Skip to main content Accessibility help
×
Home
  • Print publication year: 2018
  • Online publication date: December 2018

14 - The Future Exploration of Saturn

Summary

Despite the lack of another Flagship-class mission such as Cassini–Huygens, prospects for the future exploration of Saturn are nevertheless encouraging. Both NASA and the European Space Agency (ESA) are exploring the possibilities of focused interplanetary missions (1) to drop one or more in situ atmospheric entry probes into Saturn and (2) to explore the satellites Titan and Enceladus, which would provide opportunities for both in situ investigations of Saturn’s magnetosphere and detailed remote-sensing observations of Saturn’s atmosphere. Additionally, a new generation of powerful Earth-based and near-Earth telescopes with advanced instrumentation spanning the ultraviolet to the far-infrared promise to provide systematic observations of Saturn’s seasonally changing composition and thermal structure, cloud structures and wind fields. Finally, new advances in amateur telescopic observations brought on largely by the availability of low-cost, powerful computers, low-noise, large-format cameras, and attendant sophisticated software promise to provide regular, longterm observations of Saturn in remarkable detail.

Aharonson, O., Hayes, A. G., Hayne, P. O. et al. (2014), Titan’s surface geology. Pages 63101 in: Müller-Wodarg, I., Griffith, C. A., Lellouch, E. and Cravens, T. E. (eds.), Titan: Interior, Surface, Atmosphere, and Space Environment. Cambridge: Cambridge University Press, Pp.
Atkinson, D. H., Pollack, J. B., Seiff, A. (1998), The Galileo probe Doppler Wind Experiment: Measurement of the deep zonal winds on Jupiter. J. Geophys. Res. 103, 2291122928.
Bacon, R., Bauer, S.-V., Böhm, R. et al. (2006), Probing unexplored territories with MUSE: A second-generation instrument for VLT. The Messenger 124, 510.
Badman, S., Branduardi-Raymont, G., Galand, M. et al. (2016), Auroral processes at the giant planets: Energy, deposition, emission mechanisms, morphology and spectra. Space Sci. Rev. 185, 99179. doi : 10.1007/s/11214–014-0042–x.
Baranec, C., Riddle, R., Law, N. M. et al. (2013), Bringing the visible universe into focus with Robo-AO. J. Visualized Experiments 72, e50021.
Baranec, C., Riddle, R., Law, N. M. et al. (2014), High-efficiency autonomous laser adaptive optics. Astrophys. J. Letts. 790, L8.
Barret, D., Lam, T., Den Herder, J.-W. et al. (2016), The Athena X-ray Integral Field Unit (X-IFU). Proc. SPIE 9905 Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray. doi 10.111712.2232432. arXiv: 1608.08105v1 (astro-ph.IM).
Bayer, B. E. (1976), Eastman Kodak Co. US patent 3971065.http:/worldwide.spacenet.com/textdoc?DB=EPOC&IDX=US3971065
Brandl, B. R., Feldt, M., Glasse, A. et al. (2014), METIS: The mid-infrared E-ELT imager and spectrograph. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 9147, pp. 21.
Burton, M. and Dougherty, M. (2014), Saturn’s internal magnetic field: Expectations for Cassini’s upcoming proximal orbits, Fall AGU meeting, 2014.
Clarke, J. T., Nichols, J., Gérard, J.-C. et al. (2009), Response of Jupiter’s and Saturn’s auroral activity to the solar wind. J. Geophys. Res. (Space Physics), 114, A05210, doi:10.1029/2008JA013694.
Colwell, J. E., Nicholson, P. D., Tiscareno, M. S. et al. (2009), The structure of Saturn’s rings. Pages 375412 in: Dougherty, M. K., Esposito, L. W. and Krimigis, S. M. (eds.), Saturn from Cassini-Huygens. Springer.
Connerney, J. E. P. (1986), Magnetic connection for Saturn’s rings and atmosphere. Geophys. Res. Lett., 13, 773776, doi:10.1029/GL013i008p00773.
Coustenis, A., Lebreton, J.-P., Mousis, O. et al. (2014), Possible concepts for an in situ Saturn probe mission. Lunar and Planetary Science Conference 45, 1244.
Davies, R., Schubert, J., Hartl, M. et al. (2016), MICADO: First light imager for the E-ELT. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 9908.
de Pater, I., Sault, R. J., Butler, B. et al. (2016), Peering through Jupiter’s clouds with radio spectral imaging. Science 352, 11981201.
DePoy, D. L., Allen, R., Barkhouser, R. et al. (2012), GMACS: A wide field, multi-object, moderate-resolution, optical spectrograph for the Giant Magellan Telescope. Ground-based and Airborne Instrumentation for Astronomy IV, Vol. 8446.
DeWitt, C. N., Richter, M. J., Kulas, K. R. et al. (2014), First light with the EXES instrument on SOFIA. AAS/Division for Planetary Sciences Meeting Abstracts, Vol. 46.
Doody, D. (2004), Basics of Space Flight, Sep. 2004; available at http://www.jpl.nasa.gov
Eikenberry, S., Andersen, D., Guzman, R. et al. (2006), IRMOS: The near-infrared multi-object spectrograph for the TMT. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 6269.
ESA. (2007), Cosmic Vision Call http://sci.esa.int/cosmic-vision/
Fischer, G., Kurth, W. S., Gurnett, D. A. et al. (2011), A giant thunderstorm on Saturn. Nature. 475, 7577.
Fletcher, L. N., Achterberg, R. K., Greathouse, T. K. et al. (2010), Seasonal change on Saturn from Cassini/CIRS observations, 2004–2009. Icarus 208, 337352.
Fletcher, L. N., Hesman, B. E., Achterberg, R. K. et al. (2012), The origin and evolution of Saturn’s 2011–2012 stratospheric vortex. Icarus 221, 560586.
Fletcher, L. N., Hesman, B. E., Irwin, P. G. J. et al. (2011), Thermal structure and dynamics of Saturn’s northern springtime disturbance. Science 332, 14131417.
Fletcher, L. N., Irwin, P. G. J., Orton, G. O. et al. (2008), Temperature and composition of Saturns polar hot spots and hexagon. Science 319, 79821.
Fletcher, L. N., Orton, G. S., Teanby, N. A. et al. (2009a), Methane and its isotopologues on Saturn from Cassini/CIRS observations. Icarus 199, 351367.
Fletcher, L. N., Orton, G. S., Yanamandra-Fisher, P. et al. (2009b), Retrievals of atmospheric variables on the gas giants from ground-based mid-infrared imaging. Icarus 200, 154175.
Fouchet, T., Guerlet, S., Strobel, D. F. et al. (2008), An equatorial oscillation in Saturn’s middle-atmosphere. 2008. Nature 453, 200202.
Fulchignoni, M., Ferri, F., Angrilli, F. et al. (2002), The characterization of Titan’s atmospheric physical properties by the Huygens Atmospheric Structure Instrument (HASI). Space Sci. Rev.104, 395431.
Geballe, T. R., Jagod, M., Oka, T. (1993), Detection of H3+ infrared emission lines in Saturn. Astrophys. J. Lett. 408, L109L112, doi:10.1086/186843.
Greathouse, T., Lacy, J., Bézard, B. et al. (2006), The first detection of propane on Saturn. Icarus 181, 266271.
Greathouse, T. K., Roe, H. G., Richter, M. J. (2005), Changes in the temperature of Saturn’s stratosphere from 2002 to 2004 and direct evidence of a mesopause. 36th Annual Lunar and Planetary Science Conference, League City, Texas.
Griffith, C. A., Rafkin, S., Rannou, P. et al. (2014), Storms, cloud, and weather. Pages 190223 in: Müller-Wodarg, I., Griffith, C. A., Lellouch, E. and Cravens, T. E. (eds.), Titan: Interior, Surface, Atmosphere, and Space Environment. Cambridge: Cambridge University Press.
Guerlet, S., Spiga, A., Sylvestre, M. et al. (2014), Global climate modeling of Saturn’s atmosphere. Part I: Evaluation of the radiative transfer model. Icarus 238, 110124.
Helled, R. (2011), Constraining Saturn’s core properties by a measurement of its moment of inertia: Implications to the Cassini Solstice Mission, Ap.J.Lett. 735, L16.
Hohmann, W. (1925), Die Erreichbarkeit der Himmelskörper (The Accessibility of Celestial Bodies), München: Verlag Oldenbourg.
Jia, X., Kivelson, M. G. (2012), Driving Saturn’s magnetospheric periodicities from the upper atmosphere/ionosphere: Magnetotail response to dual sources. J. Geophys. Res., 117, A11219, doi:10.1029/2012JA018183.
Koskinen, T. T., Sandel, B. R., Yelle, R. V. et al. (2013), The density and temperature structure near the exobase of Saturn from Cassini UVIS solar occultations. Icarus 226, 13181330, doi:10.1016/j.icarus.2013.07.037.
Lam, T., Landau, D., Strange, N. (2009), Broad search solar electric propulsion trajectories to Saturn with gravity assists, AAS Paper 09–355, Proceedings of the AAS/AIAA Astrodynamics Specialist Conference, August 2009, Pittsburgh, PA.
Larkin, J. E., Moore, A. M., Wright, S. A. et al. (2016), The Infrared Imaging Spectrograph (IRIS) for TMT: Instrument overview. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 9908.
Lecacheux, A. and Aubier, M. (1997), Re-visiting Saturnian kilometric radiation with Ulysses/URAP. Page 313 in: Rucker, H. O., Bauer, S. J. and Lecacheux, A. (eds.), Planetary Radio Emissions IV.
Lee, S., Yuk, I.-S., Lee, H. et al. (2010), GMTNIRS (Giant Magellan Telescope near-infrared spectrograph): Design concept. Ground-based and Airborne Instrumentation for Astronomy III, Vol. 7735.
Lellouch, E. (2008), Planetary atmospheres with ALMA. Astrophys. Space Sci. 313, 175181.
Li, C. and Ingersoll, A. P. (2015), Moist convection in hydrogen atmospheres and the frequency of Saturn’s giant storms. Nature GeoSci. DOI:10.1038/NGE02405.
Marty, B., Guillot, T., Coustenis, A. et al. (2009), Kronos: Exploring the depths of Saturn with probes and remote sensing through an international mission. Exp. Astron. 23, 947976.
McGregor, P. J., Bloxham, G. J., Boz, R. et al. (2012), GMT Integral-Field Spectrograph (GMTIFS) conceptual design. Ground-based and Airborne Instrumentation for Astronomy IV, Vol. 8446.
Mousis, O., Atkinson, D. H., Blanc, M. et al. (2016), Hera Saturn Entry Probe Mission. A proposal in response to the ESA call for a medium-size mission opportunity in ESA’s science programme for launch in 2029–2030 (M5). Submitted to ESA.
Mousis, O., Fletcher, L. N., Lebreton, J.-P. et al. (2014), Scientific rationale of Saturn’s in situ exploration. Planet. and Space Sci., 104, 2947.
Müller-Wodarg, I. C. F., Moore, L., Galand, M. et al. (2012), Magnetosphere-atmosphere coupling at Saturn. 1: Response of thermosphere and ionosphere to steady state polar forcing. Icarus 221, 481494, doi:10.1016/j.icarus.2012.08.034.
NASA, ESA (2009), Titan Saturn System Mission (TSSM) NASA/ESA Joint Summary Report, January 19, 2009.
National Research Council (NRC), Committee on the Planetary Science Decadal Survey (2011), Vision and Voyages for Planetary Science in the Decade 2013–2022. Washington, DC: The National Academies Press, http://www.nap.edu/catalog/13117.html
Nichols, J. D., Cecconi, B., Clarke, J. T. et al. (2010), Variation of Saturn’s UV aurora with SKR phase. Geophys. Res. Lett. 37, L15102, doi:10.1029/2010GL044057.
Nicholson, P. D., Drench, R. G., Bosh, A. S. (1999), Ring plane crossings and Saturn’s pole precession. Bull. Am. Astron. Soc. 31, 44.01.
Niemann, H. B., Atreya, S. K., Bauer, S. J. et al. (2005), The abundances of constituents of Titan’s atmosphere from the GCMS instrument on the Huygens probe. Nature 438, 779784.
Niemann, H. B., Atreya, S. K., Carignan, G. R. et al. (1998), The composition of the Jovian atmosphere as determined by the Galileo probe mass spectrometer. J. Geophys. Res. 103, 2283122846.
Norwood, J., Moses, J., Fletcher, L. N. et al., (2016), Giant planet observations with the James Webb Space Telescope. doi:10.1088/1538–3873/128/959/018005.
O’Donoghue, J., Stallard, T. S., Melin, H. et al. (2013), The domination of Saturn’s low- latitude ionosphere by ring “rain.” Nature 496, 193195, doi:10.1038/nature12049.
Orton, G. S. and Yanamandra-Fisher, P. A. (2005), Saturn’s temperature field from high- resolution middle-infrared imaging. Science 307, 696698.
Orton, G. S., Yanamandra-Fisher, P. A., Brendan, M. et al. (2008), Semi-annual oscillations in Saturn’s low-latitude stratospheric temperatures. Nature 453, 196199.
Packham, C., Honda, M., Richter, M. et al. (2012), Key science drivers for MICHI: A mid- IR instrument concept for the TMT. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 8446. doi:10.1117/12.924996.
Pazder, J. S., Roberts, S., Abraham, R. et al. (2006), WFOS: A wide field optical spectrograph for the Thirty Meter Telescope. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 6269.
Reh, K. et al. (2009), Titan Saturn System Mission Study Final Report. JPL D–48148.
Sánchez-Lavega, A., Colas, F., Lecacheux, J. et al. (1991), The great white spot and disturbances in Saturn’s equatorial atmospheres during 1990. Nature 353, 397401.
Sánchez-Lavega, A., del Río-Gaztelurrutia, T., Delcroix, M. et al. (2012), Ground-based observations of the long-term evolution and death of Saturn’s 2010 Great White Spot. Icarus 220, 561576.
Sánchez-Lavega, A., del Río-Gaztelurrutia, T., Hueso, R. et al. (2011), Deep winds beneath Saturn’s upper clouds from a seasonal long-lived planetary-scale storm. Nature 475, 7174, doi:10.1038/nature10203.
Sánchez-Lavega, A., Pérez-Hoyos, S., Rjoas, J. F. et al. (2003), A strong decrease in Saturn’s equatorial jet at cloud level. Nature 423, 623625.
Sánchez-Lavega, A., Wesley, A., Orton, G. et al. (2010), The impact of a large object with Jupiter in July 2009. Astrophys. J. 715, L155L159.
Sanz-Requena, J. F., Pérez-Hoyos, S., Sánchez-Lavega, A. et al. (2012), Cloud structure of Saturn’s 2010 storm from ground-based visual imaging. Icarus 219, 142149.
Sayanagi, K. M., Dyudina, U. A., Ewald, S. P. et al. (2013), Dynamics of Saturn’s great storm of 2010–2011 from Cassini ISS and RPWS. Icarus 223, 460478.
Sinclair, J. A., Irwin, P. G. J., Fletcher, L. N. et al. (2014), From Voyager-IRIS to Cassini-CIRS: Interannual variability in Saturn’s stratosphere? Icarus 233, 281292.
Smith, C. G. A. (2006), Periodic modulation of gas giant magnetospheres by the neutral upper atmosphere. Annales Geophysicae 24, 27092717, doi:10.5194/angeo-24-2709–2006.
Southwood, D. J. and Cowley, S. W. H. (2014), The origin of Saturn’s magnetic periodicities: Northern and southern current systems, J. Geophys. Res. (Space Physics) 119, 15631571, doi:10.1002/2013JA019632.
Spencer, J. R., Barr, A. C., Esposito, L. W. et al. (2009), Enceladius: An active cryovolcanic satellite. Pp. 683724 in: Dougherty, M. K., Esposito, L. W. and Krimigis, S. M. (eds), Saturn from Cassini-Huygens. Springer.
Sromovsky, L. A., Baines, K. H. and Fry, P. M. (2013), Saturn’s Great Storm of 2010-2011: Evidence for ammonia and water ices from analysis of VIMS spectra. Icarus 226, 402418.
Stallard, T. S., Melin, H., Miller, S. et al. (2012), Temperature changes and energy inputs in giant planet atmospheres: what we are learning from H3+. Royal Society of London Philosophical Transactions Series A, 370, 52135224, doi:10.1098/rsta.2012.0028.
Szentgyorgyi, A., Bean, J., Bigelow, B. et al. (2014), A preliminary design for the GMT- Consortium Large Earth Finder (G-CLEF). Ground-based and Airborne Instrumentation for Astronomy V, Vol. 9147.
Temi, P., Marcum, P. M., Young, E. et al. (2014), The SOFIA observatory at the start of routine science operations: Mission capabilities and performance. The Astrophysical Journal Supplement Series 212, 24.
Thatte, N. A., Clarke, F., Bryson, I. et al. (2014), HARMONI: The first light integral field spectrograph for the E-ELT. Ground-based and Airborne Instrumentation for Astronomy V, Vol. 9147.
Thronson, H., Mandell, A., Polidan, R. S. et al. (2016), Special section guest editorial: Future large-aperture ultraviolet/optical/infrared space observatory. J. Astron. Telesc. Instrum. Syst. 2(4), 041201. doi:10.1117/1JATIS.2.4.041201.
Wong, M. H., Ádámkovics, M., Atreya, S. K. et al. (2009), A dedicated space observatory for time-domain solar system science. White Paper submitted to the 2009–2011 Planetary Science Decadal Survey, online at www8.nationalacademies.org/ssbsurvey/DetailFileDisplay.aspx?id=186&parm_type=PSDS (see pp. 208209 of the 2013–2022 Planetary Decadal Survey).
Zander, F. A. (1964), Problems of flight by jet propulsion: interplanetary flights, original publication 1925. NASA Technical Translation F-147.