Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-25T18:56:14.373Z Has data issue: false hasContentIssue false

38 - REM sleep in patients with depression

from Section V - Functional significance

Published online by Cambridge University Press:  07 September 2011

Axel Steiger
Affiliation:
Max Planck Institute of Psychiatry, Germany
Harald Murck
Affiliation:
Philipps-University of Marburg, Germany
Birendra N. Mallick
Affiliation:
Jawaharlal Nehru University
S. R. Pandi-Perumal
Affiliation:
Somnogen Canada Inc, Toronto
Robert W. McCarley
Affiliation:
Harvard University, Massachusetts
Adrian R. Morrison
Affiliation:
University of Pennsylvania
Get access

Summary

Summary

Disinhibition of REM sleep is a characteristic finding in patients with major depression. REM disinhibition includes shortened REM latency, prolonged first REM periods, and increased REM density (measure of the frequency of rapid eye movements). REM latency, but not REM density, is influenced by age. REM-sleep changes appear to be closely related to the development and the course of depression. A relationship between REM-sleep changes before treatment and treatment outcome is suggested by several studies. REM density is elevated in healthy subjects who have a high genetic load for affective disorders. Most antidepressants suppress REM sleep in patients, normal controls, and laboratory animals. REM-sleep suppression appears to be a distinct hint for the antidepressive properties of a substance, whereas it is not absolutely required. REM-sleep variables during treatment with antidepressants appear to predict the course of the illness. The noradrenergic locus coeruleus and the serotonergic dorsal raphe nuclei, the cholinergic nuclei, and the nucleus of the solitary tract (NTS) are involved in sleep and mood regulation. Hyperaldosteronism has been demonstrated in major depression. Subchronic aldosterone administration can induce anxiety-like behavior. Because of the unusual presence within the brain of both mineralocorticoid receptors and 11-β hydroxysteroid dehydrogenase (11-β HSD), the NTS can act as the gate of the influence of peripheral aldosterone into the brain. Importantly, aldosterone secretion is closely related to the REM/non-REM cycle and is sensitive to sleep manipulations. Hypersecretion of corticotropin-releasing hormone (CRH), the key hormone of the hypothalamo–pituitary–adrenocortical system appears to participate in the pathophysiology of REM-sleep disinhibition. This is supported by increased time spent in REM sleep in mice overexpressing corticotropin-releasing hormone (CRH) in the brain. Furthermore CRH-receptor-type 1 antagonism seems to induce normalization of the REM-sleep changes related to the depression.

Type
Chapter
Information
Rapid Eye Movement Sleep
Regulation and Function
, pp. 383 - 394
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antonijevic, I. A. & Steiger, A. (2003) Depression-like changes of the sleep-EEG during high dose corticosteroid treatment in patients with multiple sclerosis. Psychoneuroendocrinol 28: –95.CrossRefGoogle ScholarPubMed
Armitage, R. (2007) Sleep and circadian rhythms in mood disorders. Acta Psychiatr Scand 115(Suppl. 433): –15.CrossRefGoogle Scholar
Aston-Jones, G. & Bloom, F. E. (1981) Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep–waking cycle. J Neurosci 1:–86.CrossRefGoogle ScholarPubMed
Berger, M., Höchli, D., Zulley, J., Lauer, C. & von Zerssen, D. (1985) Cholinomimetic drug RS 86, REM sleep, and depression. Lancet 1: –6.Google ScholarPubMed
Born, J., De Kloet, E. R., Wenz, H., Kern, W. & Fehm, H. L. (1991) Gluco- and antimineralocorticoid effects on human sleep: a role of central corticosteroid receptors. Am J Physiol: Endocr Metab 260: –8.Google ScholarPubMed
Born, J., Zwick, A., Roth, G., Fehm-Wolfsdorf, G. & Fehm, H. L. (1987) Differential effects of hydrocortisone, fluocortolone, and aldosterone on nocturnal sleep in humans. Acta Endocrinol (Copenhagen) 116: –37.Google ScholarPubMed
Brandenberger, G., Follenius, M., Goichot, B. . (1994) Twenty-four-hour profiles of plasma renin activity in relation to the sleep-wake cycle. J Hypertension 12: –83.CrossRefGoogle ScholarPubMed
Charloux, A., Gronfier, C., Lonsdorfer-Wolf, E., Piquard, F. & Brandenberger, G. (1999) Aldosterone release during the sleep-wake cycle in humans. Am J Physiol 276: –9.Google ScholarPubMed
Charloux, A., Gronfier, C., Chapotot, F., . (2001) Sleep deprivation blunts the night time increase in aldosterone release in humans. J Sleep Res 10: –33.CrossRefGoogle ScholarPubMed
Chen, C. N. (1979) Sleep, depression and antidepressants. Br J Psychiatry 135: –402.CrossRefGoogle ScholarPubMed
De Kloet, E. R., Joels, M. & Holsboer, F. (2005) Stress and the brain: from adaptation to disease. Nat Rev Neurosci 6: –75.CrossRefGoogle ScholarPubMed
Emanuele, E., Geroldi, D., Minoretti, P., Coen, E. & Politi, P. (2005) Increased plasma aldosterone in patients with clinical depression. Arch Med Res 36: –8.CrossRefGoogle ScholarPubMed
Feinberg, M., Gillin, J. C., Carroll, B. J., Greden, J. F. & Zis, A. P. (1982) EEG studies of sleep in the diagnosis of depression. Biol Psychiatry 17: –16.Google ScholarPubMed
Friess, E., von Bardeleben, U., Wiedemann, K., Lauer, C. & Holsboer, F. (1994) Effects of pulsatile cortisol infusion on sleep-EEG and nocturnal growth hormone release in healthy men. J Sleep Res 3: –9.CrossRefGoogle ScholarPubMed
Geerling, J. C., Kawata, M. & Loewy, A. D. (2006) Aldosterone-sensitive neurons in the rat central nervous system. J Comp Neurol 494: –27.CrossRefGoogle ScholarPubMed
Gillin, J. C., Sitaram, N. & Duncan, W. C. (1979) Muscarinic supersensitivity: a possible model for the sleep disturbance of primary depression?Psychiatry Res 1: –22.CrossRefGoogle ScholarPubMed
Gottesmann, C. (1999) The neurophysiology of sleep and waking: intracerebral connections, functioning and ascending influences of the medulla oblongata. Prog Neurobiol 59: –54.CrossRefGoogle ScholarPubMed
Grözinger, M., Kogel, P. & Röschke, J. (2002) Effects of REM sleep awakenings and related wakening paradigms on the ultradian sleep cycle and the symptoms in depression. J Psychiatric Res 36: –308.CrossRefGoogle ScholarPubMed
Hatzinger, M., Hemmeter, U. M., Brand, S., Ising, M. & Holsboer-Trachsler, E. (2004) Electroencephalographic sleep profiles in treatment course and long-term outcome of major depression: association with DEX/CRH-test response. J Psychiatric Res 38: –65.CrossRefGoogle ScholarPubMed
Held, K., Künzel, H., Ising, M. . (2004) Treatment with the CRH1-receptor antagonist R121919 improves sleep EEG in patients with depression. J Psychiatric Res 38: –36.CrossRefGoogle ScholarPubMed
Hobson, J. A., McCarley, R. W. & Wyzinski, P. W. (1975) Sleep cycle oscillation: reciprocal discharge by two brainstem neuronal groups. Science 189: –8.CrossRefGoogle ScholarPubMed
Holsboer, F. & Ising, M. (2010) Stress hormones and stress hormone regulation: Biological role and behavioral effects. Ann Rev Psychol 61: –109.CrossRefGoogle Scholar
Hubain, P. P., Staner, L., Dramaix, M. . (1998) The dexamethasone suppression test and sleep electroencephalogram in nonbipolar major depressed inpatients: a multivariate analysis. Biol Psychiatry 43: –9.CrossRefGoogle ScholarPubMed
Jones, D., Kelwala, S., Bell, J. . (1985) Cholinergic REM sleep induction response correlation with endogenous major depressive subtype. Psychiatry Res 14: –110.CrossRefGoogle ScholarPubMed
Kimura, M., Müller-Preuss, P., Lu, A. . (2009) Conditional corticotropin-releasing hormone overexpression in the mouse forebrain enhances rapid eye movement sleep. Mol Psychiatry doi:.Google ScholarPubMed
Kupfer, D. J. & Foster, F. G. (1972) Interval between onset of sleep and rapid-eye-movement sleep as an indicator of depression. Lancet 2: –6.Google Scholar
Kupfer, D. J., Spiker, D. G., Coble, P. A. . (1981) Sleep and treatment prediction in endogenous depression. Am J Psychiatry 138: –34.Google ScholarPubMed
Lahmeyer, H. W., Poznanski, E. O. & Bellur, S. N. (1983) EEG sleep in depressed adolescents. Am J Psychiatry 140: –3.Google ScholarPubMed
Lauer, C. J., Krieg, J. C., Riemann, D., Zulley, J. & Berger, M. (1990) A polysomnographic study in young psychiatric inpatients: major depression, anorexia nervosa, bulimia nervosa. J Affect Disord 18: –45.CrossRefGoogle ScholarPubMed
Lauer, C., Riemann, D., Wiegand, M. & Berger, M. (1991) From early to late adulthood. Changes in EEG sleep of depressed patients and healthy volunteers. Biol Psychiatry 29: –93.CrossRefGoogle ScholarPubMed
Lauer, C. J., Krieg, J. C., Garcia-Borreguero, D., Özdaglar, A. & Holsboer, F. (1992) Panic disorder and major depression: A comparative electroencephalogramic sleep study. Psychiatry Res 44: –54.CrossRefGoogle Scholar
Lauer, C. J., Schreiber, W., Holsboer, F. & Krieg, J. C. (1995) In quest of identifying vulnerability markers for psychiatric disorders by all-night polysomnography. Arch Gen Psychiatry 52: –53.CrossRefGoogle ScholarPubMed
Lauer, C. J., Modell, S., Schreiber, W., Krieg, J. C. & Holsboer, F. (2004) Prediction of the development of a first major depressive episode with a rapid eye movement sleep induction test using the cholinergic agonist RS 86. J Clin Psychopharmacol 24: –7.CrossRefGoogle ScholarPubMed
Linkowski, P., Mendlewicz, J., Kerkhofs, M. . (1987) 24-hour profiles of adrenocorticotropin, cortisol, and growth hormone in major depressive illness: effect of antidepressant treatment. J Clin Endocrinol Metab 65: –52.CrossRefGoogle ScholarPubMed
Mallick, B. N., Siegel, J. M. & Fahringer, H. (1990) Changes in pontine unit activity with REM sleep deprivation. Brain Res 515: –8.CrossRefGoogle ScholarPubMed
Modell, S., Ising, M., Holsboer, F. & Lauer, C. J. (2002) The Munich Vulnerability Study on Affective Disorders: stability of polysomnographic findings over time. Biol Psychiatry 52: –7.CrossRefGoogle ScholarPubMed
Modell, S., Ising, M., Holsboer, F. & Lauer, C. J. (2005) The Munich vulnerability study on affective disorders: premorbid polysomnographic profile of affected high-risk probands. Biol Psychiatry 58: –9.CrossRefGoogle ScholarPubMed
Murck, H., Held, K., Ziegenbein, M., Koch, K. & Steiger, A. (2003a) The renin-angiotensin-aldosterone system in patients with depression compared to controls – a sleep endocrine study. BMC Psychiatry 29: –15.Google Scholar
Murck, H., Nickel, T., Künzel, H. . (2003b) State markers of depression in sleep EEG: Dependency on drug and gender in patients treated with tianeptine or paroxetine. Neuropsychopharmacol 28: –58.CrossRefGoogle ScholarPubMed
Murck, H., Uhr, M., Ziegenbein, M. . (2006) Renin–Angiotensin–Aldosterone system, HPA-axis, and sleep-EEG changes in unmedicated patients with depression after total sleep deprivation. Pharmacopsychiatry 39: –7.CrossRefGoogle ScholarPubMed
Nemeroff, C. B., Mayberg, H. S., Krahl, S. E. . (2006) VNS therapy in treatment-resistant depression: clinical evidence and putative neurobiological mechanisms. Neuropsychopharmacol 31: –55.CrossRefGoogle ScholarPubMed
Porkka-Heiskanen, T., Smith, S. E., Taira, T. . (1995) Noradrenergic activity in rat brain during rapid eye movement sleep deprivation and rebound sleep. Am J Physiol Reg, Integr Comp Physiol 268: –R63.CrossRefGoogle ScholarPubMed
Puig-Antich, J., Goetz, R., Hanlon, C. . (1982) Sleep architecture and REM sleep measures in prepubertal children with major depression: a controlled study. Arch Gen Psychiatry 39: –39.CrossRefGoogle ScholarPubMed
Riemann, D., Hohagen, F., Lauer, C. & Berger, M. (1991) Long-term evolution of sleep in depression. In Sleep and Aging, eds. S. Smirne, M. Franceschi & L. Ferini-Strambi. Paris:Masson, pp. 195–204.Google Scholar
Schreiber, W., Lauer, C. J., Krumrey, K., Holsboer, F. & Krieg, J. C. (1992) Cholinergic REM sleep induction test in subjects at high risk for psychiatric disorders. Biol Psychiatry 32: –90.CrossRefGoogle ScholarPubMed
Sitaram, N., Nurnberger, J. I., Jr., Gershon, E. S. & Gillin, J. C. (1980) Faster cholinergic REM sleep induction in euthymic patients with primary affective illness. Science 208: –2.CrossRefGoogle ScholarPubMed
Sonntag, A., Rothe, B., Guldner, J. . (1996) Trimipramine and imipramine exert different effects on the sleep EEG and on nocturnal hormone secretion during treatment of major depression. Depression 4: –13.3.0.CO;2-S>CrossRefGoogle ScholarPubMed
Spiker, D. G., Coble, P., Cofsky, J., Foster, F.G. & Kupfer, D. J. (1978) EEG sleep and severity of depression. Biol Psychiatry 13: –8.Google ScholarPubMed
Steiger, A. (1999) Unterschiede in den Wirkungen von Antidepressiva auf den Schlaf. Psychopharmakotherapie 3: –5.Google Scholar
Steiger, A. (2002) Neuroendocrinology of sleep disorders. In Textbook of Biological Psychiatry. eds. H. d’Haenen, J. A. den Boer, H. Westenberg & P. Willner. London: John Wiley & Sons, pp. 1229–46.Google Scholar
Steiger, A. & Kimura, M. (2010) Wake and sleep-EEG provide biomarkers in depression. J Psychiatric Res 44(4): –52.CrossRefGoogle ScholarPubMed
Steiger, A., Holsboer, F., Gerken, A., Demisch, L., Benkert, O. (1987) Results of an open clinical trial of brofaromine (CGP 11 305 A), a competitive, selective, and short-acting inhibitor of MAO-A in major endogenous depression. Pharmacopsychiatry 20: –9.CrossRefGoogle Scholar
Steiger, A., von Bardeleben, U., Herth, T. & Holsboer, F. (1989) Sleep EEG and nocturnal secretion of cortisol and growth hormone in male patients with endogenous depression before treatment and after recovery. J Affect Disord 16: –95.CrossRefGoogle ScholarPubMed
Steiger, A., Gerken, A., Benkert, O. & Holsboer, F. (1993a) Differential effects of the enantiomers R(–) and S(+) oxaprotiline on major endogenous depression, the sleep EEG and neuroendocrine secretion: studies on depressed patients and normal controls. Eur Neuropsychopharmacol 3: –26.CrossRefGoogle ScholarPubMed
Steiger, A., Rupprecht, R., Spengler, D. . (1993b) Functional properties of deoxycorticosterone and spironolactone: molecular characterization and effects on sleep-endocrine activity. Journal of Psychiatric Research 27: –84.CrossRefGoogle ScholarPubMed
Takeda, R., Miyamori, I., Ikeda, M. . (1984) Circadian rhythm of plasma aldosterone and time dependent alterations of aldosterone regulators. J Steroid Biochem 20: –3.Google ScholarPubMed
Thakkar, M. M., Strecker, R. E. & McCarley, R. W. (1998) Behavioral state control through differential serotonergic inhibition in the mesopontine cholinergic nuclei: a simultaneous unit recording and microdialysis study. J Neurosci 18: –7.CrossRefGoogle ScholarPubMed
Trulson, M. E. & Jacobs, B. L. (1979) Raphe unit activity in freely moving cats: correlation with level of behavioral arousal. Brain Res 163: –50.CrossRefGoogle ScholarPubMed
Valdes-Cruz, A., Magdaleno-Madrigal, V. M., Martinez-Vargas, D. . (2002) Chronic stimulation of the cat vagus nerve: effect on sleep and behavior. Prog Neuro-Psychopharmacol Biol Psychiatry 26: –18.CrossRefGoogle ScholarPubMed
Vogel, G. W. (1983) Evidence for REM sleep deprivation as the mechanism of action of antidepressant drugs. Prog Neuro-Psychopharmacol Biol Psychiatry 7: –9.CrossRefGoogle ScholarPubMed
Vogel, G. W., Thurmond, A., Gibbons, P., Sloan, K. & Walker, M. (1975) REM sleep reduction effects on depression syndromes. Arch Gen Psychiatry 32: –77.CrossRefGoogle ScholarPubMed
West, C. H. K., Ritchie, J. C., Boss-Williams, K. A. & Weiss, J. M. (2009) Antidepressant drugs with differing pharmacological actions decrease activity of locus coeruleus neurons. Int J Neuropsychopharmacol 12: –41.CrossRefGoogle ScholarPubMed
Wiedemann, K., Lauer, C., Pollmächer, T. & Holsboer, F. (1994) Sleep-endocrine effects of antigluco- and antimineralocorticoids in healthy males. Am J Physiol Endocrin Metab 267:–E14.CrossRefGoogle ScholarPubMed
Wong, M. L., Kling, M. A., Munson, P. J. . (2000) Pronounced and sustained central hypernoradrenergic function in major depression with melancholic features: relation to hypercortisolism and corticotropin-releasing hormone. Proc Natnl Acad Sci USA 97: –30.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×