Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-23T08:18:50.215Z Has data issue: false hasContentIssue false

10 - Measurement Errors

Published online by Cambridge University Press:  05 January 2013

A. Colin Cameron
Affiliation:
University of California, Davis
Pravin K. Trivedi
Affiliation:
Indiana University
Get access

Summary

Introduction

The well-known bivariate linear errors-in-variables regression model with additive measurement errors in both variables provides one benchmark for nonlinear errors-in-variables models. The standard textbook treatment of the errors-invariables case emphasizes the attenuation result, which says that the estimated least squares estimate of the slope parameter is downward-biased if both variables are subject to measurement error. The essential problem lies in the correlation between the observed explanatory variable and the measurement error. This leads to distorted inferences about the role of the covariate. Although this result does not always extend to general cases, such as a linear model with two or more covariates measured with error, it is usually of interest to consider whether a similar attenuation bias exists generally in nonlinear models (Carroll et al., 1995).

There are important similarities and differences between measurement errors in nonlinear and linear models. First, in nonlinear models it may be more natural to allow measurement errors to enter multiplicatively rather than additively. Second, models in which the measurement errors are confined to the count variable, rather than covariates, are of considerable interest. Third, the direction of measurement errors in count models is sometimes strongly suspected from a priori analysis, which permits stronger conclusions.

Given these motivations, this chapter considers estimation and inference in the presence of measurement errors in exposure time, errors due to underreporting and misclassification of events. Such errors are shown to have important consequences for model identification, specification, estimation, and testing.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×