Skip to main content Accessibility help
×
Home
  • Cited by 4
  • Print publication year: 2010
  • Online publication date: August 2011

Chapter 10 - Psychotomimetic effects of PCP, LSD, and Ecstasy: pharmacological models of schizophrenia?

from Section 3 - Organic syndromes of schizophrenia

Related content

Powered by UNSILO

References

1. Maddox V. H. (1981). The historical development of phencyclidine. In PCP (Phencyclidine): Historical and Current Perspectives, Domino E. F. (Ed.). Ann Arbor, Michigan: NPP Books, pp. 1–8.
2. Johnstone M., Evans V., Baigel S. Sernyl (Cl-395) in clinical anaesthesia. B J Anaesth, 1959. 31(10):433–9.
3. Cook C. E., Brine D. R., Jeffcoat A. R., et al. Phencyclidine disposition after intravenous and oral doses. Clin Pharm Therapeutics, 1982. 31(5):625–34.
4. Griefenstein F. E., Yoshitake J., Devault M., et al. A study of a 1-Aryl cyclo hexyl amine for anesthesia. Anesth Analg, 1958. 37(5):283–94.
5. Collins V. J., Gorospe C. A., Rovenstine E. A. Intravenous nonbarbiturate, nonnarcotic analgesics: preliminary studies. Cyclohexylamines. Anesth Analg, 1960. 39:302–6.
6. Meyer J. S., Greifenstein F., Devault M. A new drug causing symptoms of sensory deprivation – neurological, electroencephalographic and pharmalogical effects of sernyl. J Nerv Ment Dis, 1959. 129(1):54–61.
7. Kothary S. P., Zsigmond E. K. A double-blind study of the effective antihallucinatory doses of diazepam prior to ketamine anesthesia. Clin Pharmacol Therapeutics, 1977. 21:108–9.
8. Helrich M., Atwood J. M. Modification of sernyl anesthesia with haloperidol. Anesth Analg, 1964. 43(5):471–4
9. Petersen R. C., Stillman R. C. (1978). Phencyclidine: an overview. In Phencyclidine (PCP) Abuse: An Appraisal, vol Monograph 21. Petersen R. C. and Stillman R. C. (Eds.). Rockville, Maryland: National Institute on Drug Abuse, pp. 1–17.
10. Sioris L. J., Krenzelok E. P. Phencyclidine intoxication – literature review. Am J Hosp Pharm, 1978. 35(11):1362–7.
11. Newmeyer J. A. The epidemiology of PCP use in the late 1970s. J Psych Drugs, 1980. 12(3–4):211–15.
12. Stillman R., Petersen R. C. Paradox of phencyclidine (PCP) abuse. Annals of Intern Med, 1979. 90(3):428–30.
13. Siegel R. K. (1978). Phencyclidine and ketamine intoxication: a study of four populations of recreational users. In Phencyclidine (PCP) Abuse: An Appraisal, vol Monograph 21, Petersen R. C. and Stillman R. C. (Eds.). Rockville, Maryland: National Institute on Drug Abuse, pp. 119–47.
14. Pearlson G. D. Psychiatric and medical syndromes associated with phencyclidine (PCP) abuse. Johns Hopkins Med J, 1981. 148(1):25–33.
15. Lerner S. E., Burns R. S. (1978). Phencyclidine use among youth: history, epidemiology, and acute and chronic intoxication. In Phencyclidine (PCP) abuse: An appraisal, vol Monograph 21, Petersen R. C. and Stillman R. C. (Eds.). Rockville, Maryland: National Institute on Drug Abuse, pp. 66–118.
16. Kay J., Tasman A. (2006). Essentials of Psychiatry. West Sussex: John Wiley and Sons.
17. Yesavage J. A., Freman A. M. Acute phencyclidine (PCP) intoxication – psychopathology and prognosis. J Clin Psychol, 1978. 39(8):664–66.
18. Liden C. B., Lovejoy F. H., Costello C. E. Phencyclidine – 9 cases of poisoning. JAMA, 1975. 234(5):513–16.
19. Burns R. S., Lerner S. E., Corrado R., et al. Phencyclidine – states of acute intoxication and fatalities. West J Med, 1975. 123(5):345–9.
20. Fauman B., Baker F., Coppleson L. W., et al. Psychosis induced by phencyclidine. Concepts, Comp and Config, 1975. 4(3):223–5.
21. Fauman M. A., Fauman B. (1978). The psychiatric aspects of chronic phencyclidine use: a study of chronic PCP users. In Phencyclidine (PCP) Abuse: An Appraisal, vol Monograph 21, Petersen R. C. and Stillman R. C. (Eds.). Rockville, Maryland: National Institute on Drug Abuse, pp. 183–200.
22. Luisada P. V. (1978). The phencyclidine psychosis: phenomenology and treatment. In Phencyclidine (PCP) Abuse: An Appraisal, vol Monograph 21, Petersen R. C. and Stillman R. C. (Eds.). Rockville, Maryland: National Institute on Drug Abuse, pp. 241–53.
23. Erard R., Luisada P. V., Peele R. The PCP psychosis – prolonged intoxication or drug-precipitated functional illness. J Psychedelic Drugs, 1980. 12(3–4):235–51.
24. Yago K. B., Pitts F. N., Burgoyne R. W., et al. The urban epidemic of phencyclidine (PCP) use – clinical and laboratory evidence from a public psychiatric-hospital emergency service. J Clin Psychiatry, 1981. 42(5):193–6.
25. Allen R. M., Young S. J. Phencyclidine-induced psychosis. Am J Psychiatry, 1978. 135(9):1081–4.
26. McCarron M. M., Schulze B. W., Thompson G. A., et al. Acute phencyclidine intoxication – incidence of clinical findings in 1,000 cases. Annals of Emerg Med, 1981. 10(5):237–42.
27. Luisada P. V., Brown B. I. Clinical management of phencyclidine psychosis. Clin Toxicol, 1976. 9(4):539–45.
28. Burns R. S., Lerner S. E. Perspectives – acute phencyclidine intoxication. Clin Toxicol, 1976. 9(4):477–501.
29. Rainey J. M., Crowder M. K. Prevalence of phencyclidine in street drug preparations. N Engl J Med, 1974. 290(8):466–7.
30. Wright H. H., Cole E. A., Batey S. R., et al. Phencyclidine-induced psychosis – 8-year follow-up of 10 cases. South Med J, 1988. 81(5):565–7.
31. Rosse R. B., Collins J. P., Faymccarthy M., et al. Phenomenological comparison of the idiopathic psychosis of schizophrenia and drug-induced cocaine and phencyclidine psychoses – a retrospective study. Clin Neuropharm, 1994. 17(4):359–69.
32. Gwirtsman H. E., Wittkop W., Gorelick D., et al. Phencyclidine intoxication – incidence, clinical-patterns and course of treatment. Res Comm in Psych Psych and Behav, 1984. 9(4):405–10.
33. Giannini A. J., Eighan M. S., Loiselle R. H., et al. Comparison of haloperidol and chlorpromazine in the treatment of phencyclidine psychosis. J Clin Pharmacol, 1984. 24(4):202–4.
34. Carls K. A., Ruehter V. L. An evaluation of phencyclidine (PCP) psychosis: a retrospective analysis at a state facility. Am J Drug Alcohol Abuse, 2006. 32(4):673–8.
35. Giannini A. J., Nageotte C., Loiselle R. H., et al. Comparison of chlorpromazine, haloperidol and pimozide in the treatment of phencyclidine psychosis – D2 receptor specificity. J Toxicol Clin Toxicol, 1984. 22(6):573–9.
36. Luby E. D., Cohen B. D., Rosenbaum G., et al. Study of a new schizophrenomimetic drug – sernyl. Arch Neurol Psychiatry, 1959. 81(3):363–9.
37. Levy L., Cameron D. E., Aitken R. C. B. Observation on 2 psychotomimetic drugs of piperidine derivation-Ci-395 (sernyl) and Ci-400. Am J Psychiatry, 1960. 116(9):843–4.
38. Itil T., Keskiner A., Kiremitci N., et al. Effect of phencyclidine in chronic schizophrenics. Can Psychiatr Assoc J, 1967. 12(2):209–12.
39. Domino E. F., Luby E. D. (1981). Abnormal mental states induced by phencyclidine as a model of schizophrenia. In PCP (Phencyclidine): Historical and Current Perspectives, Domino E. F. (Ed.). Ann Arbor, Michigan: NPP Books, pp. 401–19.
40. Ban T. A., Lohrenz J. J., Lehmann H. E. Observations on the action of sernyl – a new psychotropic drug. Can Psychiatr Assoc J., 1961. 6(3):150–7.
41. Rosenbaum G., Cohen B. D., Luby E. D., et al. Comparison of sernyl with other drugs – simulation of schizophrenic performance with sernyl, Lsd-25, and amobarbital (amytal) sodium. 1. Attention, motor function, and proprioception. Arch of Gen Psychiatry, 1959. 1(6):651–6.
42. Davies B. M., Beech H. R. The effect of 1-arylcyclohexylamine (sernyl) on 12 normal volunteers. J Ment Sci, 1960. 106(444):912–24.
43. Cohen B. D., Rosenbaum G., Gottlieb J. S., et al. Comparison of phencyclidine hydrochloride (sernyl) with other drugs – simulation of schizophrenic performance with phencyclidine hydrochloride (sernyl), lysergic-acid diethylamide (Lsd-25), and amobarbital (amytal) sodium. 2. Symbolic and sequential thinking. Arch of Gen Psychiatry, 1962. 6(5):395–401.
44. Bakker C. B., Amini F. B. Observations on the psychotomimetic effects of sernyl. Compr Psychiatry, 1961. 2:269–80.
45. Braff D. L., Geyer M. A., Swerdlow N. R. Human studies of prepulse inhibition of startle: normal subjects, patient groups, and pharmacological studies. Psychopharmacology, 2001. 156(2–3):234–58.
46. Domino E. F., Chodoff P., Corssen G. Pharmacologic effects of Cl-581 a new dissociative anesthetic in man. Clin Pharmacol Therapeutics, 1965. 6(3):279–90
47. Wolff K., Winstock A. R. Ketamine – from medicine to misuse. CNS Drugs, 2006. 20(3):199–218.
48. White P. F., Way W. L., Trevor A. J. Ketamine – its pharmacology and therapeutic uses. Anesthesiology, 1982. 56(2):119–36.
49. Idvall J., Ahlgren I., Aronsen K. F., et al. Ketamine infusions – pharmacokinetics and clinical effects. Br J Anaesth, 1979. 51(12):1167–73.
50. Bennett J. A., Bullimore J. A. Use of ketamine hydrochloride anesthesia for radiotherapy young children. Br J Anaesth, 1973. 45(2):197–201.
51. Slogoff S., Allen G. W., Wessels J. V., et al. Clinical experience with subanesthetic ketamine. Anesth Analg, 1974. 53(3):354–8.
52. White J. M., Ryan C. F. Pharmacological properties of ketamine. Drug Alcohol Rev, 1996. 15(2):145–55.
53. Reier C. E. Ketamine – dissociative agent or hallucinogen. N Engl J Med, 1971. 284(14):791–2
54. Collier B. B. Ketamine and conscious mind. Anaesthesia, 1972. 27(2):120–34
55. Modvig K. M., Nielsen S. F. Psychological changes in children after anesthesia – comparison between halothane and ketamine. Acta Anaesthesiol Scand, 1977. 21(6):541–4.
56. Javitt D. C., Zukin S. R. Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry, 1991. 148(10):1301–8.
57. Vincent J. P., Kartalovski B., Geneste P., et al. Interaction of phencyclidine (angel dust) with a specific receptor in rat-brain membranes. Proc Natl Acad Sci USA, 1979. 76(9):4678–82.
58. Hampton R. Y., Medzihradsky F., Woods J. H., et al. Stereospecific binding of H-3-labeled phencyclidine in brain membranes. Life Sci, 1982. 30(25):2147–54.
59. FDA Drug Bulletin: Ketamine abuse. FDA Drug Bulletin, 1979. 9(4):24.
60. Dotson J. W., Ackerman D. L., West L. J. Ketamine abuse. J Drug Issues, 1995. 25(4):751–7.
61. Stafford P. (1992). Psychedelics Encyclopedia. Berkeley, California: Ronin Publishing.
62. Maxwell J. C. Party drugs: properties, prevalence, patterns, and problems. Subst Use Misuse, 2005. 40(9–10):1203–40.
63. Jansen K. L. R. A review of the nonmedical use of ketamine: use, users and consequences. J Psychoactive Drugs, 2000. 32(4):419–33.
64. Weiner A. L., Vieira L., McKay C. A., et al. Ketamine abusers presenting to the emergency department: a case series. J Emerg Med, 2000. 18(4):447–51.
65. Dillon P., Copeland J., Jansen K. Patterns of use and harms associated with non-medical ketamine use. Drug Alcohol Depend, 2003. 69(1):23–8.
66. Uhlhaas P. J., Millard I., Muetzelfeldt L., et al. Perceptual organization in ketamine users: preliminary evidence of deficits on night of drug use but not 3 days later. J Psychopharmacol, 2007. 21(3):347–52.
67. Curran H. V., Monaghan L. In and out of the K-hole: a comparison of the acute and residual effects of ketamine in frequent and infrequent ketamine users. Addiction, 2001. 96(5):749–60.
68. Curran H. V., Morgan C. Cognitive, dissociative and psychotogenic effects of ketamine in recreational users on the night of drug use and 3 days later. Addiction, 2000. 95(4):575–90.
69. Morgan C. J. A., Riccelli M., Maitland C. H., et al. Long-term effects of ketamine: evidence for a persisting impairment of source memory in recreational users. Drug Alcohol Depend, 2004. 75(3):301–8.
70. Carpenter W. T. The schizophrenia ketamine challenge study debate. Biol Psychiatry, 1999. 46(8):1081–91.
71. Kudoh A., Katagai H., Takazawa T. Anesthesia with ketamine, propofol, and fentanyl decreases the frequency of postoperative psychosis emergence and confusion in schizophrenic patients. J Clin Anesth, 2002. 14(2):107–10.
72. Lahti A. C., Holcomb H. H., Medoff D. R., et al. Ketamine activates psychosis and alters limbic blood-flow in schizophrenia. Neuroreport, 1995. 6(6):869–72.
73. Malhotra A. K., Pinals D. A., Adler C. M., et al. Ketamine-induced exacerbation of psychotic symptoms and cognitive impairment in neuroleptic-free schizophrenics. Neuropsychopharmacology, 1997. 17(3):141–50.
74. Malhotra A. K., Adler C. M., Kennison S. D., et al. Clozapine blunts N-methyl-D-aspartate antagonist-induced psychosis: a study with ketamine. Biol Psychiatry, 1997. 42(8):664–8.
75. Morgan C. J. A., Curran H. V. Acute and chronic effects of ketamine upon human memory: a review. Psychopharmacology, 2006. 188(4):408–24.
76. Ghoneim M. M., Hinrichs J. V., Mewaldt S. P., et al. Ketamine – behavioral effects of subanesthetic doses. J Clin Psychopharmacol, 1985. 5(2):70–7.
77. Krystal J. H., Karper L. P., Seibyl J. P., et al. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry, 1994. 51(3):199–214.
78. Malhotra A. K., Pinals D. A., Weingartner H., et al. NMDA receptor function and human cognition: the effects of ketamine in healthy volunteers. Neuropsychopharmacology, 1996. 14(5):301–7.
79. Newcomer J. W., Farber N. B., Jevtovic-Todorovic V., et al. Ketamine-induced NMDA receptor hypofunction as a model of memory impairment and psychosis. Neuropsychopharmacology, 1999. 20(2):106–18.
80. Krystal J. H., Perry E. B., Gueorguieva R., et al. Comparative and interactive human psychopharmacologic effects of ketamine and amphetamine. Implications for glutamatergic and dopaminergic model psychoses and cognitive function. Arch Gen Psychiatry, 2005. 62(9):985–95.
81. Radant A. D., Bowdle T. A., Cowley D. S., et al. Does ketamine-mediated N-methyl-D-aspartate receptor antagonism cause schizophrenialike oculomotor abnormalities? Neuropsychopharmacology, 1998. 19(5):434–44.
82. Hetem L. A. B., Danion J. M., Diemunsch P., et al. Effect of a subanesthetic dose of ketamine on memory and conscious awareness in healthy volunteers. Psychopharmacology, 2000. 152(3):283–8.
83. Lofwall M. R., Griffiths R. R., Mintzer M. Z. Cognitive and subjective acute dose effects of intramuscular ketamine in healthy adults. Clin Psychopharmacol, 2006. 14(4):439–49.
84. Honey G. D., O'Loughlin C., Turner D. C., et al. The effects of a subpsychotic dose of ketamine on recognition and source memory for agency: implications for pharmacological modelling of core symptoms of schizophrenia. Neuropsychopharmacology, 2006. 31(2):413–23.
85. Fletcher P. C., Honey G. D. Schizophrenia, ketamine and cannabis: evidence of overlapping memory deficits. Trends a Cogn Sci, 2006. 10(4):167–74.
86. Adler C. M., Goldberg T. E., Malhotra A. K., et al. Effects of ketamine on thought disorder, working memory, and semantic memory in healthy volunteers. Biol Psychiatry, 1998. 43(11):811–16.
87. Honey R. A. E., Turner D. C., Honey G. D., et al. Subdissociative dose ketamine produces a deficit in manipulation but not maintenance of the contents of working memory. Neuropsychopharmacology, 2003. 28(11):2037–44.
88. Krystal J. H., D'Souza D. C., Karper L. P., et al. Interactive effects of subanesthetic ketamine and haloperidol in healthy humans. Psychopharmacology, 1999. 145(2):193–204.
89. Krystal J. H., Karper L. P., Bennett A., et al. Interactive effects of subanesthetic ketamine and subhypnotic lorazepam in humans. Psychopharmacology, 1998. 135(3):213–29.
90. Morgan C. J. A., Mofeez A., Brandner B., et al. Ketamine impairs response inhibition and is positively reinforcing in healthy volunteers: a dose-response study. Psychopharmacology, 2004. 172(3):298–308.
91. Harborne G. C., Watson F. L., Healy D. T., et al. The effects of sub-anaesthetic doses of ketamine on memory, cognitive performance and subjective experience in healthy volunteers. J Psychopharmacol, 1996. 10(2):134–40.
92. Ragland J. D., Gur R. C., Valdez J., et al. Event-related fMRI of frontotemporal activity during word encoding and recognition in schizophrenia. Am J Psychiatry, 2004. 161(6):1004–15.
93. Hofer A., Weiss E. M., Golaszewski S. M., et al. Neural correlates of episodic encoding and recognition of words in unmedicated patients during an acute episode of schizophrenia: a functional MRI study. Am J Psychiatry, 2003. 160(10):1802–8.
94. Glahn D. C., Ragland J. D., Abramoff A., et al. Beyond hypofrontality: a quantitative meta-analysis of functional neuroimaging studies of working memory in schizophrenia. Hum Brain Mapp, 2005. 25(1):60–9.
95. Tamminga C. A., Thaker G. K., Buchanan R., et al. Limbic system abnormalities identified in schizophrenia using positron emission tomography with fluorodeoxyglucose and neocortical alterations with deficit syndrome. Arch Gen Psychiatry, 1992. 49(7):522–30.
96. Jessen F., Scheef L., Germeshausen L., et al. Reduced hippocampal activation during encoding and recognition of words in schizophrenia patients. Am J Psychiatry, 2003. 160(7):1305–12.
97. Vollenweider F. X., Leenders K. L., Oye I., et al. Differential psychopathology and patterns of cerebral glucose utilisation produced by (S)- and (R)-ketamine in healthy volunteers using positron emission tomography (PET). Eur Neuropsychopharmacol, 1997. 7(1):25–38.
98. Holcomb H. H., Lahti A. C., Medoff D. R., et al. Effects of noncompetitive NMDA receptor blockade on anterior cingulate cerebral blood flow in volunteers with schizophrenia. Neuropsychopharmacology, 2005. 30(12):2275–82.
99. Honey G. D., Honey R. A. E., O'Loughlin C., et al. Ketamine disrupts frontal and hippocampal contribution to encoding and retrieval of episodic memory: an fMRI study. Cereb Cortex, 2005. 15(6):749–59.
100. Honey R. A. E., Honey G. D., O'Loughlin C., et al. Acute ketamine administration alters the brain responses to executive demands in a verbal working memory task: an fMRI study. Neuropsychopharmacology, 2004. 29(6):1203–14.
101. Fu C. H. Y., Abel K. M., Allin M. P. G., et al. Effects of ketamine on prefrontal and striatal regions in an overt verbal fluency task: a functional magnetic resonance imaging study. Psychopharmacology, 2005. 183(1):92–102.
102. Langsjo J. W., Salmi E., Kaisti K. K., et al. Effects of subanesthetic ketamine on regional cerebral glucose metabolism in humans. Anesthesiology, 2004. 100(5):1065–71.
103. Langsjo J. W., Kaisti K. K., Aalto S., et al. Effects of subanesthetic doses of ketamine on regional cerebral blood flow, oxygen consumption, and blood volume in humans. Anesthesiology, 2003. 99(3):614–23.
104. Stone J. M., Erlandsson K., Arstad E., et al. Ketamine displaces the novel NMDA receptor SPET probe [I-123]CNS-1261 in humans in vivo. Nucl Med Biol, 2006. 33(2):239–43.
105. van Berckel B. N. M., Oranje B., van Ree J. M., et al. The effects of low dose ketamine on sensory gating, neuroendocrine secretion and behavior in healthy human subjects. Psychopharmacology, 1998. 137(3):271–81.
106. Oranje B., Gispen-de Wied C. C., Verbaten M. N., et al. Modulating sensory gating in healthy volunteers: the effects of ketamine and haloperidol. Biol Psychiatry, 2002. 52(9):887–95.
107. Heekeren K., Neukirch A., Daumann J., et al. Prepulse inhibition of the startle reflex and its attentional modulation in the human S-ketamine and N,N-dimethyltryptamine (DMT) models of psychosis. J Psychopharmacol, 2007. 21(3):312–20.
108. Abel K. M., Allin M. P. G., Hemsley D. R., et al. Low dose ketamine increases prepulse inhibition in healthy men. Neuropharmacology, 2003. 44(6):729–37.
109. Duncan E. J., Madonick S. H., Parwani A., et al. Clinical and sensorimotor gating effects of ketamine in normals. Neuropsychopharmacology, 2001. 25(1):72–83.
110. Umbricht D., Schmid L., Koller R., et al. Ketamine-induced deficits in auditory and visual context-dependent processing in healthy volunteers – Implications for models of cognitive deficits in schizophrenia. Arch Gen Psychiatry, 2000. 57(12):1139–47.
111. Sauer H., Kreitschmann-Andermahr I., Gaser E., et al. Ketamine reduces the neuromagnetic mismatch reaction. Schizophr Res, 2000. 41(1):148–.
112. O'Brien R., Cohen S. (1984). Encyclopedia of Drug Abuse. New York: Facts on File.
113. Aghajanian G. K., Marek G. J. Serotonin model of schizophrenia: emerging role of glutamate mechanisms. Brain Res Rev, 2000. 31(2–3):302–12.
114. Henderson L. A., Glass W. J. (1998). LSD: Still with Us After All These Years. San Francisco: Jossey-Bass Publishers.
115. Grinspoon L., Bakalar J. B. (1998). Psychedelic Drugs Reconsidered. New York: The Lindesmith Center.
116. Houston J. (1969). Phenomenology of the psychedelic experience. In Psychedelic Drugs, Hicks R. E. and Fink P. J. (Eds.). New York: Grune & Stratton, pp. 1–7.
117. Katz M. M., Waskow I. E., Olsson J. Characterizing psychological state produced by LSD. J Abnorm Psychol, 1968. 73(1):1–14
118. Stone A. L., O'Brien M. S., De la Torre A., et al. Who is becoming hallucinogen dependent soon after hallucinogen use starts? Drug Alcohol Depend, 2007. 87(2–3):153–63.
119. Siegel R. K., West L. J. (1975). Hallucinations: Behavior, experience, and theory. New York: John Wiley & Sons.
120. Halpern J. H. The use of hallucinogens in the treatment of addiction. Addict Res, 1996. 4(2):177–89.
121. Cohen S. Lysergic-acid diethylamide – side-effects and complications. J Nerv Ment Dis, 1960. 130(1):30–40.
122. Cholden L. S., Kurland A., Savage C. Clinical reactions and tolerance to LSD in chronic schizophrenia. J Nerv Ment Dis, 1955. 122(3):211–21.
123. Fink M., Simeon J., Haque W., et al. Prolonged adverse reactions to LSD in psychotic subjects. Arch Gen Psychiatry, 1966. 15(5):450.
124. Abraham H. D., Aldridge A. M. Adverse consequences of lysergic-acid diethylamide. Addiction, 1993. 88(10):1327–34.
125. Strassman R. J. Adverse reactions to psychedelic drugs – a review of the literature. J Nerv Ment Dis, 1984. 172(10):577–95.
126. Glass G. S., Bowers M. B. Chronic psychosis associated with long-term psychotomimetic drug abuse. Arch Gen Psychiatry, 1970. 23(2):97.
127. Abraham H. D., Aldridge A. M., Gogia P. The psychopharmacology of hallucinogens. Neuropsychopharmacology, 1996. 14(4):285–98.
128. Hays P., Tilley J. R. Differences between LSD psychosis and schizophrenia. Can Psychiatr Assoc J, 1973. 18(4):331–3.
129. Sedman G., Kenna J. C. The use of LSD-25 as a diagnostic aid in doubtful cases of schizophrenia. Br J Psychiatry, 1965. 111(470):96–100.
130. Vardy M. M., Kay S. R. LSD psychosis or LSD-induced schizophrenia – a multimethod inquiry. Arch Gen Psychiatry, 1983. 40(8):877–83.
131. Ungerleider J.T., Fisher D. D., Fuller M. Dangers of LSD. Analysis of 7 months’ experience in a university hospital's psychiatric service. JAMA, 1966. 197(6):389–92
132. Bowers M. B., Swigar M. E. Vulnerability to psychosis associated with hallucinogen use. Psychiatr Res, 1983. 9(2):91–7.
133. Potvin S., Stip E., Roy J-Y. Toxic psychoses as pharmacological models of schizophrenia. Curr Psychiatr Rev, 2005. 1:23–32.
134. Langs R. J., Barr H. L. Lysergic acid diethylamide (Lsd-25) and schizophrenic reactions – a comparative study. J Nerv Ment Dis, 1968. 147(2):163.
135. Hollister L. E. Clinical syndrome from LSD-25 compared with epinephrine. Dis Nerv Syst, 1964. 25(7):427.
136. Breier A. Serotonin, schizophrenia and antipsychotic drug-action. Schizophr Res, 1995. 14(3):187–202.
137. Riba J., Rodriguez-Fornells A., Barbanoj M. J. Effects of ayahuasca on sensory and sensorimotor gating in humans as measured by P50 suppression and prepulse inhibition of the startle reflex, respectively. Psychopharmacology, 2002. 165(1):18–28.
138. Umbricht D., Koller R., Vollenweider F. X., et al. Mismatch negativity predicts psychotic experiences induced by NMDA receptor antagonist in healthy volunteers. Biol Psychiatry, 2002. 51(5):400–6.
139. Umbricht D., Vollenweider F. X., Schmid L., et al. Effects of the 5-HT2A agonist psilocybin on mismatch negativity generation and AX-continuous performance task: implications for the neuropharmacology of cognitive deficits in schizophrenia. Neuropsychopharmacology, 2003. 28(1):170–81.
140. Gouzoulis-Mayfrank E., Heekeren K., Neukirch A., et al. Inhibition of return in the human 5HT(2A) agonist and NMDA antagonist model of psychosis. Neuropsychopharmacology, 2006. 31(2):431–41.
141. Halpern J. H., Pope H. G. Hallucinogen persisting perception disorder: what do we know after 50 years? Drug Alcohol Depend, 2003. 69(2):109–19.
142. AbiDargham A., Laruelle M., Charney D., et al. Serotonin and schizophrenia: a review. Drugs Today, 1996. 32(2):171–85.
143. Iqbal N., van Praag H. M. The role of serotonin in schizophrenia. Eur Neuropsychopharmacol., 1995. 5:11–23.
144. Amargos-Bosch M., Lopez-Gil X., Artigas F., et al. Clozapine and olanzapine, but not haloperidol, suppress serotonin efflux in the medial prefrontal cortex elicited by phencyclidine and ketamine. Intl J Neuropsychopharmacol, 2006. 9(5):565–73.
145. Lopez-Gil X., Babot Z., Amargos-Bosch M., et al. Clozapine and haloperidol differently suppress the MK-801-increased glutamatergic and serotonergic transmission in the medial prefrontal cortex of the rat. Neuropsychopharmacology, 2007. 32(10):2087–97.
146. Breese G. R., Knapp D. J., Moy S. S. Integrative role for serotonergic and glutamatergic receptor mechanisms in the action of NMDA antagonists: potential relationships to antipsychotic drug actions on NMDA antagonist responsiveness. Neurosci Biobehav Rev, 2002. 26(4):441–55.
147. Noda Y., Kamei H., Mamiya T., et al. Repeated phencyclidine treatment induces negative symptom-like behavior in forced swimming test in mice: imbalance of prefrontal serotonergic and dopaminergic functions. Neuropsychopharmacology, 2000. 23(4):375–87.
148. Martin P., Carlsson M. L., Hjorth S. Systemic PCP treatment elevates brain extracellular 5-HT: a microdialysis study in awake rats. Neuroreport, 1998. 9(13):2985–8.
149. Nichols C. D., Sanders-Bush E. A single dose of lysergic acid diethylamide influences gene expression patterns within the mammalian brain. Neuropsychopharmacology, 2002. 26(5):634–42.
150. Solowij N. Ecstasy (3,4-methylenedioxymethamphetamine). Curr Opin Psychiatry, 1993. 6:411–15.
151. Gamma A., Buck A., Berthold T., et al. 3,4-methylenedioxymethamphetamine (MDMA) modulates cortical and limbic brain activity as measured by [(H2O)-O-15]-PET in healthy humans. Neuropsychopharmacology, 2000. 23(4):388–95.
152. Parrott A. C. Human psychopharmacology of Ecstasy (MDMA): a review of 15 years of empirical research. Hum Psychopharmacol, 2001. 16(8):557–77.
153. Bialer P. A. Designer drugs in the general hospital. Psychiatr Clin North Am, 2002. 25(1):231–43.
154. World Health Organization. (1996). Amphetamine Like Stimulants. Report from the WHO meeting on amphetamines, MDMA and other psychostimulants. Geneva: WHO.
155. Cole J. C., Sumnall H. R. Altered states: the clinical effects of ecstasy. Pharmacol Therapeutics, 2003. 98(1):35–58.
156. Green A. R., Mechan A. O., Elliott J. M., et al. The pharmacology and clinical pharmacology of 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”). Pharmacol Rev, 2003. 55:463–508.
157. Landry M. J. MDMA: a review of epidemiologic data. J Psychoactive Drugs, 2002. 34(2):163–9.
158. Australian Institute of Health and Welfare. (2005). 2004 National Drug Strategy Household Survey: Detailed Findings. AIHW cat. no. PHE 66. Canberra: AIHW.
159. Australian Institute of Health and Welfare. (2002). 2001 National Drug Strategy Household Survey; First Results. AIHW cat. no. PHE 35. Canberra: AIHW.
160. Degenhardt L., Copeland J., Dillon P. Recent trends in the use of “club drugs”: an Australian review. Subst Use Misuse, 2005. 40(9–10):1241–56.
161. Lenton S., Boys A., Norcross K. Raves, drugs and experience: drug use by a sample of people who attend raves in Western Australia. Addiction, 1997. 92(10):1327–37.
162. Riley S. C. E., James C., Gregory D., et al. Patterns of recreational drug use at dance events in Edinburgh, Scotland. Addiction, 2001. 96(7):1035–47.
163. Schifano F. A bitter pill. Overview of ecstasy (MDMA, MDA) related fatalities. Psychopharmacology, 2004. 173(3–4):242–8.
164. Henry J. A., Jeffreys K. J., Dawling S. Toxicity and deaths from 3,4-methylenedioxymethamphetamine (Ecstasy). Lancet, 1992. 340(8816):384–7.
165. Schifano F., Oyefeso A., Corkery J., et al. Death rates from ecstasy (MDMA, MDA) and polydrug use in England and Wales 1996–2002. Hum Psychopharmacol, 2003. 18(7):519–24.
166. Schifano F., Corkery J., Deluca P., et al. Ecstasy (MDMA, MDA, MDEA, MBDB) consumption, seizures, related offences, prices, dosage levels and deaths in the UK (1994–2003). J Psychopharmacol, 2006. 20(3):456–63.
167. Solowij N., Hall W., Lee N. Recreational MDMA use in Sydney – a profile of ecstasy users and their experiences with the drug. Br J Addict, 1992. 87(8):1161–72.
168. Topp L., Hando J., Dillon P., et al. Ecstasy use in Australia: patterns of use and associated harm. Drug Alcohol Depend, 1999. 55(1–2):105–15.
169. Lieb R., Schuetz C. G., Pfister H., et al. Mental disorders in ecstasy users: a prospective-longitudinal investigation. Drug Alcohol Depend, 2002. 68(2):195–207.
170. Falck R. S., Carlson R. G., Wang J. C., et al. Psychiatric disorders and their correlates among young adult MDMA users in Ohio. J Psychoactive Drugs, 2006. 38(1):19–29.
171. Sumnell H. R., Cole J. C. Self-reported depressive symptomatology in community samples of polysubstance misusers who report Ecstasy use: a meta-analysis. J Psychopharmacol, 2005. 19(1):84–92.
172. Soar K., Turner J. J. D., Parrott A. C. Psychiatric disorders in Ecstasy (MDMA) users: a literature review focusing on personal predisposition and drug history. Hum Psychopharmacol, 2001. 16(8):641–5.
173. Landabaso M. A., Iraurgi I., Jimenez-Lerma J. M., et al. Ecstasy-induced psychotic disorder: six-month follow-up study. Eur Addiction Res, 2002. 8(3):133–40.
174. Gouzoulis E., Borchardt D., Hermle L. A case of toxic psychosis induced by Eve (3,4-Methylene-Dioxyethylam-Phetamine). Arch Gen Psychiatry, 1993. 50(1):75.
175. Schuler S. Early recognition and early intervention in drug-induced psychoses. Neurol Psychiatr Brain Res, 1998. 5(4):197–204.
176. Liechti M. E., Geyer M. A., Hell D., et al. Effects of MDMA (ecstasy) on prepulse inhibition and habituation of startle in humans after pretreatment with citalopram, haloperidol, or ketanserin. Neuropsychopharmacology, 2001. 24(3):240–52.
177. Vollenweider F. X., Remensberger S., Hell D., et al. Opposite effects of 3,4-methylenedioxymethamphetamine (MDMA) on sensorimotor gating in rats versus healthy humans. Psychopharmacology, 1999. 143(4):365–72.
178. Quednow B. B., Kuhn K. U., Hoenig K., et al. Prepulse inhibition and habituation of acoustic tartle response in male MDMA (‘ecstasy’) users, cannabis users, and healthy controls. Neuropsychopharmacology, 2004. 29(5):982–90.
179. Geyer M. A., Markou A. (2002). The role of preclinical models in the development of psychotropic drugs. In Neuropsychopharmacology: The Fifth Generation of Progress. Davis K. L., Charney D., Coyle J. T., and Nemeroff C. (Eds.). Philadelphia: Lippincott Williams & Wilkins, pp. 445–55.
180. O'Neill M. F., Shaw G. Comparison of dopamine receptor antagonists on hyperlocomotion induced by cocaine, amphetamine, MK-801 and the dopamine D-1 agonist C-APB in mice. Psychopharmacology (Berl), 1999. 145:237–25.
181. Russell R. W. (1964). Extrapolation from animals to man. In Animal Behavior and Drug Action. Steinberg H. (Ed.). Boston: Little, Brown, pp. 410–18.
182. Mathysse S. (1986). Animal models in psychiatric reasearch. In Progress in Brain Research, vol 65, van Ree J. M. and Mathysse S. (Eds.). Amsterdam: Elsevier Science, pp. 259–70.
183. Creese I., Iversen S. D. Pharmacological and anatomical substrates of amphetamine response in rat. Brain Res, 1975. 83(3):419–36.
184. Breier A., Malhotra A. K., Pinals D. A., et al. Association of ketamine-induced psychosis with focal activation of the prefrontal cortex in healthy volunteers. Am J Psychiatry, 1997; 154(6):805–11.
185. Abi-Dargham A., Gil R., Krystal J., et al. Increased striatal dopamine transmission in schizophrenia: confirmation in a second cohort. Am J Psychiatry, 1998. 155:761–7.
186. Homayoun H., Moghaddam B. Progression of cellular adaptations in medial prefrontal and orbitofrontal cortex in response to repeated amphetamine. J Neurosci, 2006; 26(31):8025–39.
187. Hill K., Mann L., Laws K. R., et al. Hypofrontality in schizophrenia: a meta-analysis of functional imaging studies. Acta Psychiat Scand, 2004. 110:243–56.
188. Dom G., Sabbe B., Hulstijn W., van den Brink W. Substance use disorders and the orbitofrontal cortex. Br J Psychiat, 2005. 187:209–20.
189. Jentsch J. D., Roth R. H. The neuropsychopharmacology of phencyclidine: from NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia. Neuropsychopharmacology, 1999. 20(3):201–25.
190. Sams-Dodd F. Strategies to optimize the validity of disease models in the drug discovery process. Drug Discov Today, 2006. 11(7–8):355–63.
191. Jackson M. E., Homayoun H., Moghaddam B. NMDA receptor hypofunction produces concomitant firing rate potentiation and burst activity reduction in the prefrontal cortex. Proc Natl Acad Sci USA 2004. 101(22):8467–72.
192. Carpenter W. T., Koenig J. I. The evolution of drug development in schizophrenia: past issues and future opportunities. Neuropsychopharmacology, 2008. 33:2061–79. [Epub Nov 28, 2007.]
193. Agid Y., Buzsaki G., Diamond D. M., et al. Viewpoint – How can drug discovery for psychiatric disorders be improved? Nat Rev Drug Discov, 2007. 6(3):189–201.
194. Robbins T. W. (2004). Animal models of psychosis. In Neurobiology of Mental Illness. Charney D. S., Nestler E. J. (Eds.). New York: Oxford University Press, pp. 263–86.
195. Kapur S., Seeman P. Ketamine has equal affinity for NMDA receptors and the high-affinity state of the dopamine D-2 recep. Biol Psychiatr, 2001. 49(11):954–5.
196. Seeman P., Schwarz J., Chen J. F., et al. Psychosis pathways converge via D2(High) dopamine receptors. Synapse, 2006. 60(4):319–46.
197. Kapur S., Seeman P. NMDA receptor antagonists ketamine and PCP have direct effects on the dopamine D-2 and serotonin 5-HT2 receptors – implications for models of schizophrenia. Mol Psychiatry, 2002. 7(8):837–44.
198. Svenningsson P., Nomikos G. G., Greengard P. Response to comment on “Diverse psychotomimetics act through a common signaling pathway.” Science, 2004; 305(5681):180.
199. Jordan S., Chen R., Fernalld R., et al. In vitro biochemical evidence that the psychotomimetics phencyclidine, ketamine and dizocilpine (MK-801) are inactive at cloned human and rat dopamine D-2 receptors. Eur J Pharmacol, 2006. 540(1–3):53–6.
200. Svenningsson P., Nishi A., Fisone G., et al. DARPP-32: an integrator of neurotransmission. Ann Rev Pharmacol Toxicol, 2004. 44:269–96.
201. Svenningsson P., Tzavara E. T., Carruthers R., et al. Diverse psychotomimetics act through a common signaling pathway. Science, 2003. 302(5649):1412–15.
202. Rabiner E. A. Imaging of striatal dopamine release elicited with NMDA antagonists: is there anything there to be seen? J Psychopharmacol, 2007. 21(3):253–8.
203. Davis S. M., Lees K. R., Albers G. W., et al. Selfotel in acute ischemic stroke – possible neurotoxic effects of an NMDA antagonist. Stroke, 2000. 31(2):347–54.
204. Moghaddam B., Adams B. W. Reversal of phencyclidine effects by a group II metabotropic glutamate receptor agonist in rats. Science, 1998. 281(5381):1349–52.
205. Hetzler B. E., Wautlet B. S. Ketamine-induced locomotion in rats in an open-field. Pharmacol Biochem Behav, 1985. 22(4):653–5.
206. Sams-Dodd F. Distinct effects of d-amphetamine and phencyclidine on the social behavior of rats. Behav Pharmacol, 1995. 6(1):55–65.
207. Rung J. P., Carlsson A., Markinhuhta K. R., et al. (+)-MK-801 induced social withdrawal in rats: a model for negative symptoms of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry, 2005. 29(5):827–32.
208. Duncan G. E., Miyamoto S., Leipzig J. N., et al. Comparison of brain metabolic activity patterns induced by ketamine, MK-801 and amphetamine in rats: support for NMDA receptor involvement in responses to subanesthetic dose of ketamine. Brain Res, 1999. 843(1–2):171–83.
209. Duncan G. E., Leipzig J. N., Mailman R. B., et al. Differential effects of clozapine and haloperidol on ketamine-induced brain metabolic activation. Brain Res, 1998. 812(1–2):65–75.
210. Duncan G. E., Moy S. S., Knapp D. J., et al. Metabolic mapping of the rat brain after subanesthetic doses of ketamine: potential relevance to schizophrenia. Brain Res, 1998. 787(2):181–90.
211. Littlewood C. L., Jones N., O'Neill M. J., et al. Mapping the central effects of ketamine in the rat using pharmacological MRI. Psychopharmacology, 2006. 186(1):64–81.
212. Wu J. C., Buchsbaum M. S., Potkin S. G., et al. Positron emission tomography study of phencyclidine users. Schizophr Res, 1991. 4(3):415.
213. Cochran S. M., Kennedy M., McKerchar C. E., et al. Induction of metabolic hypofunction and neurochemical deficits after chronic intermittent exposure to phencyclidine: differential modulation by antipsychotic drugs. Neuropsychopharmacology, 2003. 28(2):265–75.
214. Wickelgren I. Neurobiology – a new route to treating schizophrenia? Science, 1998. 281(5381):1264–5.
215. Moghaddam B., Adams B., Verma A., et al. Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. J Neurosci, 1997. 17(8):2921–7.
216. Adams B., Moghaddam B. Corticolimbic dopamine neurotransmission is temporally dissociated from the cognitive and locomotor effects of phencyclidine. J Neurosci, 1998. 18(14):5545–54.
217. Liu J., Moghaddam B. Regulation of glutamate efflux by excitatory amino-acid receptors – evidence for tonic inhibitory and phasic excitatory regulation. J Pharmacol Exp Thera, 1995. 274(3):1209–15.
218. Homayoun L., Jackson M. E., Moghaddam B. Activation of metabotropic glutamate 2/3 receptors reverses the effects of NMDA receptor hypofunction on prefrontal cortex unit activity in awake rats. J Neurophysiol, 2005. 93(4):1989–2001.
219. Homayoun H., Moghaddam B. Fine-tuning of awake prefrontal cortex neurons by clozapine: comparison with haloperidol and N-desmethylclozapine. Biol Psychiatry, 2007. 61(5):679–87.
220. Homayoun H., Moghaddam B. NMDA receptor hypofunction produces opposite effects on prefrontal cortex interneurons and pyramidal neurons. J Neurosci, 2007. 27(43):11496–500.
221. Suzuki Y., Jodo E., Takeuchi S., et al. Acute administration of phencyclidine induces tonic activation of medial prefrontal cortex neurons in freely moving rats. Neuroscience, 2002. 114(3):769–79.
222. Jodo E., Suzuki Y., Katayama T., et al. Activation of medial prefrontal cortex by phencyclidine is mediated via a hippocampo- prefrontal pathway. Cereb Cortex, 2005. 15(5):663–9.
223. Katayama T., Jodo E., Suzuki Y., et al. Activation of medial prefrontal cortex neurons by phencyclidine is mediated via AMPA/kainate glutamate receptors in anesthetized rats. Neuroscience, 2007. 150(2):442–8.
224. Sharp F. R., Tomitaka M., Bernaudin M., et al. Psychosis: pathological activation of limbic thalamocortical circuits by psychomimetics and schizophrenia? Trends Neurosc, 2001. 24(6):330–4.
225. Krystal J. H., Abi-Dargham A., Laruelle M., et al. (2004). Pharmacological models of psychoses. In Neurobiology of Mental Illness. Charney D. S. and Nestler E. J. (Eds.). New York: Oxford University Press, pp. 287–98.
226. Gulyas A. I., Megias M., Emri Z., et al. Total number and ratio of excitatory and inhibitory synapses converging onto single interneurons of different types in the CA1 area of the rat hippocampus. J Neurosci, 1999. 19:10082–97.
227. Jones R. S. G., Buhl E. H. Basket-like interneurons in layer II of the entorhinal cortex exhibit a powerful NMDA-mediated synaptic excitation. Neurosci Lett, 1993. 149(1):35–9.
228. Goldberg J. H., Yuste R., Tamas G. Ca2+ imaging of mouse neocortical interneurone dendrites: contribution of Ca2+-permeable AMPA and NMDA receptors to subthreshold Ca2 +dynamics. J Physiol, 2003. 551(1):67–78.
229. Cochran S. M., Fujimura M., Morris B. J., et al. Acute and delayed effects of phencyclidine upon mRNA levels of markers of glutamatergic and GABAergic neurotransmitter function in the rat brain. Synapse, 2002. 46(3):206–14.
230. Rujescu D., Bender A., Keck M., et al. A pharmacological model for psychosis based on N-methyl-D-aspartate receptor hypofunction: Molecular, cellular, functional and behavioral abnormalities. Biol Psychiatry, 2006. 59(8):721–9.
231. Abdul-Monim Z., Neill J. C., Reynolds G. P. Sub-chronic psychotomimetic phencyclidine induces deficits in reversal learning and alterations in parvalbumin-immunoreactive expression in the rat. J Psychopharmacol, 2007. 21(2):198–205.
232. Keilhoff G., Becker A., Grecksch G., et al. Repeated application of ketamine to rats induces changes in the hippocampal expression of parvalbumin, neuronal nitric oxide synthase and cFOS similar to those found in human schizophrenia. Neuroscience, 2004. 126(3):591–8.
233. Morrow B. A., Elsworth J. D., Roth R. H. Repeated phencyclidine in monkeys results in loss of parvalbumin-containing axo-axonic projections in the prefrontal cortex. Psychopharmacology, 2007. 192(2):283–90.
234. Kinney J. W., Davis C. N., Tabarean I., et al. A specific role for NR2A-containing NMDA receptors in the maintenance of parvalbumin and GAD67 immunoreactivity in cultured interneurons. J Neurosci, 2006. 26(5):1604–15.
235. Bartos M., Vida I., Jonas P. Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat Rev Neurosci, 2007. 8(1):45–56.
236. Cunningham M. O., Hunt J., Middleton S., et al. Region-specific reduction in entorhinal gamma oscillations and parvalbumin- immunoreactive neurons in animal models of psychiatric illness. J Neurosci, 2006. 26(10):2767–76.
237. Lewis D. A., Gonzalez-Burgos G. Pathophysiologically based treatment interventions in schizophrenia. Nat Med, 2006. 12(9):1016–22.
238. Lewis D. A., Hashimoto T. Deciphering the disease process of schizophrenia: the contribution of cortical GABA neurons. Int Rev Neurobiol, 2007. 78:109–31.
239. Lewis D. A., Hashimoto T., Volk D. W. Cortical inhibitory neurons and schizophrenia. Nat Rev Neurosci, 2005. 6(4):312–24.
240. Lewis D. A., Gonzalez-Burgos G. Neuroplasticity of neocortical circuits in schizophrenia. Neuropsychopharmacology, 2008. 33:141–65.
241. Reynolds G. P., Harte M. K. The neuronal pathology of schizophrenia: molecules and mechanisms. Biochem Soc Trans, 2007. 35:433–6.
242. Basar-Eroglu C., Brand A., Hildebrandt H., et al. Working memory related gamma oscillations in schizophrenia patients. Intl J Psychophysiol, 2007. 64(1):39–45.
243. Symond M. B., Harris A. W. F., Gordon E., et al. “Gamma synchrony” in first-episode schizophrenia: a disorder of temporal connectivity? Am J Psychiatry, 2005. 162(3):459–65.
244. Light G. A., Hsu J. L., Hsieh M. H., et al. Gamma band oscillations reveal neural network cortical coherence dysfunction in schizophrenia patients. Biol Psychiatry, 2006. 60(11):1231–40.
245. Spencer K. M. Abnormal neural synchrony in schizophrenia. Psychophysiology, 2003. 40:S17
246. Behrens M. M., Ali S. S., Dao D. N., et al. Ketamine-induced loss of phenotype of fast-spiking interneurons is mediated by NADPH-oxidase. Science, 2007. 318(5856):1645–7.
247. Jentsch J. D., Elsworth J. D., Redmond D. E., et al. Phencyclidine increases forebrain monoamine metabolism in rats and monkeys: modulation by the isomers of HA966. J Neurosci, 1997. 17(5):1769–75.
248. Jentsch J. D., Tran A., Le D., et al. Subchronic phencyclidine administration reduces mesoprefrontal dopamine utilization and impairs prefrontal cortical-dependent cognition in the rat. Neuropsychopharmacology, 1997. 17(2):92–9.
249. Jentsch J. D., Redmond D. E., Elsworth J. D., et al. Enduring cognitive deficits and cortical dopamine dysfunction in monkeys after long-term administration of phencyclidine. Science, 1997. 277(5328):953–5.
250. Kristiansen L. V., Huerta I., Beneyto M., et al. NMDA receptors and schizophrenia. Curr Opin Pharmacol, 2007. 7(1):48–55.
251. Javitt D. C. Glutamate and schizophrenia: phencyclidine, N-methyl-D-aspartate receptors, and dopamine-glutamate interactions. Int Rev Neurobiol, 2007. 78:69.
252. Catts S. V., Ward P. B., Lloyd A., et al. Molecular biological investigations into the role of the NMDA receptor in the pathophysiology of schizophrenia. Aust NZ J Psychiatry, 1997. 31(1):17–26.
253. Carlsson A. The current status of the dopamine hypothesis of schizophrenia. Neuropsychopharmacology, 1988. 1(3):179–86.
254. Carlsson M., Carlsson A. Schizophrenia – a subcortical neurotransmitter imbalance syndrome. Schizophr Bull, 1990. 16(3):425–32.
255. Brody S. A., Geyer M. A., Large C. H. Lamotrigine prevents ketamine but not amphetamine-induced deficits in prepulse inhibition in mice. Psychopharmacology (Berl), 2003. 169(3–4):240–6.
256. Anand A., Charney D. S., Oren D. A., et al. Attenuation of the neuropsychiatric effects of ketamine with lamotrigine – support for hyperglutamatergic effects of N-methyl-D-aspartate receptor antagonists. Arch Gen Psychiatry, 2000. 57(3):270–6.
257. Large C. H., Webster E. L., Goff D. C. The potential role of lamotrigine in schizophrenia. Psychopharmacology, 2005. 181(3):415–36.
258. Kremer I., Vass A., Gorelik I., et al. Placebo-controlled trial of lamotrigine added to conventional and atypical antipsychotics in schizophrenia. Biol Psychiatr, 2004. 56(6):441–6.
259. Dursun S. M., Deakin J. F.W. Augmenting antipsychotic treatment with lamotrigine or topiramate in patients with treatment-resistant schizophrenia: a naturalistic case series outcome study. J Psychopharmacol, 2001. 15(4):297–301.
260. Dursun S. M., McIntosh D. Clozapine plus lamotrigine in treatment-resistant schizophrenia. Arch Gen Psychiatry, 1999. 56(10):950.
261. Zoccali R., Muscatello M. R., Bruno A., et al. The effect of lamotrigine augmentation of clozapine in a sample of treatment-resistant schizophrenic patients: a double-blind, placebo-controlled study. Schizophr Res, 2007. 93(1–3):109–16.
262. Tiihonen J., Hallikainen T., Ryynanen O. P., et al. Lamotrigine in treatment-resistant schizophrenia: a randomized placebo-controlled crossover trial. Biol Psychiatry, 2003. 54(11):1241–8.
263. Ahmad S., Fowler L. J., Whitton P. S. Lamotrigine, carbamazepine and phenytoin differentially alter extracellular levels of 5-hydroxytryptamine, dopamine and amino acids. Epilepsy Res, 2005. 63(2–3):141–9.
264. Harsing L. G., Gacsalyi I., Szabo G., et al. The glycine transporter-1 inhibitors NFPS and Org 24461: a pharmacological study. Pharmacol Biochem Behav, 2003. 74(4):811–25.
265. Lane H. Y., Liu Y. C., Huang C. L., et al. Sarcosine (N-methylglycine) treatment for acute schizophrenia: a randomized, double-blind study. Biol Psychiatr, 2008. 63(1):9–12.
266. Tsai G. C., Lane H. Y., Yang P. C., et al. Glycine transporter I inhibitor, N-methylglycine (Sarcosine), added to antipsychotics for the treatment of schizophrenia. Biol Psychiatr, 2004. 55(5):452–6.
267. Lane H. Y., Huang C. L., Wu P. L., et al. Glycine transporter I inhibitor, N-methylglycine (Sarcosine), added to clozapine for the treatment of schizophrenia. Biol Psychiatr, 2006. 60(6):645–9.
268. Neale J. H., Olszewski R. T., Gehl L. M., et al. The neurotransmitter N-acetylaspartylglutamate in models of pain, ALS, diabetic neuropathy, CNS injury and schizophrenia. Trends Pharmacol Sci, 2005. 26(9):477–84.
269. Olszewski R. T., Bukhari N., Zhou J., et al. NAAG peptidase inhibition reduces locomotor activity and some stereotypes in the PCP model of schizophrenia via group II mGluR. J Neuro, 2004. 89(4):876–85.
270. Olszewski R. T., Wegorzewska M. M., Monteiro A. C., et al. Phencyclidine and dizocilpine induced behaviors reduced by N-acetylaspartylglutamate peptidase inhibition via metabotropic glutamate receptors. Biol Psychiatr, 2008. 63(1):86–91.
271. Schoepp D. D., Johnson B. G., Wright R. A., et al. LY354740 is a potent and highly selective group II metabotropic glutamate receptor agonist in cells expressing human glutamate receptors. Neuropharmacology, 1997. 36(1):1–11.
272. Krystal J. H., Abi-Saab W., Perry E., et al. Preliminary evidence of attenuation of the disruptive effects of the NMDA glutamate receptor antagonist, ketamine, on working memory by pretreatment with the group II metabotropic glutamate receptor agonist, LY354740, in healthy human subjects. Psychopharmacology, 2005. 179(1):303–9.
273. Patil S. T., Zhang L., Martenyi F., et al. Activation of mGlu2/3 receptors as a new approach to treat schizophrenia: a randomized Phase 2 clinical trial. Nat Med, 2007. 13(9):1102–7.
274. Kim J. S., Kornhuber H. H., Schmidburgk W., et al. Low cerebrospinal-fluid glutamate in schizophrenic patients and a new hypothesis on schizophrenia. Neurosci Lett, 1980. 20(3):379–82.
275. Wachtel H., Turski L. Glutamate – a new target in schizophrenia. Trends Pharmacol Sci, 1990. 11(6):219–22.
276. Farber N. B., Wozniak D. F., Price M. T., et al. Age-specific neurotoxicity in the rat associated with NMDA receptor blockade: potential relevance to schizophrenia? Biol Psychiatr, 1995. 38(12):788–96.
277. Keshavan M. S., Anderson S., Pettegrew J. W. Is schizophrenia due to excessive synaptic pruning in the prefrontal cortex – the Feinberg Hypothesis revisited. J Psychiatr Res, 1994. 28(3):239–65.
278. Glantz L. A., Lewis D. A. Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch Gen Psychiatr, 2000. 57(1):65–73.
279. Halberstadt A. L. The phencyclidine glutamate model of schizophrenia. Clin Neuropharmacol, 1995. 18(3):237–49.
280. Tsai G. C., Coyle J. T. Glutamatergic mechanisms in schizophrenia. Ann Rev Pharmacol Toxicol, 2002. 42:165–79.
281. Hirsch S. R., Das I., Garey L. J., et al. A pivotal role for glutamate in the pathogenesis of schizophrenia, and its cognitive dysfunction. Pharmacol Biochem Behav, 1997. 56(4):797–802.
282. Krystal J. H., D'Souza D. C., Mathalon D., et al. NMDA receptor antagonist effects, cortical glutamatergic function, and schizophrenia: toward a paradigm shift in medication development. Psychopharmacology, 2003. 169(3–4):215–33.
283. Stone J. M., Morrison P. D., Pilowsky L. S. Glutamate and dopamine dysregulation in schizophrenia – a synthesis and selective review. J Psychopharmacol, 2007. 21(4):440–52.
284. Jarskog L. F., Glantz L. A., Gilmore J. H., et al. Apoptotic mechanisms in the pathophysiology of schizophrenia. Prog Neurosychopharmacol Biol Psychiatry, 2005. 29(5):846–58.
285. Catts V. S., Catts S. V., McGrath J. J., et al. Apoptosis and schizophrenia: a pilot study based on dermal fibroblast cell lines. Schizophr Res, 2006. 84(1):20–8.
286. Lipska B. K. Using animal models to test a neurodevelopmental hypothesis of schizophrenia. J Psychiatr Neurosci, 2004. 29(4):282–6.
287. Ozawa K., Hashimoto K., Kishimoto T., et al. Immune activation during pregnancy in mice leads to dopaminergic hyperfunction and cognitive impairment in the offspring: a neurodevelopmental animal model of schizophrenia. Biol Psychiat, 2006. 59(6):546–54.
288. Paylor R., McIlwain K. L., McAninch R., et al. Mice deleted for the DiGeorge/velocardiofacial syndrome region show abnormal sensorimotor gating and learning and memory impairments. Hum Mol Genet, 2001. 10(23):2645–50.