Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-25T12:21:48.632Z Has data issue: false hasContentIssue false

9 - Transplantation and xenotransplantation

Published online by Cambridge University Press:  07 May 2010

James J. Giordano
Affiliation:
IPS Centre for Philosophical Psychology, University of Oxford
Bert Gordijn
Affiliation:
Dublin City University
Get access

Summary

INTRODUCTION

Although adult-to-adult organ transplantation has developed in the past 50 years in the surgical arenas, neurosurgeons have had no options to take out damaged brain areas and to implant new tissue from adult donors. Adult neurons do not survive isolation and transplantation. The neurosurgeon, moreover, cannot take out malfunctioning brain tissue or cells without severely damaging the nervous system in its still intact parts. However, the possibility of neural tissue repair by implantation rather than by transplantation became an option, with observations in animal research that has shown that immature nerve cells not only survive and mature following implantation in the adult nervous system, but also integrate and become functionally active in existing networks. Implantation of neurons to supplement lost neurons in cases of neurodegenerative diseases and neurotrauma thus became a challenging perspective for the neurosurgeon.

Parkinson's disease (PD) was the test bed disease for this approach, as it is primarily characterized by a defined loss of neurons in the substantia nigra serving a dopaminergic input in the striatum of the central nervous system (CNS). Grafting fetal substantia nigra dopaminergic cells into the striatum of substantia nigra-lesioned rats reversed the motor disturbances, and similar studies in non-human primate models were successful as well. These results prompted clinical trials with human fetal dopaminergic neurons implanted into the striatum of PD patients. The grafted neurons indeed survived and became active cells as shown by functional brain scans.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×