Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-20T23:34:22.583Z Has data issue: false hasContentIssue false

38 - Black holes are not black – Relativity Theory and Quantum Theory

Published online by Cambridge University Press:  05 May 2010

Hans Stephani
Affiliation:
Friedrich-Schiller-Universität, Jena, Germany
Get access

Summary

The picture of black holes we have drawn so far changes drastically if quantum effects are taken into account. Before we go into the details of this in Section 5 of this chapter, we want to make a few general remarks on the interplay of Relativity Theory and Quantum Theory. For a more detailed discussion we refer the reader to the literature given at the end of the chapter.

The problem

The General Theory of Relativity is completely compatible with all other classical theories. Even if the details of the coupling of a classical field (Maxwell, Dirac, neutrino or Klein–Gordon field) to the metric field are not always free of arbitrariness and cannot yet be experimentally tested with sufficient accuracy, no doubt exists as to the inner consistency of the procedure.

This optimistic picture becomes somewhat clouded when one appreciates that besides the gravitational field the only observable classical field in our universe is the Maxwell field, while the many other interactions between the building blocks of matter can only be described with the aid of Quantum Theory. A unification of Relativity Theory and Quantum theory has not yet been achieved, however.

One of the main postulates of relativity theory is that a locally geodesic coordinate system can be introduced at every point of space-time, so that the action of the gravitational force becomes locally ineffective and the space is approximately a Minkowski space. Hence it is easily understandable why in our neighbourhood, with its relatively small space curvature, space is, to very good approximation, as it is assumed to be in quantum theory.

Type
Chapter
Information
Relativity
An Introduction to Special and General Relativity
, pp. 330 - 341
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×