on the other, the regular oscillations in the electroencephalography (EEG) signal observed during certain types of epileptic seizure. While these two systems could not be more different in terms of their material nature, they are actually quite similar dynamically.

Type
Chapter
Information
Self-Organized Biological Dynamics and Nonlinear Control
Toward Understanding Complexity, Chaos and Emergent Function in Living Systems
, pp. 44 - 65
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×