Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-17T10:54:32.553Z Has data issue: false hasContentIssue false

11 - Oscillators

Published online by Cambridge University Press:  05 June 2012

Jon B. Hagen
Affiliation:
Cornell University, New York
Get access

Summary

Oscillators are autonomous dc-to-ac converters. They are used as the frequency-determining elements of transmitters and receivers and as master clocks in computers, frequency synthesizers, wristwatches, etc. Their function is to divide time into regular intervals. The invention of mechanical oscillators (clocks) made it possible to divide time into intervals much smaller than the Earth's rotation period and much more regular than a human pulse rate. Electronic oscillators are analogs of mechanical clocks.

Negative feedback (relaxation) oscillators

The earliest clocks used a “verge and foliot” mechanism which resembled a torsional pendulum but was not a pendulum at all. These clocks operated as follows: torque derived from a weight or a wound spring was applied to a pivoted mass. The mass accelerated according to Torque = I d2θ/dt2 (the angular version of F = ma). When θ reached a threshold, θ0, the mechanism reversed the torque, causing the mass to accelerate in the opposite direction. When it reached −θ0 the torque reversed again, and so on. The period was a function of the moment of inertia of the mass, the magnitude of the torque, and the threshold setting. These clocks employed negative feedback; when the controlled variable had gone too far in either direction, the action was reversed. Most home heating systems are negative feedback oscillators; the temperature cycles between the turn on and turn off points of the thermostat. Negative feedback electronic oscillators are called “relaxation oscillators.”

Type
Chapter
Information
Radio-Frequency Electronics
Circuits and Applications
, pp. 120 - 133
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Oscillators
  • Jon B. Hagen, Cornell University, New York
  • Book: Radio-Frequency Electronics
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511626951.012
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Oscillators
  • Jon B. Hagen, Cornell University, New York
  • Book: Radio-Frequency Electronics
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511626951.012
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Oscillators
  • Jon B. Hagen, Cornell University, New York
  • Book: Radio-Frequency Electronics
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511626951.012
Available formats
×