Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T12:40:23.413Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 September 2019

Carol E. Cleland
Affiliation:
University of Colorado Boulder
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
The Quest for a Universal Theory of Life
Searching for Life As We Don't Know It
, pp. 220 - 242
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aagaard, K., Ma, J., Antony, K. M., Ganu, R., Petrosino, J., and Versalovic, J., The placenta harbors a unique microbiome, Sci. Transl. Med., 6, 237ra65, 2014.Google ScholarPubMed
Agmon, E., Gates, A. J., Churavy, V., and Beer, R., Exploring the space of viable configurations in a model of metabolism–boundary co-construction, Artif. Life, 22, 153171, 2016.Google Scholar
Ainsworth, G. C., Introduction to the History of Mycology, Cambridge University Press, Cambridge, 1976.Google Scholar
Airapetian, V. S., Glocer, A., Khazanov, G. V., et al., How hospitable are space weather affected habitable zones? The role of ion escape, Astrophys. J., 836, L3, 2017.Google Scholar
Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., and Walter, P., Molecular Biology of the Cell, 4th edition, Garland Science, New York, 2002.Google Scholar
Allwood, A. C., Grotzinger, J. P., Knoll, A. H., Burch, I. W., and Anderson, M. S., Controls on development and diversity of early Archean stromatolites, Proc. Natl. Acad. Sci. USA, 106, 95489555, 2009.CrossRefGoogle ScholarPubMed
Amend, J. P., and Shock, E. L., Energetics of amino acid synthesis in hydrothermal ecosystems, Science, 281, 16591662, 1998.Google Scholar
American Society for Microbiology, Humans have ten times more bacteria than human cells: How do microbial communities affect human health? ScienceDaily, 5, 2008. (www.sciencedaily.com/releases/2008/06/080603085914.htm)Google Scholar
Anastasi, C., Buchet, F. F., Crowe, M. A., Parkes, A. L., Powner, M. W., Smith, J. M., and Sutherland, J. D., RNA: prebiotic product, or biotic invention? Chem. Biodivers., 4, 721739, 2007.Google Scholar
Anbar, A. D., Zahnle, K. J., Arnold, G. L., and Mojzsis, S. J., Extraterrestrial iridium, sediment accumulation and the habitability of the early Earth’s surface, J. Geophys. Res., 106, 32193236, 2001.CrossRefGoogle Scholar
Ander, M. E., Zumberge, M. A., Lautzenhiser, T., Parker, R. L., Aiken, C. L. V., Gorman, M. R., Nieto, M. M., Cooper, A. P. R., and Wirtz, W., Test of Newton’s inverse-square law in the Greenland ice cap, Phys. Rev. Lett., 62, 985988, 1989.Google Scholar
Andersen, A., and Haack, H., Carbonaceous chondrites: tracers of the prebiotic chemical evolution of the Solar System, Int. J. Astrobiol., 4, 1317, 2005.Google Scholar
Anderson, C., The end of theory: the data deluge makes the scientific method obsolete, Wired Magazine, July 16, 2008. (www.wired.com/science/discoveries/magazine/16 07/pb theory)Google Scholar
Arslan, D., Legendre, M., Seltzer, V., Abergel, C., and Claverie, J. M., Distant Mimivirus relative with a larger genome highlights the fundamental features of Megaviridae, Proc. Natl. Acad. Sci. USA, 108, 1748617491, 2011.CrossRefGoogle ScholarPubMed
Atwood, K. C., Schneider, L. K., and Ryan, F. J., Selective mechanisms in bacteria, Cold Spring Harb. Symp. Quant. Biol., 16, 345354, 1951.Google Scholar
Audi, R., ed., The Cambridge Dictionary of Philosophy, Cambridge University Press, New York, 1995.Google Scholar
Bada, J., State-of-the-art instruments for detecting extraterrestrial life, Proc. Natl. Acad. Sci. USA, 98, 797800, 2001.CrossRefGoogle ScholarPubMed
Bains, W., Many chemistries could be used to build living systems, Astrobiology, 4, 137167, 2004.Google Scholar
Baker, B. J., Tyson, G. W., Webb, R. I., Flanagan, J., Hugenholtz, P., Allen, E. E., and Banfield, J. F., Lineages of acidophilic Archaea revealed by community genomic analysis, Science, 314, 19331935, 2006.Google Scholar
Ball, P., H2O: A Biography of Water, Weidenfeld & Nicolson, London, 1999.Google Scholar
Bamford, D. H., Burnett, R. M., and Stuart, D. I., Evolution of viral structure, Theor. Popul. Biol., 61, 461470, 2002.Google Scholar
Barnes, J., ed., The Complete Works of Aristotle, Princeton University Press, Princeton, NJ, 1984.Google Scholar
Baross, J. A., Benner, S. A., Cody, G. D., et al., The Limits to Organic Life in Planetary Systems, National Academy Press, Washington, DC, 2007.Google Scholar
Beatty, J., The evolutionary contingency thesis, in Concepts, Theories, and Rationality in the Biological Sciences: The Second Pittsburgh-Konstanz Colloquium in the Philosophy of Science, pp. 4581, Wolters, G. and Lennox, J., eds., University of Pittsburgh Press, Pittsburgh, PA, 1995.Google Scholar
Bedau, M. A., Weak emergence, Philos. Perspect., 11, 375399, 1997.Google Scholar
Bedau, M. A., Four puzzles about life, Artif. Life, 4, 125140, 1998. [Reprinted in Bedau and Cleland 2010]CrossRefGoogle ScholarPubMed
Bedau, M. A., An Aristotelian account of minimal life, Astrobiology, 10, 10111020, 2010.CrossRefGoogle Scholar
Bedau, M. A., and Cleland, C. E., eds., The Nature of Life: Classic and Contemporary Perspectives from Philosophy and Science, Cambridge University Press, Cambridge, 2010.CrossRefGoogle Scholar
Bedau, M. A., McCaskill, J. S., Packard, N. H., et al., Open problems in artificial life, Artif. Life, 6, 363376, 2000.Google Scholar
Beegle, L. W., Wilson, M. G., Abilleira, F., Jordan, J. F., and Wilson, G. R., A concept for NASA’s 2016 astrobiology field laboratory, Astrobiology, 7, 545577, 2007.CrossRefGoogle ScholarPubMed
Bell, E. A., Boehnke, P., Harrison, T. M., and Mao, W. L., Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon, Proc. Natl. Acad. Sci. USA, 112, 1451814521, 2015.Google Scholar
Bell, M. S., Experimental shock decomposition of siderite and the origin of magnetite in Martian meteorite ALH 84001, Meteorit. Planet. Sci., 42, 935940, 2007.Google Scholar
Belloche, A., Garrod, R. T., Müller, H. S., and Menten, K. M., Detection of a branched alkyl molecule in the interstellar medium: iso-propyl cyanide, Science, 345, 15841587, 2014.Google Scholar
Belshaw, R., Pereira, V., Katzourakis, A., Talbot, G., Paces, J., Burt, A., and Tristem, M., Long-term reinfection of the human genome by endogenous retroviruses, Proc. Natl. Acad. Sci. USA, 101, 48944899, 2004.CrossRefGoogle ScholarPubMed
Benner, S. A., Redesigning life: organic chemistry and the evolution of protein, Chimia, 41, 142148, 1987.Google Scholar
Benner, S. A., Expanding the genetic lexicon: incorporating nonstandard amino acids into proteins by ribosome-based synthesis, Trends Biotechnol., 12, 158163, 1994.Google Scholar
Benner, S. A., Understanding nucleic acids using synthetic chemistry, Acc. Chem. Res., 37, 784797, 2004.Google Scholar
Benner, S. A., Defining life, Astrobiology, 10, 10211030, 2010.CrossRefGoogle ScholarPubMed
Benner, S. A., and Ellington, A. D., The last ribo-organism, Nature, 329, 296296, 1987.Google Scholar
Benner, S. A., and Hutter, D., Phosphates, DNA, and the search for nonterran life: a second generation model for genetic molecules, Bioorg. Chem., 30, 6280, 2002.Google Scholar
Benner, S. A., Devine, K. G., Matveeva, L. N., and Powell, D. H., The missing organic molecules on Mars, Proc. Natl. Acad. Sci. USA, 97, 24252430, 2000.Google Scholar
Benner, S. A., Ricardo, A., and Carrigan, M. A., Is there a common chemical model for life in the universe? Curr. Opin. Chem. Biol., 8, 672689, 2004. [Reprinted in Bedau and Cleland 2010]Google Scholar
Bianciardi, G., Miller, J. D., Straat, P. A., and Levin, G. V., Complexity analysis of the Viking labeled release experiments, Int. J. Aeronaut. Space, 13, 1426, 2012.Google Scholar
Bich, L., and Green, S., Is defining life pointless? Operational definitions at the frontiers of biology, Synthese, 195, 39193946, 2017.Google Scholar
Biemann, K., Oro, J., Toulmin, P. III, Orgel, L. E., Nier, A. O., Anderson, D. M., Simmonds, P. G., Flory, D., Diaz, A. V., Rushneck, D. R., and Biller, J. A., Search for organic and volatile inorganic compounds in two surface samples from the Chryse Planitia region of Mars, Science, 194, 7276, 1976.Google Scholar
Biemann, K., Oro, J., Toulmin, P. III, et al., The search for organic substances and inorganic volatile compounds in the surface of Mars, J. Geophys. Res., 82, 46414658, 1977.Google Scholar
Birtles, R. J., Rowbotham, T. J., Storey, C., Marrie, T. J., and Raoult, D., Chlamydia-like obligate parasite of free-living amoebae, Lancet, 349, 925926, 1997.CrossRefGoogle ScholarPubMed
Boden, M., The Philosophy of Artificial Life, Oxford University Press, New York, 1996.Google Scholar
Boden, M., Autopoiesis and life, Cogn. Sci. Q., 1, 117145, 2000.Google Scholar
Boto, L., Horizontal gene transfer in evolution: facts and challenges, Proc. R. Soc. B, 277, 819827, 2010.Google Scholar
Boto, L., Horizontal gene transfer in the acquisition of novel traits by metazoans, Proc. R. Soc. B, 281, 2013.2450, 2014.Google Scholar
Boyd, R., Kinds, complexity and multiple realization, Philos. Stud., 95, 6798, 1999.Google Scholar
Bridgman, P. W., Operational analysis, Philos. Sci., 5, 114131, 1938.Google Scholar
Broad, C. D., The Mind and its Place in Nature, Routledge and Kegan Paul, London, 1925.Google Scholar
Brock, T. D., Thermophilic Microorganisms and Life at High Temperatures, Springer Verlag, Berlin, 1978.Google Scholar
Budin, I., and Devaraj, N. K., Membrane assembly driven by a biomimetic coupling reaction, J. Am. Chem. Soc., 134, 751753, 2012.Google Scholar
Bull, M., and Plummer, N. T., Part 1: the human gut microbiome in health and disease, Integr. Med. (Encinitas), 13, 1722, 2014.Google ScholarPubMed
Burke, C., Steinberg, P., Rusch, D., Kjelleberg, S., and Thomas, T., Bacterial community assembly based on functional genes rather than species, Proc. Natl. Acad. Sci. USA, 108, 1428814293, 2011.CrossRefGoogle ScholarPubMed
Cady, S., and Noffke, N., Geobiology: evidence for early life on Earth and the search for life on other planets, GSA Today, 19, 410, 2009.Google Scholar
Cafferty, B. J., and Hud, N. V., Abiotic synthesis of RNA in water: a common goal of prebiotic chemistry and bottom-up synthetic biology, Curr. Opin. Chem. Biol., 22, 146157, 2014.Google Scholar
Cairns-Smith, A., Genetic Takeover and the Mineral Origin of Life, Cambridge University Press, Cambridge, 1982.Google Scholar
Cairns-Smith, A. G., Hall, A. J., and Russell, M. J., Mineral theories of the origin of life and an iron sulfide example, Orig. Life Evol. Biosph., 22, 161180, 1992.CrossRefGoogle Scholar
Callahan, M. P., Smith, K. E., Cleaves, J. II, et al., Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases, Proc. Natl. Acad. Sci. USA, 108, 1399513998, 2011.Google Scholar
Canfield, D. E., The early history of atmospheric oxygen, Annu. Rev. Earth Planet. Sci., 33, 136, 2005.CrossRefGoogle Scholar
Carnegie Institution for Science, Re-conceptualizing the Origins of Life, Workshop, November 9–13, 2015. (https://carnegiescience.edu/events/lectures/re-conceptualizing-origin-life)Google Scholar
Cartwright, N., How the Laws of Physics Lie, Oxford University Press, Oxford, 1983.CrossRefGoogle Scholar
Cartwright, N., Nature’s Capacities and Their Measurements, Oxford University Press, Oxford, 1989.Google Scholar
Caschera, F., Bedau, M. A., Buchanan, A., et al., Coping with complexity: machine learning optimization of cell-free protein synthesis, Biotechnol. Bioeng., 108, 22182228, 2011.CrossRefGoogle ScholarPubMed
Cash, H. L., Whitman, C. V., Behrendt, C. L., and Hooper, L. V., Symbiotic bacteria direct expression of an intestinal bactericidal lectin, Science, 313, 11261130, 2006.CrossRefGoogle ScholarPubMed
Cech, T. R., Self‐splicing and enzymatic activity of an intervening sequence RNA from Tetrahymena, Nobel Lecture, Nobel Media, 1989. (www.nobelprize.org/prizes/chemistry/1989/cech/lecture)Google Scholar
Cech, T. R., The RNA worlds in context, Cold Spring Harb. Perspect. Biol., 4, a006742, 2012.Google Scholar
Chalmers, A., Galilean relativity and Galileo’s relativity, in Correspondence, Invariance and Heuristics: Essays in Honor of Heinz Post, pp. 189205, French, S. and Kamminga, J., eds., Springer, Dordrecht, 1993.Google Scholar
Chalmers, D. J., and Jackson, F., Conceptual analysis and reductive explanation, Philos. Rev., 110, 315360, 2001.Google Scholar
Chang, H., Is Water H2O? Evidence, Realism, and Pluralism, Springer, Dordrecht, 2014.Google Scholar
Chao, L., The meaning of life, BioScience, 50, 245250, 2000.Google Scholar
Chatterjee, S., A symbiotic view of the origin of life at hydrothermal impact crater-lakes, Phys. Chem. Chem. Phys., 18, 2003320046, 2016.CrossRefGoogle ScholarPubMed
Chicote, E., García, A. M., Moreno, D. A., Sarró, M. I., Lorenzo, P. I., and Montero, F., Isolation and identification of bacteria from spent nuclear fuel pools, J. Ind. Microbiol. Biotechnol., 32, 155162, 2005.Google Scholar
Chyba, C. F., and McDonald, G. D., The origin of life in the solar system: current issues, Annu. Rev. Earth Planet. Sci., 23, 215249, 1995.CrossRefGoogle ScholarPubMed
Clark, E., The problem of biological individuality, Biol. Theor., 5, 312325, 2010.Google Scholar
Claus, D., Toward the Soul: An Inquiry into the Meaning of Ψυχή Before Plato, Yale University Press, New Haven, CT, 1981.Google Scholar
Cleland, C. E., Space: an abstract system of non-supervenient relations, Philos. Stud., 46, 1940, 1984.Google Scholar
Cleland, C. E., Is the Church–Turing thesis true?, Minds Mach., 3, 283312, 1993.Google Scholar
Cleland, C. E., The concept of computability, Theor. Comput. Sci., 317, 209225, 2004.Google Scholar
Cleland, C. E., Understanding the nature of life: a matter of definition or theory?, in Life As We Know It, pp. 589600, Seckbach, J., ed., Springer, Dordrecht, 2006.Google Scholar
Cleland, C. E., Epistemological issues in the study of microbial life: alternative terran biospheres?, Stud. Hist. Philos. Biol. Biomed. Sci., 38, 847861, 2007.Google Scholar
Cleland, C. E., Life without definitions, Synthese, 185, 125144, 2012.Google Scholar
Cleland, C. E., Conceptual challenges for contemporary theories of the origin of life, Curr. Org. Chem., 17, 17041709, 2013.Google Scholar
Cleland, C. E., Moving beyond definitions in the search for extraterrestrial life, Astrobiology, 19, 722729, 2019.Google Scholar
Cleland, C. E., and Chyba, C. F., Defining ‘life’, Orig. Life Evol. Biosph., 32, 397393, 2002.Google Scholar
Cleland, C. E., and Chyba, C. F., Does ‘life’ have a definition?, in Planets and Life: The Emerging Science of Astrobiology, pp. 119131, Sullivan, W. T. III and Baross, J. A., eds., Cambridge University Press, Cambridge, 2007. [Reprinted in Bedau and Cleland 2010]Google Scholar
Cleland, C. E., and Copley, S. D., The possibility of alternative microbial life on earth, Int. J. Astrobiol., 2, 165173, 2005. [Reprinted in Bedau and Cleland 2010]Google Scholar
Cody, G. D., Transition metal sulfides and the origin of metabolism, Annu. Rev. Earth Planet. Sci., 32, 569599, 2004.Google Scholar
Cohen, I. B., Newton’s concepts of force and mass, with notes on the laws of motion, in The Cambridge Companion to Newton, pp. 5784, Cohen, I. B. and Smith, G. E., eds., Cambridge University Press, Cambridge, 2002.Google Scholar
Cohen, I. B., and Smith, G. E., eds., The Cambridge Companion to Newton, Cambridge University Press, Cambridge, 2002.Google Scholar
Coleman, W., Biology in the Nineteenth Century: Problems of Form, Function, and Transformation, Cambridge University Press, Cambridge, 1977.Google Scholar
Conrad, P. G., and Nealson, K. H., A non-earth-centric approach to life detection, Astrobiology, 1, 1524, 2001.Google Scholar
Copley, S. D., Smith, E., and Morowitz, H. J., A mechanism for the association of amino acids and their codons and the origin of the genetic code, Proc. Natl. Acad. Sci. USA, 102, 44424447, 2005.Google Scholar
Copley, S. D., Smith, E., and Morowitz, H. J., The origin of the RNA world: co-evolution of genes and metabolism, Bioorg. Chem., 35, 430443, 2007.Google Scholar
Cornish-Bowden, A., Piedrafita, G., Morán, M., Cárdenas, M. L, and Montero, F., Simulating a model of metabolic closure, Biol. Theor., 8, 383390, 2013.Google Scholar
Costello, E. K., Stagaman, K., Dethlefsen, L., Bohannan, B. J. M., and Relman, D. A., The application of ecological theory towards an understanding of the human microbiome, Science, 336, 12551262, 2012.Google Scholar
Craver, C. F., Beyond reduction: mechanisms, multifield integration and the unity of neuroscience, Stud. Hist. Philos. Biol. Biomed. Sci., 36, 373395, 2005.Google Scholar
Crick, F., On protein synthesis, Symp. Soc. Exp. Biol., 12, 138167, 1958.Google Scholar
Crick, F. H. C., The origin of the genetic code, J. Mol. Biol., 38, 367379, 1968.Google Scholar
Crick, F. H. C., Life Itself, Simon and Schuster, New York, 1981.Google Scholar
Cronin, J. R., and Pizzarello, S., Amino acids in meteorites, Adv. Space Res., 3, 518, 1983.Google Scholar
Da Costa, N. C. A., and French, S., Science and Partial Truth, Oxford University Press, Oxford, 2003.CrossRefGoogle Scholar
Dagan, T., Roettger, M., Bryant, D., and Martin, W., Genome networks root the tree of life between prokaryotic domains, Genome Biol. Evol., 12, 379392, 2010.Google Scholar
Damiano, L., and Luisi, P., Towards an autopoietic redefinition of life, Orig. Life Evol. Biosph., 40, 145149, 2010.Google Scholar
Dang, H., and Lovell, C. R., Microbial surface colonization and biofilm development in marine environments, Microbiol. Mol. Biol. Rev., 80, 91138, 2015.Google Scholar
Darwin, C., On the Origin of Species by Means of Natural Selection, or Preservation of Favoured Races in the Struggle for Life, John Murray, London, 1859.Google Scholar
Darwin, C., The Descent of Man, John Murray, London, 1871.Google Scholar
Davey, M. E., and O’toole, G. A., Microbial biofilms: from ecology to molecular genetics, Microbiol. Mol. Biol. Rev., 64, 847867, 2000.Google Scholar
Davies, P. C. W., The Eerie Silence, Houghton Mifflin Harcourt, New York, 2010.Google Scholar
Davies, P. C. W., and Lineweaver, C. H., Finding a second sample of life on earth, Astrobiology, 5, 154163, 2005.Google Scholar
Davies, P. C. W., Benner, S. A., Cleland, C. E., Lineweaver, C. H., McKay, C. P., and Wolfe-Simon, F., Signatures of a shadow biosphere, Astrobiology, 9, 241249, 2009.Google Scholar
Dawkins, R., The Selfish Gene, Oxford University Press, Oxford, 1976.Google Scholar
Dawkins, R., Universal Darwinism, in Evolution from Molecules to Men, pp. 403425, Bendall, D. S., ed., Cambridge University Press, Cambridge, 1983. [Reprinted in Bedau and Cleland 2010]Google Scholar
Deamer, E. W., and Dworkin, J. P., Chemistry and physics of primitive membranes, Top. Curr. Chem., 259, 127, 2005.Google Scholar
Decho, A. W., and Gutierrez, T., Microbial extracellular polymeric substances (EPSs) in ocean systems, Front. Microbiol., 8, 922, 2017.Google Scholar
de Duve, C., Vital Dust: The Origin and Evolution of Life, Basic Books, New York, 1995.Google Scholar
de Duve, C., and Osborn, M. J., Panel 1: discussion, in Size Limits of Very Small Microorganisms: Proceedings of a Workshop, National Academies Press, Washington, DC, 1999.Google Scholar
Dennett, D. C., Darwin’s Dangerous Idea: Evolution and the Meanings of Life, Simon and Schuster, New York, 1995.Google Scholar
Dobson, C. M., Ellison, G. B., Tuck, A. F., and Vaida, V., Atmospheric aerosols as prebiotic chemical reactors, Proc. Natl. Acad. Sci. USA, 97, 1186411868, 2000.Google Scholar
Donaldson, D. J., Tervahattu, H., Tuck, A. F., and Vaida, V., Organic aerosols and the origin of life: an hypothesis, Orig. Life Evol. Biosph., 34, 5767, 2004.Google Scholar
Doolittle, W. F., Phylogenetic classification and the universal tree, Science, 284, 21242128, 1999.Google Scholar
Doolittle, W. F., Darwinizing Gaia, J. Theor. Biol., 434, 1119, 2017.Google Scholar
Doolittle, W. F., and Booth, A., It’s the song, not the singer: an exploration of holobionts and evolutionary theory, Biol. Philos., 32, 524, 2017.Google Scholar
Doolittle, W. F., and Papke, R. T., Genomics and the bacterial species problem, Genome Biol., 7, 116, 2006.CrossRefGoogle ScholarPubMed
Douglas, A. E., Fundamentals of Microbiome Science, Princeton University Press, Princeton, NJ, 2018.Google Scholar
Downes, S., The importance of models in theorizing: a deflationary semantic view, in Proceedings of the 1992 Biennial Meeting of the Philosophy of Science Association, volume 1, pp. 142153, Hull, D., Forbes, M., and Okruhlik, K., eds., University of Chicago Press, Chicago, IL, 1992.Google Scholar
Dupré, J., The Disorder of Things, Harvard University Press, Cambridge, MA, 1993.Google Scholar
Dupré, J., The Selfish Gene Meets the Friendly Germ, Keynote speech at the 22nd Regional Conference on the History and Philosophy of Science, Boulder, CO, 2007.Google Scholar
Dupré, J., Processes of Life, Oxford University Press, Oxford, 2012.Google Scholar
Dupré, J., and O’Malley, M., Metagenomics and biological ontology, Stud. Hist. Philos. Biol. Biomed. Sci., 38, 834846, 2007a.Google Scholar
Dupré, J., and O’Malley, M., Size doesn’t matter: towards a more inclusive philosophy of biology, Biol. Philos., 22, 155191, 2007b.Google Scholar
Dupré, J., and O’Malley, M., Varieties of living things: life at the intersection of lineage and metabolism, Philos. Theor. Biol., 1, e003, 2009.Google Scholar
Dupressoir, A., Lavialle, C., and Heidmann, T., From ancestral infectious retroviruses to bona fide cellular genes: role of the captured syncytins in placentation, Placenta, 33, 663671, 2012.Google Scholar
Dyson, F. J., Origins of Life, Cambridge University Press, Cambridge, 1999.Google Scholar
Earman, J., Roberts, J. T., and Smith, S., Ceteris paribus lost, Erkenntnis, 57, 281301, 2002.Google Scholar
Eckhardt, D. H., Jekeli, C., Lazarewicz, A. R., Romaides, A. J., and Sands, R. W., Experimental evidence for a violation of Newton’s inverse-square laws of gravitation, Eos, 69, 1046, 1988.Google Scholar
Ehrenfreund, P., and Cami, J., Cosmic carbon chemistry: from the interstellar medium to the early earth, Cold Spring Harb. Perspect. Biol., 2, a002097, 2010.Google Scholar
Ehrenfreund, P., and Menten, K. M., From molecular clouds to the origin of life, in Astrobiology: The Quest for the Conditions of Life, pp. 723, Horneck, G. and Baumstark-Khan, C., eds., Springer, Berlin, 2002.Google Scholar
Eigen, M., Steps Towards Life: A Perspective on Evolution, Oxford University Press, Oxford, 1992.Google Scholar
Eigenbrode, J. L., Summons, R. E., Steele, A., et al., Organic matter preserved in 3-billion-year-old mudstones at Gale crater, Mars, Science, 360, 10961101, 2018. (And supplementary materials)Google Scholar
El Albani, A., Bengrson, S., Canfield, D. E., et al., Large colonial organisms with coordinated growth in oxygenated environments 2.1 Gyr ago, Nature, 466, 100104, 2010.Google Scholar
Ellison, C. K., Dalia, T. N., Ceballos, A. V., Wang, J. C.-Y., Biais, N., Brun, Y. V., and Dalia, A. B., Retraction of DNA-bound type IV competence pili initiates DNA uptake during natural transformation in Vibrio cholerae, Nature Microbiol., 3, 773780, 2018.Google Scholar
El-Naggar, M. Y., and Finkel, S. E., Live wires, The Scientist, 27, 3843, 2013.Google Scholar
El-Naggar, M. Y., Wanger, G., Leung, K. M., Yuzvinsky, T. D., Southam, G., Yang, J., Lau, W. M., Nealson, N. K. H., and Gorby, Y. A., Electrical transport along bacterial nanowires from Schewanella oneidensis MR-1, Proc. Natl. Acad. Sci. USA, 107, 1812718131, 2010.Google Scholar
England, J. L., Statistical physics of self-replication, J. Chem. Phys., 139, 121923, 2013.Google Scholar
Ereshefsky, M., The Poverty of the Linnaean Hierarchy: A Philosophical Study of Biological Taxonomy, Cambridge University Press, Cambridge, 2001.Google Scholar
Ereshefsky, M., Microbiology and the species problem, Biol. Philos., 25, 553568, 2010.Google Scholar
Ereshefsky, M., and Pedroso, M., Rethinking evolutionary individuality, Proc. Natl. Acad. Sci. USA, 112, 1012610132, 2015.CrossRefGoogle ScholarPubMed
Ereshefsky, M., and Pedroso, M., What biofilms can teach us about individuality, in Individuals Across the Sciences, pp. 85102, Guay, A. and Pradeu, T., eds., Oxford University Press, Oxford, 2016.Google Scholar
Faivre, D., and Schüler, D., Magnetotactic bacteria and magnetosomes, Chem. Rev., 108, 48754898, 2008.Google Scholar
Falcon, A., Aristotle and the Science of Nature: Unity Without Uniformity, Cambridge University Press, Cambridge, 2005.Google Scholar
Feinberg, G., and Shapiro, R., Life Beyond Earth: Intelligent Earthlings, Guide to the Universe, William Morrow, New York, 1980.Google Scholar
Ferris, J. P., Montmorillonite-catalysed formation of RNA oligomers: the possible role of catalysis on the origins of life, Philos. Trans. R. Soc. B, 361, 17771786, 2006.Google Scholar
Flemming, H. C., and Wingender, J., The biofilm matrix, Nature Rev. Microbiol., 8, 623633, 2010.Google Scholar
Forterre, P., To be or not to be alive: how recent discoveries challenge the traditional definitions of viruses and life, Stud. Hist. Philos. Sci. C, Stud. Hist. Philos. Biol. Biomed. Sci., 59, 100108, 2016.Google Scholar
Foster, J. A., and Neufeld, K. M., Gut-brain axis: how the microbiome influences anxiety and depression, Trends Neurosci., 36, 305312, 2013.Google Scholar
Franklin, L. R., Bacteria, sex, and systematics, Philos. Sci., 74, 6995, 2007.Google Scholar
Frigg, R., Scientific representation and the semantic view of theories, Theoria, 55, 4965, 2006.Google Scholar
Frigg, R., and Hartmann, S., Models in science, in The Stanford Encyclopedia of Philosophy, E. N. Zalta, ed., 2012. (https://plato.stanford.edu/archives/sum2018/entries/models-science)Google Scholar
Fry, I., Are the different hypotheses on the emergence of life as different as they seem?, Biol. Philos., 10, 389417, 1995. [Reprinted in Bedau and Cleland 2010]Google Scholar
Fry, I., The Emergence of Life on Earth, Rutgers University Press, New Brunswick, NJ, 2000.Google Scholar
Furley, D., Self-Motion: From Aristotle to Newton, Princeton University Press, Princeton, NJ, 1994.Google Scholar
Galhardo, R. S., Hastings, P. J., and Rosenberg, S. M., Mutations as a stress response and the regulation of evolvability, Crit. Rev. Biochem. Mol. Biol., 42, 399435, 2007.Google Scholar
Gánti, T., The Principle of Life, with commentary by J. Griesemer and E. Swathmáry, Oxford University Press, New York, 2003. [Selections reprinted in Bedau and Cleland 2010]Google Scholar
Gao, C., Ren, X., Mason, A. S., Liu, H., Xiao, M., Li, J., and Fu, D., Horizontal gene transfer in plants, Funct. Integr. Genomics, 14, 2329, 2014.Google Scholar
Gesteland, R. F., and Atkins, J. F., eds., The RNA World, Cold Spring Harbor Laboratory Press, New York, 1993.Google Scholar
Gibson, D. G., Glass, J. I., Lartigue, C., et al., Creation of a bacterial cell controlled by a chemically synthesized genome, Science, 329, 5256, 2010.Google Scholar
Giere, R., Understanding Scientific Reasoning, Holt, Rinehart and Winston, New York, 1979.Google Scholar
Giere, R., Explaining Science: A Cognitive Approach, University of Chicago Press, Chicago, IL, 1988.Google Scholar
Gilbert, W., The RNA World, Nature, 319, 618, 1986.Google Scholar
Gilbert, S. F., Sapp, J., and Tauber, A. I., A symbiotic view of life: we have never been individuals, Q. Rev. Biol., 87, 325341, 2012.Google Scholar
Glasser, N. R., Saunders, S. H., and Newman, D. K., The colorful world of extracellular electron shuttles, Annu. Rev. Microbiol., 71, 731751, 2017.Google Scholar
Glavin, D. P., Schubert, M., Botta, O., Kminek, G., and Bada, J., Detecting pyrolysis products from bacteria on Mars, Earth Planet. Sci. Lett., 185, 15, 2001.Google Scholar
Glavin, D. P., Dworkin, J. P., Aubrey, A., et al., Amino acid analyses of Antarctic CM2 meteorites using liquid chromatography-time of flight-mass spectrometry, Meteorit. Planet. Sci., 41, 889902, 2006.Google Scholar
Godfrey-Smith, P., Darwinian Populations and Natural Selection, Oxford University Press, Oxford, 2009.Google Scholar
Godfrey-Smith, P., Darwinian individuals, in From Groups to Individuals: Evolution and Emerging Individuality, pp. 1736, Bouchard, F. and Huneman, P., eds., MIT Press, Cambridge, MA, 2013.Google Scholar
Golden, D. C., Ming, D. W., Schwandt, C. S., Lauer, H. V., Socki, R. A., Morris, R. V., Lofgren, G. E., and McKay, G. A., A simple inorganic process for formation of carbonates, magnetite, and sulfides in Martian meteorite ALH84001, Am. Mineral., 8, 370375, 2001.Google Scholar
Goldenfeld, N., and Woese, C., Life is physics: evolution as a collective phenomenon far from equilibrium, Annu. Rev. Condens. Matter Phys., 2, 375399, 2011.Google Scholar
Gould, S. J., Wonderful Life: The Burgess Shale and the Nature of History, W.W. Norton, New York, 1990.Google Scholar
Grene, M., and Depew, D., The Philosophy of Biology: An Episodic History, Cambridge University Press, Cambridge, 2004.Google Scholar
Griesemer, J. R., Modeling in the museum: on the role of remnant models in the work of Joseph Grinnell, Biol. Philos., 5, 336, 1990.Google Scholar
Griesemer, J. R., The units of evolutionary transition, Selection, 1, 6780, 2000.CrossRefGoogle Scholar
Grinspoon, D., Venus Revealed: A New Look Below the Clouds of Our Mysterious Twin Planet, Perseus, Cambridge, 1997.Google Scholar
Grinspoon, D., Lonely Planets: The Natural Philosophy of Alien Life, HarperCollins, New York, 2003.Google Scholar
Groff, R., and Greco, J., eds., Power and Capacities in Philosophy: The New Aristotelianism, Routledge, New York, 2013.Google Scholar
Guthrie, W. K. C., A History of Greek Philosophy, volume 6, Cambridge University Press, Cambridge, 1990.Google Scholar
Guyer, P., and Matthews, E., trans., Imanuel Kant, Critique of the Teleological Power of Judgement, Cambridge University Press, Cambridge, 2001. [Reprinted in Bedau and Cleland 2010]Google Scholar
Hacking, I., Representing and Intervening: Introductory Topics in the Philosophy of Natural Science, Cambridge University Press, Cambridge, 1983.Google Scholar
Hagen, J. B., Five kingdoms, more or less: Robert Whittaker and the broad classification of organisms, BioScience, 62, 6274, 2012.Google Scholar
Hall, T. S., trans., René Descartes, Treatise of Man, Prometheus Books, New York, 2003.Google Scholar
Hays, L., ed., NASA Astrobiology Strategy, NASA Astrobiology Institute, 2015.Google Scholar
Hazen, R. M., Genesis: The Scientific Quest for Life’s Origin, Joseph Henry Press, Washington, DC, 2005.Google Scholar
Hazen, R. M., Papineau, D., Bleeker, W., et al., Mineral evolution, Am. Mineral., 93, 16931720, 2008.Google Scholar
Hecht, M. H., Kounaves, S. P., Quinn, R. C., et al., Detection of perchlorate and the soluble chemistry of Martian soil at the Phoenix lander site, Science, 325, 6467, 2009.Google Scholar
Hennet, R. J. C., Holm, N. G., and Engel, M. H., Abiotic synthesis of amino acids under hydrothermal conditions and the origin of life: a perpetual phenomenon?, Naturwissenschaften, 79, 361365, 1992.Google Scholar
Hermes, H., Eine Axiomatisierung der Allgemeinen Mechanik, Hirzel, Leipzig, 1938.Google Scholar
Hermes, H., Modal operators in an axiomatisation of mechanics, Proceedings of the Colloque International sur la Méthode Axiomatique Classique et Moderne, Paris, 1959.Google Scholar
Heward, A., Life on Titan: stand well back and hold your nose!, PhysOrg.com, 2010.Google Scholar
Hoelzer, G. A., Smith, E., and Pepper, J. W., On the logical relationship between natural selection and self organization, J. Evol. Biol., 19, 17851794, 2006.Google Scholar
Hoffman, P. F., and Schrag, D., The snowball Earth hypothesis: testing the limits of global change, Terra Nova, 14, 129155, 2002.Google Scholar
Holm, N.G., and Andersson, E. M., Organic molecules on the primitive Earth: hydrothermal systems, in The Molecular Origins of Life: Assembling Pieces of the Puzzle, pp. 8699, Brack, A., ed., Cambridge University Press, Cambridge, 1998.Google Scholar
Hong, S. H., Kwon, Y. C., and Jewett, M. C., Non-standard amino acid incorporation into proteins using Escherichia coli cell-free protein synthesis, Front. Chem., 2, 34.10.3389, 2014.Google Scholar
Hugenholtz, P., Goebel, B. M., and Pace, N. R., Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity, J. Bacteriol., 180, 47654774, 1998.Google Scholar
Hull, D. L., Individuality and selection, Annu. Rev. Ecol. Evol. Syst., 11, 311332, 1980.Google Scholar
Hull, D. L., On the plurality of species: questioning the party line, in Species: New Interdisciplinary Essays, pp. 2348, Wilson, R., ed., MIT Press, Cambridge, MA, 1999.Google Scholar
Hume, D., A Treatise on Human Nature, Selby-Bigge, L. A., ed., Oxford University Press, Oxford, 1888.Google Scholar
Humphreys, P., Aspects of emergence, Philos. Topics, 24, 5370, 1996.Google Scholar
Hunt, K. M., Foster, J. A., Forney, L. J., Schütte, U. M. E., Beck, D. L., Abdo, Z., Fox, L. K., Williams, J. E., McGuire, M. K., and McGuire, M. A., Characterization of the diversity and temporal stability of bacterial communities in human milk, PLoS One, 6, e21313, 2011.Google Scholar
Hunten, D. M., Possible oxidant sources in the atmosphere and surface of Mars, J. Mol. Evol., 14, 7178, 1979.Google Scholar
Hutchison, C. A., Chuang, R.-Y., Noskov, V. N., et al., Design and synthesis of a minimal bacterial genome, Science, 351, 13711494, 2016.Google Scholar
Huxley, J., The Modern Evolutionary Synthesis, George Allen and Unwin, London, 1942.Google Scholar
Huxley, T. H., Criticism on “The Origin of Species” [1864], in Darwiniana, Macmillan, London, 1893.Google Scholar
Hystad, G., Downs, R. T., and Hazen, R. M., Mineral species frequency distribution conforms to a large number of rare events model: prediction of earth’s missing minerals, Math. Geosci., 47, 647661, 2015.Google Scholar
Jablonka, E., and Lamb, M. J., Evolution in Four Dimensions: Genetic, Epigenetic, Behavioral, and Symbolic Variation in the History of Life, MIT Press, Cambridge, MA, 2005.Google Scholar
Jacob, G. F., The Logic of Life: A History of Heredity, Princeton University Press, Princeton, NJ, 1973.Google Scholar
James, W., The Principles of Psychology, Henry Holt, New York, 1890.Google Scholar
Jiang, L., Dziedzic, P., Spacil, Z., et al., Abiotic synthesis of amino acids and self-crystallization under prebiotic conditions, Sci. Rep., 4, 6769, 2014.Google Scholar
Johnson, S. K., Fitza, M. A., Lerner, D. A., Calhoun, D. M., Beldon, M. A., Chan, E. T., and Johnson, P. T. J., Risky business: linking Toxoplasma gondii infection and entrepreneurship behaviors across individuals and countries, Proc. R. Soc. B, 285, 2018.0822, 2018.Google Scholar
Joyce, G. F., Foreword, in Origins of Life: The Central Concepts, pp. xixii, Deamer, D. W. and Fleischaker, G. R., eds., Jones & Bartlett, Boston, MA, 1994.Google Scholar
Joyce, G. F., and Orgel, L. E., Prospects for understanding the origin of the RNA World, in The RNA World, 2nd edition, pp. 4978, Gesteland, R. F., Cech, T. R., and Atkins, J. F., eds., Cold Spring Harbor Laboratory Press, New York, 1999.Google Scholar
Kajander, E. O., and Çiftçioglu, N., Nanobacteria: an alternative mechanism for pathogenic intra and extracellular calcification and stone formation, Proc. Natl. Acad. Sci. USA, 95, 82748279, 1998.Google Scholar
Kauffman, S., The Origins of Order: Self-Organization and Selection in Evolution, Oxford University Press, Oxford, 1993.Google Scholar
Kauffman, S., What is life: was Schrodinger right?, in The Next Fifty Years: Speculations on the Future of Biology, pp. 83114, Murphy, M. P. and O’Neill, L. A. J., eds., Cambridge University Press, Cambridge, 1995. [Reprinted in Bedau and Cleland 2010]Google Scholar
Kauffman, S., Investigations, Oxford University Press, Oxford, 2000.Google Scholar
Kauffman, S., The emergence of autonomous agents, in From Complexity to Life: On the Emergence of Life and Meaning, pp. 4771, Gregersen, N. H., ed., Oxford University Press, Oxford, 2003.Google Scholar
Kauffman, S., and Clayton, P., On emergence, agency, and organization, Biol. Philos., 21, 501521, 2006.Google Scholar
Kellert, S. H., Longino, H. E., and Waters, C. K., eds., Scientific Pluralism, University of Minnesota Press, Minneapolis, MN, 2006.Google Scholar
Kim, J., Downward causation, in Emergence or Reduction: Essays on the Prospects of Nonreductive Physicalism, pp. 119138, Beckermann, A., Flohr, H., and Kim, J., eds., Walter de Gruyter, New York, 1992.Google Scholar
Kim, J., Making sense of emergence, Philos. Stud., 95, 336, 1999.Google Scholar
Kirchman, D. L., Processes in Microbial Ecology, Oxford University Press, New York, 2012.Google Scholar
Kirschvink, J. L., Late Proterozoic low-latitude global glaciation: the snowball earth, in The Proterozoic Biosphere: A Multidisciplinary Study, pp. 5152, Schopf, J. W. and Klein, C., eds., Cambridge University Press, New York, 1992.Google Scholar
Kitcher, P., Species, Philos. Sci., 51, 308333, 1984.Google Scholar
Klein, H. P., The Viking biological experiments on Mars, Icarus, 34, 666674, 1978a.Google Scholar
Klein, H. P., The Viking biology investigations: review and status, Orig. Life Evol. Biosph., 9, 157160, 1978b.Google Scholar
Klein, H. P., The Viking biology experiments: epilogue and prologue, Orig. Life Evol. Biosph., 21, 255261, 1991.Google Scholar
Knoll, A. H., The multiple origins of complex multicellularity, Annu. Rev. Earth Planet. Sci., 39, 217239, 2011.Google Scholar
Knoll, A., Osborn, M. J., Baross, J. A., Berg, H. C., Pace, N. R., and Sogin, M., Size Limits of Very Small Microorganisms: Proceedings of a Workshop, National Academies Press, Washington, DC, 1999.Google Scholar
Knuuttila, T., and Loettgers, A., What are definitions of life good for? Transdisciplinary and other definitions in astrobiology, Biol. Philos., 32, 11851203, 2017.Google Scholar
Kolb, V., Handbook of Astrobiology, CRC Press, Taylor & Frances, Boca Raton, FL, 2018.Google Scholar
Koonin, E. V., The origin and early evolution of eukaryotes in the light of phylogenomics, Genome Biol., 11, 212, 2010.Google Scholar
Koonin, E. V., and Martin, W., On the origin of genomes and cells within inorganic compartments, Trends Genet., 21, 647654, 2005.Google Scholar
Koonin, E. V., and Starokadomskyy, P., Are viruses alive? The replicator paradigm sheds decisive light on an old but misguided question, Stud. Hist. Philos. Biol. Biomed. Sci., 59, 125134, 2016.Google Scholar
Koonin, E. N., and Wolf, Y. I., Is evolution Darwinian or/and Lamarckian?, Biol. Direct, 4, 42, 2009.Google Scholar
Kopp, R. E., and Kirschvink, J. L., The identification and biogeochemical interpretation of fossil magnetotactic bacteria, Earth Sci. Rev., 86, 4261, 2008.Google Scholar
Korzeniewski, B., Cybernetic formulation of the definition of life, J. Theor. Biol., 209, 275286, 2001.Google Scholar
Kripke, S. A., Naming and Necessity, Harvard University Press, Cambridge, MA, 1972.Google Scholar
Kruger, K., Grabowski, P. J., Zaug, A. J., Sands, J., Gottshling, D. E., and Cech, T. R., Self splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena, Cell, 31, 147157, 1982.Google Scholar
Kuhn, T. S., The Structure of Scientific Revolutions, University of Chicago Press, Chicago, IL, 1962. [2nd edition published 1970]Google Scholar
Kurland, C. G., Collins, L. J., and Penny, D., Genomics and the irreducible nature of eukaryote cells, Science, 312, 10111014, 2006.Google Scholar
Ladyman, J., and Ross, D., with Spurrett, D., and Collier, J., Everything Must Go: Metaphysics Naturalised, Oxford University Press, Oxford, 2007.Google Scholar
Lane, N., and Martin, W. F., The origin of membrane bioenergetics, Cell, 151, 14061416, 2012.Google Scholar
Lange, M., Life, ‘artificial life,’ and scientific explanation, Philos. Sci., 63, 225244, 1995.Google Scholar
Langton, C. G., ed., Artificial Life, Addison Wesley, Redwood City, CA, 1989.Google Scholar
Langton, C. G., and Taylor, C., eds., Artificial Life, West View Press, Cambridge, MA, 2003.Google Scholar
La Scola, B., Audic, S., Robert, C., et al., A giant virus in amoebae, Science, 299, 2033, 2003.Google Scholar
Lasne, J., Noblet, A., Szopa, C., et al., Oxidants at the surface of Mars: a review in light of recent exploration results, Astrobiology, 16, 977996, 2016.Google Scholar
Lavoisier, A. L., On the nature of water and on experiments which appear to prove that this substance is not strictly speaking an element but that it is susceptible of decomposition and recomposition, Observations sur la Physique, 23, 452455, 1783.Google Scholar
Lenski, R. E., Rose, M. R., Simpson, S. C., and Tadler, S. C., Long-term experimental evolution in Escherichia coli. I. Adaptation and divergence during 2,000 generations, Am. Nat., 138, 13151341, 1991.Google Scholar
Levere, T. H., Transforming Matter: A History of Chemistry from Alchemy to the Buckyball, Johns Hopkins University Press, Baltimore, MD, 2001.Google Scholar
Levin, G. V., The Viking labeled release experiment and life on Mars, Instruments, Methods, and Missions for the Investigation of Extraterrestrial Microorganisms, Proc. SPIE, 3111, 146161, 1997.Google Scholar
Levin, G. V., and Straat, P. A., Viking labeled release biology experiment: interim results, Science, 194, 13221329, 1976.Google Scholar
Levin, G. V., and Straat, P. A., Recent results from the Viking labeled release experiment on Mars, J. Geophys. Res., 82, 46634667, 1977.Google Scholar
Levin, G. V., and Straat, P. A., Completion of the Viking labeled release experiment on Mars, J. Mol. Evol., 14, 167183, 1979.Google Scholar
Levin, G. V., and Straat, P. A., The case for extant life on Mars and its possible detection by the Viking labeled release experiment, Astrobiology, 16, 798810, 2016.Google Scholar
Lewontin, R., Adaptation, in The Dialectical Biologist, pp. 6584, Levins, R. and Lewontin, R., eds., Harvard University Press, Cambridge, MA, 1985.Google Scholar
Lineweaver, C. H., We have not detected extraterrestrial life, or have we?, in Life As We Know It, pp. 445457, Seckbach, J., ed., Springer, Dordrecht, 2006.Google Scholar
Linnaeus, C., Systema Naturæ, Laurentii Salvii, Stockholm, 1758.Google Scholar
Lipson, H., and Pollack, J. B., Automatic design and manufacture of robotic lifeforms, Nature, 406, 974978, 2000.Google Scholar
Liu, T., and Broecker, W. S., How fast does rock varnish grow?, Geology, 28, 183186, 2000.Google Scholar
Lloyd, E. A., The Structure and Confirmation of Evolutionary Theory, Greenwood Press, New York, 1988.Google Scholar
Lloyd, E. A., Holobionts as units of selection: holobionts as interactors, reproducers, and manifestors of adaptation, in Landscapes of Collectivity in the Life Sciences, pp. 351368, Gissis, S. B., Lamm, E., and Shavit, A., eds., MIT Press, Cambridge, MA, 2018.Google Scholar
Locey, K. J., and Lennon, J. T., Scaling laws predict global microbial diversity, Proc. Natl. Acad. Sci. USA, 113, 59705975, 2016.Google Scholar
Locke, J., An Essay Concerning Human Understanding, Oxford University Press, Oxford, 1689.Google Scholar
Lopez, D., Vlamakis, H., and Kolter, R., Biofilms, Cold Spring Harb. Perspect. Biol., 2, a000398, 2010.Google Scholar
Lovelock, J. E., Gaia as seen through the atmosphere, Atmos. Environ., 6, 579580, 1972.Google Scholar
Lovelock, J. E., The Ages of Gaia: A Biography of Our Living Earth, Oxford University Press, Oxford, 2000.Google Scholar
Lovelock, J. E., and Margulis, L., At atmospheric homeostasis by and for the biosphere: the Gaia hypothesis, Tellus, 26, 110, 1974.Google Scholar
Lowe, J. E., The causal autonomy of the mental, Mind, 102, 629644, 1993.Google Scholar
Luisi, P. L., The chemical implementation of autopoiesis, in Self-Production of Supramolecular Structures: From Synthetic Structures to Models of Minimal Living Systems, pp. 179197, Fleischaker, G. R., Stephano, C., and Luisi, P. L., eds., Kluwer, Dordrecht, 1993.Google Scholar
Luisi, P. L., About various definitions of life, Orig. Life Evol. Biosph., 28, 613622, 1998.Google Scholar
Luisi, P. L., Autopoiesis: a review and a reappraisal, Naturwissenschaften, 90, 4959, 2003.Google Scholar
Luisi, P. L., The Emergence of Life: From Chemical Origins to Synthetic Biology, Cambridge University Press, Cambridge, 2006.Google Scholar
Luisi, P. L., Walde, P., and Oberholzer, T., Lipid vesicles as possible intermediaries in the origin of life, Curr. Opin. Colloid Interface Sci., 4, 3339, 1999.Google Scholar
MacCurdy, E., ed., The Notebooks of Leonardo da Vinci (definitive edition in one volume), Konecky and Konecky, Old Saybrook, CT, 2003.Google Scholar
Machery, E., Why I stopped worrying about the definition of life… and why you should as well, Synthese, 185, 145164, 2012.Google Scholar
Machover, M., Set Theory, Logic and Their Limitations, Cambridge University Press, Cambridge, 1996.Google Scholar
Madigan, M.T., Martinko, J. M., et al., Brock Biology of Microorganisms, 11th edition, Prentice-Hall, Lebanon, 2006.Google Scholar
Magurran, A. E., and Henderson, P. A., Explaining the excess of rare species in natural species abundance distributions, Nature, 422, 714716, 2003.Google Scholar
Malyshev, D. A., Dhami, K., Quach, H. T., et al., Efficient and sequence-independent replication of DNA containing a third base pair establishes a functional six-letter genetic alphabet, Proc. Natl. Acad. Sci. USA, 109, 1200512010, 2012.Google Scholar
Malyshev, D. A., Dhami, K., Lavergne, T., et al., A semi-synthetic organism with an expanded genetic alphabet, Nature, 509, 385388, 2014.Google Scholar
Mann, A., Bashing holes in the tale of Earth’s troubled youth, Nature, 553, 393395, 2018.Google Scholar
Margulis, L., Symbiosis in Cell Evolution: Life and its Environment on the Early Earth, W. H. Freeman, San Francisco, CA, 1981.Google Scholar
Margulis, L., and Sagan, D., What is Life?, University of California Press, Berkeley, CA, 1995.Google Scholar
Marshall, W. L., Hydrothermal synthesis of amino acids, Geochim. Cosmochim. Acta, 58, 20992106, 1994.Google Scholar
Martin, W., and Russell, M., On the origins of cells: a hypothesis for evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells, Philos. Trans. R. Soc. London, Ser. B, 358, 5985, 2003.Google Scholar
Martin, W., Baross, J., Kelley, D., and Russell, M. J., Hydrothermal vents and the origin of life, Nature Rev. Microbiol., 6, 805814, 2008.Google Scholar
Matthews, G., De Anima 2.2–4 and the meaning of life, in Essays on Aristotle’s De Anima, pp. 185193, Nussbaum, M. C. and Rorty, A. O., eds., Oxford University Press, Oxford, 1992.Google Scholar
Mattingly, J., The structure of scientific theory change: models versus privileged formulations, Philos. Sci., 72, 365389, 2005.Google Scholar
Maturana, H., and Varela, F., Autopoiesis and Cognition: The Realization of the Living, Reidel, Dordrecht, 1973.Google Scholar
Mayr, E., Systematics and the Origin of Species from the Viewpoint of a Zoologist, Columbia University Press, New York, 1942.Google Scholar
Mayr, E., The ontological status of species: scientific progress and philosophical terminology, Biol. Philos., 2, 145166, 1987.Google Scholar
Mayr, E., Toward a New Philosophy of Biology: Observations of an Evolutionist, Harvard University Press, Cambridge, MA, 1988.Google Scholar
Mayr, E., The idea of teleology, J. Hist. Ideas, 53, 117135, 1992.Google Scholar
Mayr, E., This is Biology: The Science of the Living World, Harvard University Press, Cambridge, MA, 1997.Google Scholar
Mazzocchi, F., Images of thought and their relation to classification: the tree and the net, Knowl. Org., 40, 366374, 2013.Google Scholar
McDaniel, L. D., Young, E., Delaney, J., Ruhnau, F., Ritchie, K. B., and Paul, J. H., High frequency of horizontal gene transfer in the oceans, Science, 330, 50, 2010.Google Scholar
McKay, C. P., Origins of life, in Van Nostrand Reinhold Encyclopedia of Planetary Sciences and Astrogeology, Shirley, J. and Fairbridge, R., eds., Van Nostrand, New York, 1994.Google Scholar
McKay, C. P., What is life – and how do we search for it in other worlds?, PLoS Biol., 2, e302, 2004.Google Scholar
McKay, C. P., Titan as the abode of life, Life, 6, 115, 2016.Google Scholar
McKay, D. S., Gibson, E. K., Thomas-Keprta, K. L., et al., Search for past life on Mars: possible relic biogenic activity in Martian meteorite ALH84001, Science, 273, 924930, 1996.Google Scholar
McKie, R., ‘Shadow biosphere’ theory gaining scientific support, The Observer, 2013.Google Scholar
McKinsey, J. C. C., Sugar, A. C., and Suppes, P., Axiomatic foundations of classical particle mechanics, J. Ration. Mech. Anal., 2, 253272, 1953.Google Scholar
McLaughlin, P., Kant’s Critique of Teleology in Biological Explanation, Edwin Mellen Press, Lewiston, NY, 1990.Google Scholar
McLaughlin, B. P., The rise and fall of British emergentism, in Emergence or Reduction? Essays on the Prospects of Nonreductive Physicalism, pp. 4993, Beckerman, A., Flohr, H., and Kim, J., eds., Walter de Gruyter, Berlin, 1992.Google Scholar
McMurry, J., and Fay, R. C., Chemistry, 3rd edition, Prentice-Hall, Englewood Cliffs, NJ, 2001.Google Scholar
Meierhenrich, U., Amino Acids and the Asymmetry of Life, Springer-Verlag, Berlin, 2008.Google Scholar
Mellor, C. H., Natural kinds, Br. J. Philos. Sci., 28, 299312, 1977.Google Scholar
Mill, J. S., A System of Logic, Longmans Green, London, 1843. [1949 edition]Google Scholar
Miller, S. L., A production of amino acids under possible primitive Earth conditions, Science, 117, 528529, 1953.Google Scholar
Miller, S. L., Production of some organic compounds under possible primitive Earth conditions, J. Am. Chem. Soc., 77, 23512361, 1955.Google Scholar
Mitchell, S. D., Dimensions of scientific law, Philos. Sci., 67, 242265, 2000.Google Scholar
Mitchell, S. D., Ceteris paribus – an inadequate representation for biological contingency, Erkenntnis, 57, 329350, 2002.Google Scholar
Mojzsis, S. J., Arrhenius, G., McKeegan, K. D., Harrison, T. M., Nutmann, A. P., and Friend, C. R. L., Evidence for life on Earth before 3,800 million years ago, Nature, 383, 5559, 1996.Google Scholar
Moreira, D., and López-García, P., Ten reasons to exclude viruses from the tree of life, Nature Rev. Microbiol., 7, 306311, 2009.Google Scholar
Moreira, D., and López-García, P., Evolution of viruses and cells: do we need a fourth domain of life to explain the origin of eukaryotes?, Philos. Trans. R. Soc. London, Ser. B., 370, 2014.0327, 2015.Google Scholar
Morgan, C. L., Instinct and Experience, Macmillan, New York, 1912.Google Scholar
Morgan, M. S., and Morrison, M., Models as mediating instruments, in Models as Mediators: Perspectives on Natural and Social Science, pp. 1037, Morgan, M. S. and Morrison, M., eds., Cambridge University Press, Cambridge, 1999.Google Scholar
Morowitz, H. J., Beginnings of Cellular Life: Metabolism Recapitulates Biogenesis, Yale University Press, New Haven, CT, 1992.Google Scholar
Morowitz, H. J., Heinz, B., and Deamer, D. W., The chemical logic of a minimum protocell, Orig. Life Evol. Biosph., 18, 281287, 1988.Google Scholar
Morrison, M., Models as autonomous agents, in Models as Mediators: Perspectives on Natural and Social Science, pp. 3865, Morgan, M. S. and Morrison, M., eds., Cambridge University Press, Cambridge, 1999.Google Scholar
Mueller, N. T., Bakacs, E., Combellick, J., Grigoryan, Z., and Dominguez-Bello, M. G., The infant microbiome development: mom matters, Trends Mol. Med., 21, 109117, 2015.Google Scholar
Nasir, A., and Caetano-Anollés, G., A phylogenomic data-driven exploration of viral origins and evolution, Sci. Adv., 1, e1500527, 2015.Google Scholar
Navarro-Gonzáles, R., Navarro, K. F., de la Rosa, J., Iniguez, E., Molina, P., Miranda, L. D., Morales, P., Cienfuegos, E., Coll, P., Raulin, F., Amils, R., and McKay, C. P., The limitations on organic detection in Mars-like soils by thermal volatilization-gas chromatography-MS and their implications for the Viking results, Proc. Natl. Acad. Sci. USA, 103, 1608916094, 2006.Google Scholar
Nealson, K., and Conrad, P., Life: past, present, and future, Philos. Trans. R. Soc. London, Ser. B, 354, 19231939, 1999.Google Scholar
Needham, P., The discovery that water is H2O, Int. Stud. Philos. Sci., 15, 205226, 2002.Google Scholar
Nelson, K. E., Levy, M., and Miller, S. L., Peptide nucleic acids rather than RNA may have been the first genetic molecule, Proc. Natl. Acad. Sci. USA, 97, 38683871, 2000.Google Scholar
Newman, W. R., Atoms and Alchemy, University of Chicago Press, Chicago, IL, 2006.Google Scholar
Nielsen, P. E., and Egholm, M., An introduction to peptide nucleic acid, Curr. Issues Mol. Biol., 1, 89104, 1999.Google Scholar
Noffke, N., Christian, D., Wacey, D., and Hazen, R. M., Microbially induced sedimentary structures recording an ancient ecosystem in the ca. 3.48 billion-year-old Dresser Formation, Pilbara, Western Australia, Astrobiology, 13, 11031124, 2013.Google Scholar
NRC, The Limits of Organic Life in Planetary Systems, National Academy of Sciences, Washington, DC, 2007.Google Scholar
O’Malley, M. A., Philosophy of Microbiology, Cambridge University Press, Cambridge, 2014.Google Scholar
Oparin, A. I., Life: Its Nature, Origin, and Development, Synge, A., trans., Academic Press, New York, 1964. [Reprinted in Bedau and Cleland 2010]Google Scholar
Oren, A., Prokaryote diversity and taxonomy: current status and future challenges, Philos. Trans. R. Soc. London, Ser. B, 359, 623638, 2004.Google Scholar
Oren, A., Systematics of Archaea and Bacteria, in Biological Science Fundamentals and Systematics, volume II, pp. 162186, Minelli, A. and Contrfatto, G., eds., EOLSS, Oxford, 2009.Google Scholar
Orgel, L. E., Evolution of the genetic apparatus, J. Mol. Biol., 38, 381393, 1968.Google Scholar
Orgel, L. E., The origin of life: a review of facts and speculation, Trends Biochem. Sci., 23, 491495, 1998. [Reprinted in Bedau and Cleland 2010]Google Scholar
Orgel, L. E., Self-organizing biochemical cycles, Proc. Natl. Acad. Sci. USA, 97, 1250312507, 2000.Google Scholar
Orgel, L. E., Prebiotic chemistry and the origin of the RNA world, Crit. Rev. Biochem. Mol. Biol., 39, 99123, 2004.Google Scholar
Orgel, L. E., The implausibility of metabolic cycles on the prebiotic Earth, PLoS Biol., 6, e18, 2008.Google Scholar
Oyama, V. I., Berdahl, B. J., and Carle, G. C., Preliminary findings of the Viking gas exchange experiment and a model for Martian surface chemistry, Nature, 265, 110114, 1977.Google Scholar
Pace, N. R., A molecular view of microbial diversity and the biosphere, Science, 276, 734740, 1997.Google Scholar
Pace, N., The universal nature of biochemistry, Proc. Natl. Acad. Sci. USA, 98, 805880, 2001. [Reprinted in Bedau and Cleland 2010]Google Scholar
Pályi, G., Zucchi, C., and Caglioti, L., Introduction: definitions of life, in Fundamentals of Life, pp. 213, Pályi, G., Zucchi, C., and Caglioti, L., eds., Elsevier, New York, 2002.Google Scholar
Perry, R. S., Dodsworth, J., Staley, J. T., and Gillespie, A., Molecular analysis of microbial communities in rock coatings and soils from Death Valley California, Astrobiology, 2, 539, 2002.Google Scholar
Perry, R. S., Lynne, B. Y., Sephton, M. A., Kolb, V. M., Perry, C. C., and Staley, J. T., Baking black opal in the desert sun: the importance of silica in desert varnish, Geology, 34, 537540, 2006.Google Scholar
Philippe, N., Legendre, M., Doutre, G., et al., Pandoraviruses: amoeba viruses with genomes up to 2.5 Mb reaching that of parasitic eukaryotes, Science, 341, 281286, 2013.Google Scholar
Pinheiro, V. B., Taylor, A. I., Cozens, C., et al., Synthetic genetic polymers capable of heredity and evolution, Science, 336, 341344, 2012.Google Scholar
Pizzarello, S., and Shock, E., The organic composition of carbonaceous meteorites: the evolutionary story ahead of biochemistry, Cold Spring Harb. Perspect. Biol., 2, 119, 2010.Google Scholar
Pizzarello, S., Cooper, G. W., and Flynn, G. J., The nature and distribution of the organic material in carbonaceous chondrites and interplanetary dust particules, in Meteorites and the Early Solar System II, pp. 625651, Laurett, D. S. and McSween, H.Y., eds., University of Arizona Press, Tucson, AZ, 2006.Google Scholar
Planer, J. D., Yangqing, P., Andrew, L. K., Blanton, L. V., Ndao, I. M., Tarr, P. I., Warner, B. B., and Gordon, J. I., Development of the gut microbiota and mucosal IgA responses in twins and gnotobiotic mice, Nature, 534, 263266, 2016.Google Scholar
Popa, R., Between Necessity and Probability: Searching for the Definition and Origin of Life, Springer Verlag, Berlin, 2004.Google Scholar
Popper, K., Conjectures and Refutations, Routledge and Kegan Paul, London, 1963.Google Scholar
Powell, J. L., Night Comes to the Cretaceous, Harcourt and Brace, New York, 1998.Google Scholar
Powner, M. W., and Sutherland, J. D., Prebiotic chemistry: a new modus operandi, Philos. Trans. R. Soc. London, Ser. B, 366, 28702877, 2011.Google Scholar
Powner, M. W., Gerland, B., and Sutherland, J. D., Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions, Nature, 459, 239242, 2009.Google Scholar
Psillos, S., Scientific Realism: How Science Tracks Truth, Routledge, London, 1999.Google Scholar
Putnam, H., What theories are not, in Logic, Methodology, and the Philosophy of Science: Proceedings of the 1960 International Congress, pp. 240251, Nagel, E., Suppes, P., and Tarski, A., eds., Stanford University Press, Stanford, CA, 1962.Google Scholar
Putnam, H., Meaning and reference, J. Philos., 70, 699711, 1973.Google Scholar
Putnam, H., The meaning of ‘meaning’, in Language, Mind, and Knowledge: Minnesota Studies in the Philosophy of Science, volume VII, pp. 131193, Gunderson, K., ed., University of Minnesota Press, Minneapolis, MN, 1975. [Reprinted in Putnam 1979]Google Scholar
Putnam, H., ed., Mind, Language and Reality, pp. 215272, Cambridge University Press, Cambridge, 1979.Google Scholar
Putnam, H., Realism and Reason: Philosophical Papers, volume 3, Cambridge University Press, Cambridge, 1983.Google Scholar
Quinn, R. C., Martucci, H. F. H., Miller, S. R., Bryson, C. E., Grunthaner, F. J., and Grunthaner, P. J., Perchlorate radiolysis on Mars and the origin of Martian soil reactivity, Astrobiology, 13, 515520, 2013.Google Scholar
Rasmussen, S., Aspects of information, life, reality, and physics, Artif. Life, 2, 767774, 1992. [Reprinted in Langton and Taylor 2003]Google Scholar
Rasmussen, S., Chen, L., Nilsson, M., and Abe, S., Bridging nonliving and living matter, Artif. Life, 9, 269316, 2003.Google Scholar
Ray, T. S., An approach to the synthesis of life, in Artificial Life II, Santa Fe Institute Studies in the Sciences of Complexity Proceedings, volume XI, pp. 371408, Langton, C. G., Taylor, C., Farmer, J. D., and Rasmussen, S., eds., Addison-Wesley, Boston, MA, 1991.Google Scholar
Ray, T. S., Evolution, complexity, entropy, and artificial reality, Physica D, 75, 239263, 1994a.Google Scholar
Ray, T. S., An evolutionary approach to synthetic biology: zen and the art of creating life, Artif. Life, 1, 179209, 1994b. [Reprinted in Langton and Taylor 2003]Google Scholar
Ray, T. S., Artificial life programs and evolution, in Companion to Evolution, pp. 429433, Ruse, M. and Travis, J., eds., Harvard University Press, Cambridge, MA, 2009.Google Scholar
Redhead, M., The intelligibility of the universe, in Philosophy of the New Millennium, pp. 7390, O’Hear, A., ed., Cambridge University Press, Cambridge, 2001.Google Scholar
Riskin, J., The naturalist and the emperor, a tragedy in three acts; or, how history fell out of favor as a way of knowing nature, Know, 2, 85110, 2018.Google Scholar
Roberts, G., The Mirror of Alchemy: Alchemical Ideas in Images, Manuscripts and Books, University of Toronto Press, Toronto, 1994.Google Scholar
Rokas, A., The origins of multicellularity and the early history of the genetic toolkit for animal development, Annu. Rev. Genet., 42, 235251, 2008.Google Scholar
Rosen, R., Life Itself, Columbia University Press, New York, 1991.Google Scholar
Ross, D., and Ladyman, J., The alleged coupling-constitution fallacy and the mature sciences, in The Extended Mind, pp. 155166, Menary, R., ed., MIT Press, Cambridge, MA, 2010.Google Scholar
Ruiz-Mirazo, K., Peretó, J., and Moreno, A., A universal definition of life: autonomy and open-ended evolution, Orig. Life Evol. Biosph., 34, 323346, 2004. [Reprinted in Bedau and Cleland 2010]Google Scholar
Ruse, M., Charles Darwin, Blackwell, Malden, 2008.Google Scholar
Russell, M. J., and Hall, A. J., The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front, J. Geol. Soc. London, 154, 377402, 1997.Google Scholar
Ryder, G., Mass flux in the ancient Earth–Moon system and benign implications for the origin of life on Earth, J. Geophys. Res., 107, 5022, 2002.Google Scholar
Sagan, C., The definition of life, in Encyclopaedia Britannica, 14th edition, 1970. [Reprinted in Bedau and Cleland 2010]Google Scholar
Sagan, L., On the origin of mitosing cells, J. Theor. Biol., 14, 225274, 1967.Google Scholar
Sapp, J., Genesis: The Evolution of Biology, Oxford University Press, Oxford, 2003.Google Scholar
Sapp, J., The prokaryote–eukaryote dichotomy: meanings and mythology, Microbiol. Mol. Biol. Rev., 69, 292305, 2005.Google Scholar
Schaffner, J., Monism, in The Stanford Encyclopedia of Philosophy, E. N. Zalta, ed., 2007. (https://plato.stanford.edu/archives/win2018/entries/monism)Google Scholar
Schilthuizen, M., and Stouthamer, R., Horizontal transmission of parthenogenesis-inducing microbes in Trichogramma wasps, Proc. Biol. Sci., 264, 361366, 1997.Google Scholar
Schmitt-Kopplin, P., Gabelico, Z., Gougeon, R. D., et al., High molecular diversity of extraterrestrial organic matter in Murchison meteorite revealed 40 years after its fall, Proc. Natl. Acad. Sci. USA, 107, 27632768, 2010.Google Scholar
Schneider, E. D., and Kay, J. J., Life as a manifestation of the second law of thermodynamics, Math. Comput. Model., 19, 2548, 1994.Google Scholar
Schopf, J. W., Kudryavtsev, A. B., Czaja, A. D., and Tripathi, A. B., Evidence of Archean life: stromatolites and microfossils, Precambrian Res., 158, 141155, 2007.Google Scholar
Schrödinger, E., What is Life?, Cambridge University Press, Cambridge, 1944.Google Scholar
Schuerger, A. C., and Clark, B. C., Viking biology experiments: lessons learned and the role of ecology in future Mars life-detection experiments, Space Sci. Rev., 135, 233243, 2008.Google Scholar
Schulze-Makuch, D., and Bains, W., The first cell and the origin of life challenge, in The Cosmic Zoo: Complex Life on Many Worlds, pp. 3552, Springer, Berlin, 2017.Google Scholar
Schulze-Makuch, D., and Irwin, L. N., The prospect of alien life in exotic forms in other worlds, Naturwissenschaften, 93, 155172, 2006.Google Scholar
Schulze-Makuch, D., and Irwin, L. N., Life in the Universe: Expectations and Constraints, 2nd edition, Springer Verlag, Berlin, 2008.Google Scholar
Schulze-Makuch, D., Head, J. N., Houtkooper, J. M., et al., The biological oxidant and life detection (BOLD) mission: a proposal for a mission to Mars, Planet. Space Sci., 67, 5769, 2012.Google Scholar
Seager, S., and Bains, W., The search for signs of life on exoplanets at the interface of chemistry and planetary science, Sci. Adv., 1, e1500047, 2015.Google Scholar
Seager, S., Bains, W., and Pelowski, J. J., Towards a list of molecules as potential biosignature gasses for the search for life on exoplanets and applications to terrestrial biochemistry, Astrobiology, 16, 465485, 2016.Google Scholar
Sefah, K., Yang, Z., Bradley, K. M., Hoshika, S., Jiménez, E., Zhang, L., Zhu, G., Shanker, S., Yu, F., Turek, D., Tan, W., and Benner, S. A., In vitro selection with artificial expended genetic information systems, Proc. Natl. Acad. Sci. USA, 111, 14491454, 2014.Google Scholar
Segré, D., Ben-Eli, D., and Lancet, D., Compositional genomes: prebiotic information transfer in mutually catalytic noncovalent assemblies, Proc. Natl. Acad. Sci. USA, 97, 41124117, 2000.Google Scholar
Segré, D., Ben-Eli, D., Deamer, D. W., and Lancet, D., The lipid world, Org. Life Evol. Biosph., 31, 119145, 2001.Google Scholar
Sender, R., Fuchs, S., and Milo, R., Revised estimates for the number of human and bacterial cells in the body, PLoS Biol., 14, e1002533, 2016.Google Scholar
Shanahan, T., The Evolution of Darwinism: Selection, Adaptation, and Progress in Evolutionary Biology, Cambridge University Press, New York, 2004.Google Scholar
Shapiro, J. A., Thinking about bacterial populations as multicellular organisms, Annu. Rev. Microbiol., 52, 81104, 1998.Google Scholar
Shapiro, R., A replicator was not involved in the origin of Life, IUBMB Life, 49, 173176, 2000.Google Scholar
Shapiro, R., Small molecule interactions were central to the origin of life, Q. Rev. Biol., 81, 105126, 2006. [Reprinted in Bedau and Cleland 2010]Google Scholar
Shen, B., Dong, L., Xiao, S., and Kowalewksi, M., The Avalon explosion: evolution of Ediacara morphospace, Science, 319, 8184, 2008.Google Scholar
Sheng, G.-P., Yu, H.-Q., and Li, X.-Y., Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review, Biotechnol. Adv., 28, 882894, 2010.Google Scholar
Shields, C., Order in Multiplicity: Homonymy in the Philosophy of Aristotle, Oxford University Press, Oxford, 2002.Google Scholar
Shields, C., Aristotle’s De Anima, Clarendon Press, Oxford, 2013. [Reprinted in Bedau and Cleland 2010]Google Scholar
Simon, H. A., The axiomatization of physical theories, Philos. Sci., 37, 1626, 1970.Google Scholar
Singh, R. K., Chang, H., Yan, D., Lee, K. M., Ucmak, D., Wong, K., Abrouk, M., Farahnik, B., Nakamura, M., Zhu, T. H., Bhutani, T., and Liao, W., Influence of diet on the gut microbiome and implications for human health, J. Transl. Med., 15, 7388, 2017.Google Scholar
Smith, E., and Morowitz, H., Universality in intermediary metabolism, Proc. Natl. Acad. Sci. USA, 101, 1316813173, 2004.Google Scholar
Smith, E., and Morowitz, H., The Origin and Nature of Life on Earth: The Emergence of the Fourth Geosphere, Cambridge University Press, Cambridge, 2015.Google Scholar
Smolen, L., The Life of the Cosmos, Oxford University Press, Oxford, 1997.Google Scholar
Sneed, J., The Logical Structure of Mathematical Physics, Reidel, Dordrecht, 1971.Google Scholar
Sober, E., Learning from strong functionalism: prospects for strong artificial life, in Artificial Life II, Santa Fe Institute Studies in the Sciences of Complexity Proceedings, Langton, C. G., Taylor, C., Farmer, J. D., and Rasmussen, S., eds., Addison-Wesley, Boston, MA, 1991. [Reprinted in Bedau and Cleland 2010]Google Scholar
Sogin, M. L., Morrison, H. G., Huber, J. A., et al., Microbial diversity in the deep sea and the underexplored ‘rare biosphere’, Proc. Natl. Acad. Sci. USA, 103, 1211512120, 2006.Google Scholar
Soros, L. B., and Stanley, K. O., Identifying necessary conditions for open-ended evolution through the artificial life world of chromaria. In Artificial Life 14: Proceedings of the Fourteenth International Conference on the Synthesis and Simulation of Living Systems, pp. 793800, Sayama, H., Rieffel, J., Risi, S., Doursat, R., and Lipson, H., eds., MIT Press, Cambridge, MA, 2014.Google Scholar
Sosa Torres, M. E., Saucedo-Vázquez, J. P., and Kroneck, P. M. H., The magic of dioxygen, in Sustaining Life on Planet Earth: Metalloenzymes Mastering Dioxygen and Other Chewy Gases, Metal Ions in Life Sciences, volume 15, pp. 112, Kroneck, P. and Sosa Torres, M., eds., Springer, Cham, 2015.Google Scholar
Stamati, K., Mudera, V., and Cheema, U., Evolution of oxygen utilization in multicellular organisms and implications for cell signaling in tissue engineering, J. Tissue Eng., 2, 2041731411432365, 2011.Google Scholar
Standish, R., Open-ended artificial evolution, Int. J. Comput. Intell. Appl., 3, 167175, 2003.Google Scholar
Stanford, P. K., Exceeding Our Grasp: Science, History, and the Problem of Unconceived Alternatives, Oxford University Press, Oxford, 2006.Google Scholar
Steele, A., McCubbin, F. M., and Fries, M. D., The provenance, formation, and implications of reduced carbon phases in Martian meteorites, Meteorit. Planet. Sci., 51, 22032225, 2016.Google Scholar
Stubbendieck, R. M., Vargas-Bautista, C., and Straight, P. D., Bacterial communities: interactions to scale, Front. Microbiol., 7, 1234, 2016.Google Scholar
Summers, Z. M., Gralnick, J. A., and Bond, D. R., Cultivation of an obligate Fe(II)-oxidizing lithoautotrophic bacterium using electrodes, mBio, 4, e00420–12, 2013.Google Scholar
Suppe, F., The Structure of Scientific Theories, University of Illinois Press, Chicago, IL, 1977.Google Scholar
Suppe, F., The Semantic Conception of Scientific Theories and Scientific Realism, University of Illinois Press, Chicago, IL, 1989.Google Scholar
Suppes, P., Introduction to Logic, Van Nostrand, New York, 1957.Google Scholar
Suppes, P., What is scientific theory?, in Philosophy of Science Today, pp. 5567, Morgenbesser, S., ed., Basic Books, New York, 1967.Google Scholar
Suppes, P., Representation and Invariance of Scientific Structures, CSLI Publications, Stanford, CA, 2002.Google Scholar
Sure, S., Ackland, M. L., Torriero, A. A. J., Adholeya, A., and Kochar, M., Microbial nanowires: an electrifying tale, Microbiology, 162, 20172028, 2016.Google Scholar
Suttle, C. A., Marine viruses – major players in the global ecosystem, Nature Rev. Microbiol., 5, 801812, 2007.Google Scholar
Szostak, J. E., Bartel, D. P., and Luisi, P. L., Synthesizing life, Nature, 409, 387390, 2001.Google Scholar
Tarski, A., The semantic conception of truth, Philos. Phenom. Res., 4, 341376, 1944.Google Scholar
Tarski, A., The concept of truth in formalized languages, in Logic, Semantics and Metamathematics, Oxford University Press, New York, 1951.Google Scholar
Tegmark, M., Is ‘the theory of everything’ merely the ultimate ensemble theory?, Ann. Phys., 270, 151, 1998.Google Scholar
Tegmark, M., Our Mathematical Universe: My Quest for the Ultimate Nature of Reality, Alfred A. Knopf, New York, 2014.Google Scholar
Teller, P., Twilight of the perfect model, Erkenntnis, 55, 393415, 2001.Google Scholar
ten Kate, I. L., Organics on Mars?, Astrobiology, 10, 589603, 2010.Google Scholar
Tessera, M., Origin of evolution versus origin of life: a shift of paradigm, Int. J. Mol. Sci., 12, 34453458, 2011.Google Scholar
Theis, K. R., Venkataraman, A., Dycus, J. A., Koonter, K. D., Schmitt-Matzen, E. N., Wagner, A. P., Holekamp, K. E., and Schmidt, T. M., Symbiotic bacteria appear to mediate hyena social odors, Proc. Natl. Acad. Sci. USA, 110, 1983219837, 2013.Google Scholar
Thomas-Keprta, K. L., Bazylinski, D. A., Kirschvink, J. L., et al., Elongated prismatic magnetite crystals in ALH84001 carbonate globules: potential Martian magnetofossils, Geochim. Cosmochim. Acta, 64, 40494081, 2000.Google Scholar
Tian, R. M., Cai, L., Zhang, W. P., Cao, H. L., and Qian, P. Y., Rare events of intragenus and intraspecies horizontal transfer of the 16S rRNA gene, Genome Biol. Evol., 7, 23102320, 2015.Google Scholar
Timmis, J. N., Ayliffe, M. A., Huang, C. Y., and Martin, W., Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes, Nature Rev. Genet., 5, 123135, 2004.Google Scholar
Trifonov, E. N., Vocabulary of definitions of life suggests a definition, J. Biomol. Struct. Dynamics, 29, 259266, 2011.Google Scholar
Tsapin, A. I., Goldfeld, M. G., McDonald, G. D., et al., Iron (VI): hypothetical candidate for the Martian oxidant, Icarus, 147, 6878, 2000.Google Scholar
Tsokolov, S. A., Why is the definition of life so elusive?, Epistemol. Consid. Astrobiol., 9, 401412, 2009.Google Scholar
Tyrell, T., On Gaia: A Critical Investigation of the Relationship between Life and Earth, Princeton University Press, Princeton, NJ, 2013.Google Scholar
Urbano, P., and Urbano, F., Nanobacteria: facts or fancies?, PLoS Pathog., 3, e55, 2007.Google Scholar
Uwins, P. J. R., Webb, R., and Taylor, A. P., Novel nano-organisms from Australian sandstones, Am. Mineral., 83, 15411550, 1998.Google Scholar
Vago, J. L., Westall, F., Coates, A. J., and Korablev, O. I., Habitability on early Mars and the search for biosignatures with the ExoMars rover, Astrobiology, 17, 471519, 2017.Google Scholar
Van Fraassen, B., On the extension of Beth’s semantics to physical theories, Philos. Sci., 37, 325339, 1970.Google Scholar
Van Fraassen, B., The Scientific Image, Oxford University Press, Oxford, 1980.Google Scholar
Van Fraassen, B., Laws and Symmetry, Oxford University Press, Oxford, 1989.Google Scholar
van Regenmortel, M. H. V., The metaphor that viruses are living is alive and well, but it is not more than a metaphor, Stud. Hist. Philos. Biol. Biomed. Sci., 59, 117124, 2016.Google Scholar
Vasas, V., Szathmáry, E., and Santos, M. N., Lack of evolvability in self-sustaining autocatalytic networks constraints metabolism-first scenarios for the origin of life, Proc. Natl. Acad. Sci. USA, 107, 14701475, 2010.Google Scholar
Vella, J., Aristotle: A Guide for the Perplexed, Continuum International, London, 2008.Google Scholar
Vetsigian, K., Woese, C., and Goldenfield, N., Collective evolution and the genetic code, Proc. Natl. Acad. Sci. USA, 103, 1069610701, 2006.Google Scholar
von Neumann, J., Mathematical Foundations of Quantum Mechanics, Beyer, R. T., trans., Princeton University Press, Princeton, NJ, 1996 (original published in 1932).Google Scholar
Wacey, D., Kilburn, M. R., Saunders, M., Cliff, J., and Brasier, M. D., Microfossils of sulphur metabolizing cells in 3.4-billion-year-old rocks of Western Australia, Nature Geosci., 4, 698702, 2011.Google Scholar
Wächtershäuser, G., Before enzymes and templates: theory of surface metabolism, Microbiol. Rev., 52, 452484, 1988.Google Scholar
Wächtershäuser, G., The case for the chemoautotrophic origin of life in an iron-sulfide world, Orig. Life Evol. Biosph., 20, 173176, 1990.Google Scholar
Wächterhäuser, G., Groundworks for an evolutionary biochemistry: the iron-sulfur world, Prog. Biophys. Mol. Biol., 58, 85201, 1992.Google Scholar
Wang, B., Yao, M., Lv, L., Ling, Z., and Li, L., The human microbiota in health and disease, Eng. Microecol. Rev., 3, 7182, 2017.Google Scholar
Ward, P. D., and Brownlee, D., Rare Earth: Why Complex Life Is Uncommon in the Universe, Springer Verlag, New York, 2000.Google Scholar
Watamabe, K., and Nishio, K., Electric power from rice paddy fields, in Paths to Sustainable Energy, pp. 563580, Ng, A., ed., INTECH, Rijeka, 2010.Google Scholar
Weinbauer, M. G., Ecology of prokaryote viruses, FEMS Microbiol. Rev., 28, 127181, 2004.Google Scholar
Weisberg, M., Three kinds of idealization, J. Philos., 104, 639659, 2007.Google Scholar
Weisberg, M., Simulation and Similarity: Using Models to Understand the World, Oxford University Press, Oxford, 2013.Google Scholar
Wessner, D., Discovery of the giant mimivirus, Nature Educ., 3, 61, 2010.Google Scholar
Westall, F., Morphological biosignatures in early terrestrial and extraterrestrial materials, Space Sci. Rev., 135, 95114, 2008.Google Scholar
Westfall, R., The Construction of Modern Science, Cambridge University Press, Cambridge, 1977.Google Scholar
Whittaker, E. T., A History of the Theories of the Aether and Electricity: From the Age of Descartes to the Close of the Nineteenth Century, Longmans, Green and Co., London, 1910.Google Scholar
Whittaker, R. H., New concepts of kingdoms of organisms, Science, 163, 150160, 1969.Google Scholar
Wieland, W., Aristotle’s Physics and the problem of inquiry into principles, in Articles on Aristotle, volume 1, pp. 127140, Barnes, J., Schofield, M., and Sorabji, R., eds., Duckworth, London, 1975.Google Scholar
Williams, M. B., Deducing the consequences of evolution: a mathematical model, J. Theor. Biol., 29, 343385, 1970.Google Scholar
Williams, T. A., Foster, P. G., Cox, C. J., and Embley, T. M., An archaeal origin of eukaryotes supports only two primary domains of life, Nature, 504, 231236, 2013.Google Scholar
Wimsatt, W., False models as means to truer theories, in Neutral Models in Biology, pp. 2355, Nitecki, M. H. and Hoffman, A., eds., Oxford University Press, Oxford, 1987.Google Scholar
Wimsatt, W. C., Re-engineering Philosophy for Limited Beings: Piecewise Approximations to Reality, Harvard University Press, Cambridge, MA, 2007.Google Scholar
Winther, R. G., The structure of scientific theories, in The Stanford Encyclopedia of Philosophy, E. N. Zalta, ed., 2015.Google Scholar
Woese, C. R., The Genetic Code: The Molecular Basis for Gene Expression, Harper and Row, New York, 1967.Google Scholar
Woese, C., The universal ancestor, Proc. Natl. Acad. Sci. USA, 95, 68546859, 1998.Google Scholar
Woese, C. R., The archaeal concept and the world it lives in: a retrospective, Photosynth. Res., 80, 371372, 2004.Google Scholar
Woese, C. R., and Fox, G., Phylogenetic structure of the prokaryotic domain: the primary kingdoms, Proc. Natl. Acad. Sci. USA, 74, 50885090, 1977.Google Scholar
Woese, C., Magrum, L. J., and Fox, G. E., Archaebacteria, J. Mol. Evol., 11, 245252, 1978.Google Scholar
Woese, C. R., Kandler, O., and Wheelis, M. L., Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eukarya, Proc. Natl. Acad. Sci. USA, 87, 45764579, 1990.Google Scholar
Wu, D. Y., Wu, M., Halpern, A., et al., Stalking the fourth domain in metagenomic data: searching for, discovering, and interpreting novel, deep branches in marker gene phylogentic trees, PLoS One, 6, e18011, 2011.Google Scholar
Xie, J., and Schultz, P. G., Adding amino acids to the genetic repertoire, Curr. Opin. Chem. Biol., 9, 548554, 2005.Google Scholar
Yamada, C., Gotoh, A., Sakanaka, M., Hattie, M., Stubbs, K. A., Katayama-Ikegami, A., Hirose, J., Kurihara, S., Arakawa, T., Kitaoka, M., Okuda, S., Katayama, T., and Fushinobu, S., Molecular insight into evolution of symbiosis between breast-fed infants and a member of the human gut microbiome Bifidobacterium longum, Cell Chem. Biol., 24, 515524, 2017.Google Scholar
Yang, Z., Chen, F., Alvarado, J. B., and Benner, S. A., Amplification, mutation, and sequencing of a six letter synthetic genetic system, J. Am. Chem. Soc., 133, 1510515112, 2011.Google Scholar
Yarus, M., Life from an RNA World: The Ancestor Within, Harvard University Press, Cambridge, MA, 2011.Google Scholar
Yooseph, S., Sutton, G., Rusch, D. B., et al., The Sorcerer II global ocean sampling expedition: expanding the universe of protein families, PLoS Biol., 5, e77, 2007.Google Scholar
Yue, J., Hu, X., Sun, H., Yang, Y., and Huang, J., Widespread impact of horizontal gene transfer on plant colonization of land, Nature Commun., 3, 1152, 2012.Google Scholar
Zeleny, M., ed., Autopoiesis: A Theory of Living Organization, North-Holland, New York, 1981.Google Scholar
Zemach, E. M., Putnam’s theory on the reference of substance terms, J. Philos., 73, 116127, 1976.Google Scholar
Zent, A. P., and McKay, C. P., The chemical reactivity of the Martian soil and implications for future missions, Icarus, 108, 146157, 1994.Google Scholar
Zilber-Rosenberg, I., and Rosenberg, E., Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution, FEMS Microbiol. Rev., 32, 723735, 2008.Google Scholar
Zuckerkandl, E., and Pauling, L., Molecules as documents of evolutionary history, J. Theor. Biol., 8, 357366, 1965.Google Scholar
Zykov, V., Mytilinaios, E., Adams, B., and Lipsone, H., Self-reproducing machines, Nature, 435, 163164, 2005.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Carol E. Cleland, University of Colorado Boulder
  • Book: The Quest for a Universal Theory of Life
  • Online publication: 05 September 2019
  • Chapter DOI: https://doi.org/10.1017/9781139046893.012
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Carol E. Cleland, University of Colorado Boulder
  • Book: The Quest for a Universal Theory of Life
  • Online publication: 05 September 2019
  • Chapter DOI: https://doi.org/10.1017/9781139046893.012
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Carol E. Cleland, University of Colorado Boulder
  • Book: The Quest for a Universal Theory of Life
  • Online publication: 05 September 2019
  • Chapter DOI: https://doi.org/10.1017/9781139046893.012
Available formats
×