Skip to main content Accessibility help
    • Access
  • Print publication year: 2017
  • Online publication date: May 2017

6 - Palaeomagnetic Geochronology of Quaternary Sequences in the Levant1

from Part I: - The Evolution of Current Landscapes and Basins
  • View HTML
    • Send chapter to Kindle

      To send this chapter to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Available formats

      Send chapter to Dropbox

      To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Dropbox.

      Available formats

      Send chapter to Google Drive

      To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Google Drive.

      Available formats


Paleomagnetic dating methods are based on comparing magnetic information from materials or sequences whose ages are unknown with a geomagnetic chronological reference frame. The global Quaternary geomagnetic chronology is continuously updated and includes at the moment 10 polarity reversals and at least 18 validated geomagnetic excursions that serve as detectable markers for sedimentary and volcanic sequences. In addition, short-term secular geomagnetic variations of the Holocene provide the basis for a promising method for dating young materials. In this chapter we review the principles underlying paleomagnetic dating methods with emphasis on Quaternary rocks, sediments, and archaeological materials. We summarize a number of successful applications of paleomagnetic chronology in Quaternary research in the Levant, and present insight into future prospects of Quaternary paleomagnetism.
Abou-Deeb, J.M., Otaki, M.M., Tarling, D.H. & Abdeldayem, A.L. 1999. A palaeomagnetic study of Syrian volcanic rocks of Miocene to Holocene age. Geofisica Internacional-Mexico 38: 1726.
Ben-Yosef, E., Ron, H., Tauxe, L. et al. 2008a. Application of copper slag in geomagnetic archaeointensity research. Journal of Geophysical Research – Solid Earth 113. doi:10.1029/2007JB005235.
Ben-Yosef, E., Tauxe, L., Ron, H. et al. 2008b. A new approach for geomagnetic archaeointensity research: Insights on ancient metallurgy in the Southern Levant. Journal of Archaeological Science 35: 2863–79.
Ben-Yosef, E., Tauxe, L. & Levy, T.E. 2010. Archaeomagnetic dating of copper smelting site F2 in the Timna valley (Israel) and its implications for the modelling of ancient technological developments. Archaeometry 52: 1110–21.
Braun, D., Ron, H. & Marco, S. 1991. Magnetostratigraphy of the hominid tool-bearing Erk el Ahmar Formation in the northern Dead Sea Rift. Israel Journal of Earth Sciences 40: 191–7.
Butler, R.F. 1992. Paleomagnetism: Magnetic Domains to Geologic Terranes. Boston: Blackwell Scientific Publications.
Cande, S.C. & Kent, D.V. 1995. Revised calibration of the geomagnetic polarity timescale for the late Cretaceous and Cenozoic. Journal of Geophysical Research – Solid Earth 100: 6093–5.
Cox, A., Doell, R.R. & Dalrymple, G.B. 1964. Geomagnetic polarity epochs. Science 143: 351–2.
Davis, M., Matmon, A., Fink, D., Ron, H. & Niederniann, S. 2011. Dating Pliocene lacustrine sediments in the central Jordan Valley, Israel – implications for cosmogenic burial dating. Earth and Planetary Science Letters 305: 317–27.
Develle, A.L., Gasse, F., Vidal, L. et al. 2011. A 250 ka sedimentary record from a small karstic lake in the northern Levant (Yammouneh, Lebanon) Paleoclimatic implications. Palaeogeography Palaeoclimatology Palaeoecology 305: 1027.
Dunlop, D.J. & Özdemir, Ö. 2001. Rock Magnetism: Fundamentals and Frontiers. New York: Cambridge University Press.
Evans, M.E. & Heller, F. 2001. Magnetism of loess/palaeosol sequences: Recent developments. Earth-Science Reviews 54: 129–44.
Fisher, R.A. 1953. Dispersion on a sphere. Proceedings of the Royal Society of London Series A 217: 295305.
Frank, U., Schwab, M.J. & Negendank, J.F.W. 2002. A lacustrine record of paleomagnetic secular variations from Birkat Ram, Golan Heights (Israel) for the last 4400 years. Physics of the Earth and Planetary Interiors 133: 2134.
Frank, U., Nowaczyk, N.R. & Negendank, J.F.W. 2007a. Palaeomagnetism of greigite bearing sediments from the Dead Sea, Israel. Geophysical Journal International 168: 904–20.
Frank, U., Nowaczyk, N.R. & Negendank, J.F.W. 2007b. Rock magnetism of greigite bearing sediments from the Dead Sea, Israel. Geophysical Journal International 168: 921–34.
Freund, R., Oppenheim, M.J. & Schulman, N. 1965. Direction of magnetization of some basalts in Jordan Valley and Lower Galilee (Israel). Israel Journal of Earth Sciences 14: 3744.
Gallet, Y., Genevey, A., Le Goff, M., Fluteau, F. & Ali Eshraghi, S. 2006. Possible impact of the Earth's magnetic field on the history of ancient civilizations. Earth and Planetary Science Letters 246: 1726.
Gee, J.S. & Kent, D.V. 2007. Source of oceanic magnetic anomalies and the geomagnetic polarity timescale. In Treatise on Geophysics. Vol. 5. Geomagnetism, ed. Kono, M.. Amsterdam: Elsevier.
Goren-Inbar, N., Belitzky, S., Verosub, K. et al. 1992. New discoveries at the middle Pleistocene Acheulean site of Gesher Benot Yaaqov, Israel. Quaternary Research 38: 117–28.
Goren-Inbar, N., Feibel, C.S., Verosub, K.L. et al. 2000. Pleistocene milestones on the out-of-Africa corridor at Gesher Benot Ya'aqov, Israel. Science 289: 944–7.
Goren-Inbar, N., Alperson, N., Kislev, M.E. et al. 2004. Evidence of hominin control of fire at Gesher Benot Ya'aqov, Israel. Science 304: 725–7.
Gradstein, F.M., Ogg, J.G., Schmitz, M.D. & Ogg, G.M. (ed.) 2012. The Geological Time Scale. Amsterdam: Elsevier.
Gregor, C.B., Mertzman, S., Nairn, A.E.M. & Negendan, J. 1974. Paleomagnetism and alpine tectonics of Eurasia. V. Paleomagnetism of some mesozoic and cenozoic volcanic-rocks from Lebanon. Tectonophysics 21: 375–95.
Gvirtzman, G., Wieder, M., Marder, O. et al. 1999. Geological and pedological aspects of an Early Paleolithic site: Revadim, Central Coastal Plain, Israel. Geoarchaeology 14: 101–26.
Heimann, A. & Ron, H. 1993. Geometric changes of plate boundaries along part of the northern Dead-Sea Transform – geochronological and paleomagnetic evidence. Tectonics 12: 477–91.
Heimann, A., Steinitz, G., Mor, D. & Shaliv, G. 1996. The Cover Basalt, its age and its regional and tectonic setting: Implications from K–Ar and 40Ar/39Ar geochronology. Israel Journal of Earth Sciences 45: 5571.
Hurwitz, S., Matmon, A., Ron, H. & Heiman, A. 1999. Deformation along the margins of the Dead Sea Transform: The Yehudiyya Block, Golan Heights. Israel Journal of Earth Sciences 48: 257–64.
Kirschvink, J. 1980. The least-squares line and plane and the analysis of paleomagnetic data. Geophysical Journal of the Royal Astronomical Society 62: 699718.
Laj, C. & Channell, J.E.T. 2007. Geomagnetic excursions. In Treatise on Geophysics. Vol. 5. Geomagnetism, ed. Kono, M.. Amsterdam: Elsevier, pp. 347416.
Laukhin, S.A., Ronen, A., Pospelova, G.A. et al. 2001. New data on the geology and geochronology of the Lower Palaeolithic site Bizat Ruhama in the southern Levant. Paléorient 27: 6980.
Liu, Q., Deng, C., Torrent, J. & Zhu, R. 2007. Review of recent developments in mineral magnetism of the Chinese loess. Quaternary Science Reviews 26: 368–85.
Liu, Q., Roberts, A.P., Larrasoana, J.C. et al. 2012. Environmental magnetism: Principles and applications. Reviews of Geophysics 50: RG4002. doi:10.1029/2012RG000393.
Malinsky-Buller, A., Barzilai, O., Ayalon, A. et al. 2016. The age of the lower Palaeolithic site of Kefar Menachem West, Israel – Another facet of Acheulian variability. Journal of Archaeological Science: Reports 10: 350–62.
Marco, S. 2002. Late Pleistocene paleomagnetic secular variation from the Sea of Galilee, Israel. Geophysical Research Letters 29. doi:10.1029/2001GL014038.
Marco, S., Ron, H., McWilliams, M.O. & Stein, M. 1998. High-resolution record of geomagnetic secular variation from Late Pleistocene Lake Lisan sediments (paleo Dead Sea). Earth and Planetary Science Letters 161: 145–60.
Marco, S., Ron, H., McWilliams, M.O. & Stein, M. 1999. The locking in of remanence in Late Pleistocene sediments of Lake Lisan (palaeo Dead Sea). In Palaeomagnetism and Diagenesis in Sediments, ed. Tarling, D.H. & Turner, P.. London.
Marder, O., Gvirtzman, G., Ron, H. et al. 1999. The Lower Paleolithic site of Revadim Quarry, preliminary finds. Journal of the Israel Prehistoric Society – Mitekufat Haeven 28: 2153.
Mashiah, M., Greenbaum, N., Zilberman, E., Ron, H. & Ronen, A. 2009. Pleistocene tectonic stability of the western Carmel escarpment – evidence from magnetostratigraphy of calcretes. Geological Survey of Israel, Report GSI/19/2009.
Matmon, A., Katz, O., Shaar, R. et al. 2010. Timing of relay ramp growth and normal fault linkage, Upper Galilee, northern Israel. Tectonics 29.
Nowaczyk, N.R. 2011. Dissolution of titanomagnetite and sulphidization in sediments from Lake Kinneret, Israel. Geophysical Journal Inter-national 187: 34U624.
Roberts, A.P. 2008. Geomagnetic excursions: knowns and unknowns. Geophysical Research Letters 35: L17307. doi:10.1029/2008GL034719.
Ron, H. & Gvirtzman, G. 2001. Magnetostratigraphy of Ruhama bad-land Quaternary deposits: A new age of the Lower Paleolithic site. Abstracts of the Annual Meeting – Israel Geological Society.
Ron, H. & Levi, S. 2001. When did hominids first leave Africa? New high-resolution magnetostratigraphy from the Erk-el-Ahmar Formation, Israel. Geology 29: 887–90.
Ron, H., Freund, R., Garfunkel, Z. & Nur, A. 1984. Block rotation by strike-slip faulting – structural and paleomagnetic evidence. Journal of Geophysical Research 89: 6256–70.
Ron, H., Heimann, A. & Garfunkel, Z. 1992. Pliocene paleomagnetic pole of the Arabian Plate: Implication for the Levant plate kinematics. Institute for Petroleum Research and Geophysics Report, 889/33/90.
Ron, H., Porat, N., Ronen, A., Tchernov, E. & Horwitz, L.K. 2003. Magnetostratigraphy of the Evron Member – implications for the age of the Middle Acheulian site of Evron Quarry. Journal of Human Evolution 44: 633–9.
Ron, H., Nowaczyk, N.R., Frank, U., Marco, S. & Mcwilliams, M.O. 2006. Magnetic properties of Lake Lisan and Holocene Dead Sea sediments and the fidelity of chemical and detrital remanent magnet-ization. Geological Society of America Special Papers 401: 171–82.
Ron, H., Nowaczyk, N.R., Frank, U. et al. 2007. Greigite detected as dominating remanence carrier in Late Pleistocene sediments, Lisan Formation, from Lake Kinneret (Sea of Galilee), Israel. Geophysical Journal International 170: 117–31.
Sagi, A. 2005. Magnetostratigraphy of ‘Ubeidiya’ Formation, Northern Dead Sea Transform. Unpublished M.Sc. thesis, Hebrew University of Jerusalem.
Segal, Y. 2003. Paleomagnetic Secular Variation of the Last 4 Millennia Recorded in Dead Sea Sediments and Archaeological Sites in Israel. Unpublished M.Sc. thesis, Tel-Aviv University.
Shaar, R., Ron, H., Tauxe, L. et al. 2010. Testing the accuracy of absolute intensity estimates of the ancient geomagnetic field using copper slag material. Earth and Planetary Science Letters 290: 201–13.
Shaar, R., Ben-Yosef, E., Ron, H. et al. 2011. Geomagnetic field intensity: How high can it get? How fast can it change? Constraints from Iron-Age copper-slag. Earth and Planetary Science Letters 301: 297306.
Shaar, R. & Tauxe, L. 2013. Thellier GUI: An integrated tool for analyzing paleointensity data from Thellier-type experiments. Geochemistry Geophysics Geosystems 14: 677–92.
Singer, B.S. 2014. A Quaternary geomagnetic instability time scale. Quaternary Geochronology 21: 2952.
Sternberg, R.S. 1997. Archaeomagnetic dating. In Chronometric and Allied Dating in Archaeology, ed. Taylor, R.E. & Aitken, M.. New York: Plenum Press.
Tauxe, L. 2010. Essentials of Paleomagnetism. Berkeley: University of California Press.
Tauxe, L. & Yamazaki, T. 2007. Paleointensities. In Treatise on Geophysics. Vol. 5. Geomagnetism, ed. Kono, M.. Amsterdam: Elsevier, pp. 509–63.
Thompson, R., Turner, G.M., Stiller, M. & Kaufman, A. 1985. Near-East paleomagnetic secular variation recorded in sediments from the Sea of Galilee (Lake Kinneret). Quaternary Research 23: 175–88.
Valet, J.P. & Fournier, A. 2016. Deciphering records of geomagnetic reversals. Reviews of Geophysics 54: 410–46.
Vandonge, P.G., Vandervo, R. & Raven, T. 1967. Paleomagnetic research in Central Lebanon Mountains and in Tartous area (Syria). Tectonophysics 4: 3553.
Weinberger, R., Agnon, A. & Ron, H. 1997. Paleomagnetic reconstruction of a diapir emplacement: a case study from Sedom diapir, the Dead Sea Rift. Journal of Geophysical Research – Solid Earth 102: 5173–92.
Zilberman, E. 2013. The Plio-Pleistocene tectonic history of the Modi'in fault and its implications on the seismic hazard assessment for the Modi'in area. Geological Survey of Israel Report GSI/06/2013.
Zilberman, E., Ron, H. & Shaar, R. 2011. Evaluating the potential seismic hazards of the Ahihud Ridge fault system by paleomagnetic and morphological analyses of calcretes. Geological Survey of Israel Report GSI/15/11.