Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-27T03:33:13.373Z Has data issue: false hasContentIssue false

5 - Assessing the consequences of inbreeding for population fitness: past challenges and future prospects

Published online by Cambridge University Press:  21 January 2010

Andrea C. Taylor
Affiliation:
School of Biological Sciences, PO Box 18, Monash University, Victoria 3800, Australia
William V. Holt
Affiliation:
Zoological Society of London
Amanda R. Pickard
Affiliation:
Zoological Society of London
John C. Rodger
Affiliation:
Marsupial CRC, New South Wales
David E. Wildt
Affiliation:
Smithsonian National Zoological Park, Washington DC
Get access

Summary

INTRODUCTION AND OBJECTIVES

The worrying prospect that genetic deterioration may threaten the viability of wildlife populations was first brought to the attention of the conservation community by Frankel & Soulé (1981). The issue has since been hotly debated and widely researched. It is reasonable to assume that wildlife may suffer inbreeding and associated inbreeding depression resulting from continuing erosion of natural habitats and increasing reliance on captive breeding. Indeed all evidence points to this being the case (Ralls et al., 1988; Crnokrak & Roff, 1999). In any case there exists a series of simple relationships providing a clear expectation that population viability may be threatened by inbreeding and loss of genetic variation. It is worth briefly reviewing those here.

Since genetic variability is the raw material for evolutionary adaptation, it follows that genetically invariant populations cannot adapt to environmental change, and are thus not ‘buffered’ against it (see Ryan et al., Chapter 6). A corollary of this is that any trait that evolves must have genetic variation, and is consequently open to the effects of loss of genetic variation.

Demographic bottlenecks reduce genetic variability in a manner described by a series of theoretical relationships (Falconer & Mackay, 1996). In general, prolonged small population size is expected to cause a decline in allelic diversity and, to a lesser extent, heterozygosity. Conversely, if a population recovers quickly from a bottleneck then loss of genetic variation, especially heterozygosity, may be minimal.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alados, C. L. & Escós, J. (1991). Phenotypic and genetic characteristics affecting lifetime reproductive success in female Cuvier's, dama and dorcas gazelles (Gazella cuvieri, G. dama and G. dorcas). Journal of Zoology (London) 223, 307–321CrossRefGoogle Scholar
Ballou, J. D. (1997). Ancestral inbreeding only minimally affects inbreeding depression in mammalian populations. Journal of Heredity 88, 169–178CrossRefGoogle ScholarPubMed
Bijlsma, R., Bundgaard, J. & Boerema, A. C. (2000). Does inbreeding affect the extinction risk of small populations? Predictions from Drosophila. Journal of Evolutionary Biology 13, 502–514CrossRefGoogle Scholar
Bijlsma, R., Bundgaard, J. & Putten, W. F. (1999). Environmental dependence of inbreeding depression and purging in Drosophila melanogaster. Journal of Evolutionary Biology 12, 1125–1137CrossRefGoogle Scholar
Byers, D. L. & Waller, D. M. (1999). Do plant populations purge their genetic load? Effects of population size and mating history on inbreeding depression. Annual Review of Ecology and Systematics 30, 479–513CrossRefGoogle Scholar
Charlesworth, D. & Charlesworth, B. (1987). Inbreeding depression and its evolutionary consequences. Annual Review of Ecology and Systematics 18, 237–268CrossRefGoogle Scholar
Charlesworth, D. & Charlesworth, B. (1999). The genetic basis of inbreeding depression. Genetical Research, Cambridge 74, 329–340CrossRefGoogle ScholarPubMed
Chepko-Sade, B. D., Shields, W. M., Berger, J., Halpin, Z. T., Jones, W. T., Rogers, L. L., Rood, J. P. & Smith, A. T. (1987). The effects of dispersal and social structure on effective population size. In Mammalian Dispersal Patterns: The Effects of Social Structure on Population Genetics (Eds. B. D. Chepko-Sade & Z. T. Halpin), pp. 287–321. University of Chicago Press, Chicago
Coltman, D. W., Bowen, W. D. & Wright, J. M. (1998). Birth weight and neonatal survival of harbour seal pups are positively correlated with genetic variation measured by microsatellites. Proceedings of the Royal Society of London B 265, 803–809CrossRefGoogle ScholarPubMed
Coltman, D. W., Pilkington, J. G., Smith, J. A. & Pemberton, J. M. (1999). Parasite-mediated selection against inbred Soay sheep in a free-living, island population. Evolution 53, 1259–1267Google Scholar
Coulson, T., Albon, S., Slate, J. & Pemberton, J. M. (1999). Microsatellite loci reveal sex dependent responses to inbreeding and outbreeding in red deer calves. Evolution 53, 1951–1960CrossRefGoogle ScholarPubMed
Coulson, T. N., Pemberton, J. M., Albon, S. D., Beaumont, M. A., Marshall, T. C., Slate, J., Clutton-Brock, T. H. & Guinness, F. E. (1998). Microsatellites measure inbreeding depression and heterosis in red deer. Proceedings of the Royal Society of London B 265, 489–495CrossRefGoogle ScholarPubMed
Crnokrak, P. & Roff, D. A. (1999). Inbreeding depression in the wild. Heredity 83, 260–270CrossRefGoogle ScholarPubMed
Crooks, K. R., Sanjayan, M. A. & Doak, D. F. (1998). New insights on cheetah conservation through demographic modeling. Conservation Biology 12, 889–895CrossRefGoogle Scholar
Dahlgaard, J. & Hoffmann, A. A. (2000). Stress resistance and environmental dependency of inbreeding depression in Drosophila melanogaster. Conservation Biology 14, 1187–1192CrossRefGoogle Scholar
Eldridge, M. D. B., King, J. M., Loupis, A. K., Spencer, P. B. S., Taylor, A. C., Pope, L. C. & Hall, G. P. (1999). Unprecedented low levels of genetic variation and inbreeding depression in an island population of the black-footed rock-wallaby. Conservation Biology 13, 531–541CrossRefGoogle Scholar
Elgar, M. A. & Clode, D. (2000). Genetic diversity of animals in fragmented populations: implications for conservation management. Australian Biologist 12, 155–163Google Scholar
Falconer, D. S. & Mackay, T. F. S. (1996). An Introduction to Quantitative Genetics, 4th edn. Longman, Harlow, Essex
Frankel, O. H. & Soulé, M. E. (1981). Conservation and Evolution. Cambridge University Press, Cambridge
Frankham, R. (1995a). Inbreeding and extinction: a threshold effect. Conservation Biology 9, 792–799CrossRefGoogle Scholar
Frankham, R. (1995b). Conservation genetics. Annual Review of Genetics 29, 305–327CrossRefGoogle Scholar
Gilpin, M. E. & Soulé, M. E. (1986). Minimum viable populations: processes of species extinction. In Conservation Biology: The Science of Scarcity and Diversity (Ed. M. E. Soulé), pp. 19–34. Sinauer Associates, Sunderland, MA
Gomendio, M., Cassinello, J. & Roldan, E. R. S. (2000). A comparative study of ejaculate traits in three endangered ungulates with different levels of inbreeding: fluctuating asymmetry as an indicator of reproductive and genetic stress. Proceedings of the Royal Society of London B 267, 875–882CrossRefGoogle ScholarPubMed
Jiménez, J. A., Hughes, K. A., Alaks, G., Graham, L. & Lacy, R. C. (1994). An experimental study of inbreeding depression in a natural habitat. Science 266, 271–273CrossRefGoogle Scholar
Kalinowski, S. T. & Hedrick, P. W. (1999). Detecting inbreeding depression is difficult in captive endangered species. Animal Conservation 2, 131–136CrossRefGoogle Scholar
Keller, L. F. (1998). Inbreeding and its fitness effects in an insular population of song sparrows (Melospiza melodia). Evolution 52, 240–250Google Scholar
Lacy, R. C. (1997). Importance of genetic variation to the viability of mammalian populations. Journal of Mammalogy 78, 320–335CrossRefGoogle Scholar
Lacy, R. C., Alaks, G. & Walsh, A. (1996). Hierarchical analysis of inbreeding depression in Peromyscus polionotus. Evolution 50, 2187–2200CrossRefGoogle ScholarPubMed
Lacy, R. C. & Ballou, J. D. (1998). Effectiveness of selection in reducing the genetic load in populations of Peromyscus polionotus during generation of inbreeding. Evolution 52, 900–909CrossRefGoogle Scholar
Laikre, L., Andren, R., Larsson, H-O. W. & Ryman, N. (1996). Inbreeding depression in brown bear Ursus arctos. Biological Conservation 76, 69–72CrossRefGoogle Scholar
Laikre, L. & Ryman, N. (1991). Inbreeding depression in a captive wolf (Canis lupus) population. Conservation Biology 5, 33–40CrossRefGoogle Scholar
Madsen, T., Shine, R., Olsson, M. & Wittzell, H. (1999). Restoration of an inbred adder population. Nature 402, 34–35CrossRefGoogle Scholar
Margulis, S. W. (1998). Differential effects of inbreeding at juvenile and adult life-history stages in Peromyscus polionotus. Journal of Mammalogy 79, 326–336CrossRefGoogle Scholar
Marshall, T. C., Slate, J., Kruuk, L. E. B. & Pemberton, J. M. (1998). Statistical confidence for likelihood-based paternity inference in natural populations. Molecular Ecology 7, 639–655CrossRefGoogle ScholarPubMed
Marshall, T. C. & Spalton, J. A. (2000). Simultaneous inbreeding and outbreeding depression in reintroduced Arabian oryx. Animal Conservation 3, 241–248CrossRefGoogle Scholar
Meagher, S., Penn, D. J. & Potts, W. K. (2000). Male–male competition magnifies inbreeding depression in wild house mice. Proceedings of the National Academy of Sciences USA 97, 3324–3329CrossRefGoogle ScholarPubMed
Mills, L. S. & Smouse, P. E. (1994). Demographic consequences of inbreeding in remnant populations. American Naturalist 144, 412–431CrossRefGoogle Scholar
Montgomery, M. E., Duckett, R. J., Houlden, B. A. & Taggart, D. A. (2000b). Inbreeding depression in the koala, addendum to Proceedings of the 47th Annual Meeting of the Genetics Society of Australia. Australian National University, Canberra
Montgomery, M. E., Woodworth, L. M., Nurthen, R. K., Gilligan, D. M., Briscoe, D. A. & Frankham, R. (2000a). Relationships between population size and loss of genetic diversity: comparisons of experimental results with theoretical predictions. Conservation Genetics 1, 33–43CrossRefGoogle Scholar
Newman, D. & Pilson, D. (1997). Increased probability of extinction due to decreased genetic effective population size: experimental populations of Clarkia pulchella. Evolution 51, 354–362CrossRefGoogle ScholarPubMed
Pemberton, J. M., Albon, S. D., Guinness, F. E., Clutton-Brock, T. H. & Dover, G. A. (1992). Behavioral estimates of male mating success tested by DNA fingerprinting in a polygynous mammal. Behavioral Ecology 3, 66–75CrossRefGoogle Scholar
Pemberton, J. M., Coltman, D. W., Coulson, T. N. & Slate, J. (1999). Using microsatellites to measure the fitness consequences of inbreeding and outbreeding. In Microsatellites: Evolution and Application (Eds. D. B. Goldstein & C. Schlötterer), pp. 151–164. Oxford University Press, New York
Peterson, R. O., Thomas, N. J., Thurber, J. M., Vucetich, J. A. & Waite, T. A. (1998). Population limitation and the wolves of Isle Royale. Journal of Mammalogy 79, 828–841CrossRefGoogle Scholar
Pray, L. A., Schwartz, J. M., Goodnight, C. J. & Stevens, L. (1994). Environmental dependency of inbreeding depression: implications for conservation biology. Conservation Biology 8, 562–568CrossRefGoogle Scholar
Ralls, K., Ballou, J. D. & Templeton, A. (1988). Estimates of lethal equivalents and the cost of inbreeding in mammals. Conservation Biology 2, 185–193CrossRefGoogle Scholar
Reed, D. H. & Bryant, E. H. (2000). Experimental tests of minimum viable population size. Animal Conservation 3, 7–14CrossRefGoogle Scholar
Saccheri, I., Kuussaari, M., Kankare, M., Vikman, P., Fortelius, W. & Hanski, I. (1998). Inbreeding and extinction in a butterfly metapopulation. Nature 392, 491–494CrossRefGoogle Scholar
Sherwin, W. B., Timms, P., Wilcken, J. & Houlden, B. (2000). Analysis and conservation implications of koala genetics. Conservation Biology 14, 639–649CrossRefGoogle Scholar
Slate, J., Kruuk, L. E. B., Marshall, T. C., Pemberton, J. M. & Clutton-Brock, T. H. (2000). Inbreeding depression influences lifetime breeding success in a wild population of red deer (Cervus elaphus). Proceedings of the Royal Society of London B 267, 1–6CrossRefGoogle Scholar
Tanaka, Y. (2000). Extinction of populations by inbreeding depression under stochastic environments. Population Ecology 42, 55–62CrossRefGoogle Scholar
Vrijenhoek, R. C. (1994). Genetic diversity and fitness in small populations. In Conservation Genetics (Eds. V. Loeschcke, J. Tomiuk & S. K. Jain), pp. 37–53. Birkhauser Verlag, Basel, SwitzerlandCrossRef
Westemeier, R. L., Brawn, J. D., Simpson, S. A., Esker, T. L., Jansen, R. W., Walk, J. W., Kershner, E. L., Bouzat, J. L. & Paige, K. N. (1998). Tracking the long-term decline and recovery of an isolated population. Science 282, 1695–1698CrossRefGoogle ScholarPubMed
Worthington-Wilmer, J. M., Melzer, A., Carrick, F. & Moritz, C. (1993). Low genetic diversity and inbreeding depression in Queensland koalas. Wildlife Research 20, 177–188CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×