Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-q6k6v Total loading time: 0 Render date: 2024-07-08T10:43:15.591Z Has data issue: false hasContentIssue false

17 - Control and perturbation of wave propagation in excitable systems

Published online by Cambridge University Press:  14 August 2009

Jan Walleczek
Affiliation:
Stanford University, California
Get access

Summary

Introduction

A physicist who wants to get a rough estimate of the acoustics of a concert hall just claps his hands and listens to the echoes. With this simple experiment he can obtain valuable information from the acoustic answer of the hall (at least if his ears are well trained). In more technical terms, one perturbs an unknown system with a very short pulse that in the ideal case would be a delta-function describing a perturbation of infintesimal short duration. Regardless of its specific nature, external perturbations belong to the most important methods for analyzing unknown systems. In this context, the perturbation by a short pulse is only one example for enforcing a characteristic answer. Other approaches include periodic perturbations where systematic variations of amplitude and frequency open ample possibilities to interrogate the system.

Although external perturbations have long proven to be a valuable tool for science and engineering, many experiments on novel systems studied in young emerging fields of science are dedicated to pure observation as a starting point. Investigations on spatial pattern formation in chemical and biological systems are an excellent example for this characteristic development of a young branch of experimental science (Field and Burger, 1985). Most of the current research activities in this field were triggered by the early work of Zhabotinsky and Winfree, who reported the observation of chemical waves in a reaction system that today is known as the Belousov-Zhabotinsky (BZ) reaction (Zaikin and Zhabotinsky, 1970; Winfree, 1972).

Type
Chapter
Information
Self-Organized Biological Dynamics and Nonlinear Control
Toward Understanding Complexity, Chaos and Emergent Function in Living Systems
, pp. 387 - 408
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×