Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T09:16:02.546Z Has data issue: false hasContentIssue false

Part I: - The Evolution of Current Landscapes and Basins

Published online by Cambridge University Press:  04 May 2017

Yehouda Enzel
Affiliation:
Hebrew University of Jerusalem
Ofer Bar-Yosef
Affiliation:
Harvard University, Massachusetts
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Quaternary of the Levant
Environments, Climate Change, and Humans
, pp. 3 - 74
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Avni, Y. 1993. The structural and landscape evolution of the western Ramon structure. Israel Journal of Earth Sciences 42: 177–87.Google Scholar
Avni, Y. 1998. Paleogeography and tectonics of the central Negev and the Dead Sea Rift western margin during the late Neogene and Quaternary. Israel Geological Survey Report GSI/24/98 [Hebrew, English abstract].Google Scholar
Avni, Y. & Zilberman, E. 2007. Landscape evolution triggered by neotectonics in the Sede Zin region, Central Negev, Israel. Israel Journal of Earth Sciences 55: 189208.Google Scholar
Avni, Y., Bartov, Y., Garfunkel, Z. & Ginat, H. 2000. Evolution of the Paran drainage basin and its relations to the Plio-Pleistocene history of the Arava Rift western margin, Israel. Israel Journal of Earth Sciences 49: 215–38.Google Scholar
Avni, Y., Bartov, Y., Garfunkel, Z. & Ginat, H. 2001. The Arava Formation – A Pliocene sequence in the Arava Valley and its western margin, southern Israel. Israel Journal of Earth Sciences 50: 101–20.Google Scholar
Avni, Y., Segev, A. & Ginat, H. 2012. Oligocene regional denudation of the northern Afar dome: Pre and syn breakup stages of the Afro-Arabian plate. Geological Society of America Bulletin 124 (11/12): 1871–897.CrossRefGoogle Scholar
Baker, J., Snee, L. & Menzies, M. 1996. A brief Oligocene period of flood volcanism in Yemen: Implication for the duration and rate of continental flood volcanism at the Afro-Arabian triple junction. Earth and Planetary Science Letters 138: 3955.Google Scholar
Bar, O. 2009. The shaping of the continental margin of central Israel since the Late Eocene – tectonics, morphology and stratigraphy. Israel Geological Survey Report GSI/32/2009 (Hebrew, English abstract).Google Scholar
Bartov, Y. 1974. A Structural and Paleogeographical Study of the Central Sinai Faults and Domes. Unpublished Ph.D. thesis, Hebrew University of Jerusalem [Hebrew, English abstract].Google Scholar
Bartov, Y., Frieslander, Y., Avni, Y. et al. 2004. Possible Precambrian origin for the Plio-Quaternary NNE trending fault system in the southern Negev – evidence from field mapping and geophysical surveys. Israel Geological Society Annual Meeting Abstracts, p. 13.Google Scholar
Bender, F. 1974. Geology of Jordan. Berlin: Borntraeger.Google Scholar
Bentor, Y.K. 1985. The crustal evolution of the Arabian–Nubian Massif with special reference to the Sinai Peninsula. Precambrian Research 28: 174.Google Scholar
Bosworth, W., Huchon, P. & McClay, K. 2005. The Red Sea and Gulf of Aden Basins. Journal of African Earth Sciences 43: 334–78.Google Scholar
Calvo, R. 2002. Stratigraphy and petrology of the Hazeva Formation in the Arava and Negev: Implications for the development of sedimentary basins and morphotectonics of the Dead Sea Rift valley. Geological Survey of Israel Report GSI/22/02.Google Scholar
Cloos, H. 1953. Conversation with the Earth. New York: Knopf.Google Scholar
Crouvi, O., Amit, R., Enzel, Y., Porat, N. & Sandler, A. 2008. Sand dunes as a major proximal dust source for late Pleistocene loess in the Negev Desert, Israel. Quaternary Research 70: 275–82.Google Scholar
Crouvi, O., Amit, R., Porat, N. et al. 2009. Significance of primary hill top loess in reconstructing dust chronology, accretion rates, and sources: An example from the Negev Desert, Israel. Journal of Geophysical Research: Earth Surface 114: F02017.Google Scholar
Crouvi, O., Amit, R., Enzel, Y. & Gillespie, A.R. 2010. Active sand seas and the formation of desert loess. Quaternary Science Reviews 29: 20872098.CrossRefGoogle Scholar
De Jaeger, C.H. & De Dapper, M. 2002. Tectonic control in the geomorphologic development of the Wadi el-Mujib canyon (Jordan). In From Continental Extension to Collision: Africa–Europe Interaction; The Dead Sea Rift and Analogue Natural Laboratories, ed. Cloetingh, S.A.P.L. & Ben-Avraham, Z.. European Geosciences Union, Stephan Mueller Special Publication Series 2. Katlenburg-Lindau: Copernicus, pp. 8394.Google Scholar
Dubertret, L. 1955. Carte Geologique du Liban. Beirut: Lebanese Ministry of Public Works.Google Scholar
Enzel, Y., Amit, R., Dayan, U. et al. 2008. The climatic and physiographic controls of the eastern Mediterranean over the Late Pleistocene climates in the southern Levant and its neighboring deserts. Global and Planetary Change 60: 165–92.CrossRefGoogle Scholar
Enzel, Y., Amit, R., Crouvi, O. & Porat, N. 2010. Abrasion-derived sediments under intensified winds at the latest Pleistocene leading edge of the advancing Sinai–Negev erg. Quaternary Research 74: 121–31.Google Scholar
Farr, T.G., Rosen, P.A., Caro, E. et al. 2007. The Shuttle Radar Topography Mission. Reviews in Geophysics 45: RG2004. doi:10.1029/2005RG000183.Google Scholar
Feinstein, S., Kohn, B.P., Eyal, M. et al. 2004. Denudation history of the eastern flank of the Dead Sea Rift, southwestern Jordan: Evidence from low temperature thermochronology. 10th International Conference on Fission Track Dating and Thermochronology, Amsterdam. Abstract, p. 69.Google Scholar
Feinstein, S., Eyal, M., Kohn, B.P. et al. 2013. Uplift and denudation history of the eastern Dead Sea Rift flank, SW Jordan: Evidence from apatite fission track thermochronometry. Tectonics 32: 116. doi:10.1002/tect.20082.Google Scholar
Freund, R. 1970. Plate tectonics of Red Sea and East Africa. Nature 228: 453–8.CrossRefGoogle ScholarPubMed
Garfunkel, Z. 1964. Tectonic Problems along the Ramon. Unpublished M.Sc. thesis, Hebrew University of Jerusalem [Hebrew].Google Scholar
Garfunkel, Z. 1970. The Tectonics of the Western Margins of the Southern Arava: A Contribution to the Understanding of Rifting. Unpublished Ph.D. thesis, Hebrew University of Jerusalem. [Hebrew, English abstract].Google Scholar
Garfunkel, Z. 1978. The Negev – regional synthesis of sedimentary basins. 10th International Sedimentology Congress, Jerusalem Guidebook 1: 35101.Google Scholar
Garfunkel, Z. 1981. Internal structure of the Dead Sea leaky transform (rift) in relation to plate kinematics. Tectonophysics 80: 81108.Google Scholar
Garfunkel, Z. 1988. Relation between continental rifting and uplifting: Evidence from the Suez rift and northern Red Sea. Tectonophysics 150: 3349.Google Scholar
Garfunkel, Z. 1998. Constraints on the origin and history of the eastern Mediterranean basin. Tectonophysics 298: 535.Google Scholar
Garfunkel, Z. 1999. History and paleogeography during the Pan-African orogeny to stable platform transition: Reappraisal of the evidence from the Elat area and the northern Arabian-Nubian Shield. Israel Journal of Earth Sciences 48: 135–57.Google Scholar
Garfunkel, Z. 2001. The nature and history of motion along the Dead Sea Transform (Rift). In The Jordan Rift Valley, ed. Horowitz, A.. Rotterdam: Balkema Publishers, pp. 627–51.Google Scholar
Garfunkel, Z., Zak, I. & Freund, R. 1981. Active faulting in the Dead Sea Rift. Tectonophysics 80: 126.Google Scholar
George, R., Rogers, N. & Kelley, S. 1998. Earliest magmatism in Ethiopia: Evidence for two mantle plumes in one flood basalts province. Geology 26: 923–26.Google Scholar
Gomez, F., Meghraoui, M., Darkal, A.N. et al. 2003. Holocene faulting and earthquake recurrence along the Serghaya branch of the Dead Sea fault system in Syria and Lebanon. Geophysical International Journal 153: 658–74.Google Scholar
Gomez, F., Nemer, T., Tabet, C. et al. 2007. Restraining bend of the Dead Sea fault (Lebanon and SW Syria): Strain partitioning of active transpression within the Lebanese. Geological Society, London, Special Publications 290: 285303.Google Scholar
Guiraud, R. & Bosworth, W. 1997. Senonian basin inversion and rejuven-ation of rifting in Africa and Arabia: Synthesis and implications to plate-scale tectonics. Tectonophysics 282: 3982.Google Scholar
Guralnik, B., Matmon, A., Avni, Y. & Fink, D. 2010. 10Be exposure ages of ancient desert pavements reveal Quaternary evolution of the Dead Sea drainage basin and rift margin tilting. Earth and Planetary Science Letters 290(1): 132–41.Google Scholar
Gvirtzman, G. & Buchbinder, B. 1969. Outcrops of Neogene formations in the central and southern coastal plain, Hashephela and Be'er Sheva regions, Israel. Israel Geological Survey Bulletin 50: 73.Google Scholar
Hofmann, C., Courtillot, V., Feraud, G. et al. 1997. Timing of the Ethiopian flood basalt event and implications for plume birth and global change. Nature 389: 838–41.CrossRefGoogle Scholar
Horowitz, A. 1979. The Quaternary of Israel. New York: Academic Press.Google Scholar
Horowitz, A. 2001. The Jordan Rift Valley. Rotterdam: Balkema Publishers.Google Scholar
Ilani, S., Harlavan, J., Tarawneh, K. et al. 2001. New K–Ar ages of basalts from the Harrat Ash–Shaam volcanic field in Jordan: Implications for the span and duration of the upper-mantle beneath the west Arabian plate. Geology 29: 171–74.2.0.CO;2>CrossRefGoogle Scholar
Joffe, S. & Garfunkel, Z. 1987. Plate kinematics of the circum Red Sea area: A re-evaluating. Tectonophysics 141: 522.Google Scholar
Joseph-Chai, N., Haviv, I., Eyal, Y., Weinberger, R. & Benjamini, H., 2015. The structure, uplift stages and the exhumation pattern of the Hermon ridge. In: Field Trip Guidebook, Geological Society of Israel Annual Meeting, ed. Zaletkin, O, Wienstein, Y & Kazir, Y, pp. 5592.Google Scholar
Kazmin, V.G. 2002. The late Paleozoic to Cainozoic intraplate deformation in North Arabia: A response to plate boundary-forces. In From Continental Extension to Collision: Africa–Europe Interaction; The Dead Sea Rift and Analogue Natural Laboratories, ed. Cloetingh, S.A.P.L. & Ben-Avraham, Z.. Stephan Mueller Special Publication Series 2. Katlenburg-Lindau: Copernicus, pp. 123–38.Google Scholar
Krenkel, E. 1924. Der Syrische Bogen. Zentralblatt fuer Mineralogie, Geologie und Palaeontologie 9: 274–81.Google Scholar
Lyakhovsky, V., Segev, A., Schattner, U. & Weinberger, R. 2012. Deformation and seismicity associated with continental rift zones propagating toward continental margins. Geochemical Geophysical Geosystem 13(1): Q01012.Google Scholar
Matmon, A., Enzel, Y., Zilberman, E. & Heimann, A. 1999. Late Pliocene to Pleistocene reversal of drainage systems in northern Israel: Tectonic implications. Geomorphology 28: 4359.Google Scholar
Matmon, A., Wdowinski, S. & Hall, J. 2003. Morphological and structural relations in the Galilee extensional domain, northern Israel. Tectonophysics 371: 223–41.Google Scholar
Matmon, A., Simhai, O., Amit, R. et al. 2009. Desert pavement-coated surfaces in extreme desert present the longest-lived landforms on Earth. Geological Society of America Bulletin, 121: 68897.Google Scholar
Matmon, A., Fink, D., Davis, M. et al. 2014. Unraveling rift margin evolution and escarpment development ages along the Dead Sea fault using cosmogenic burial ages. Quaternary Research 82: 281–95.Google Scholar
Picard, L. 1943. Structure and evolution of Palestine with comparative notes on neighboring countries. Hebrew University of Jerusalem, Geology Department Bulletin 4: 134.Google Scholar
Pik, R., Marty, B., Carignan, J. & Lave, J. 2003. Stability of the Upper Nile drainage network (Ethiopia) deduced from (U–Th)/He thermochronometry: Implications for uplift and erosion of the Afar plume dome. Earth and Planetary Science Letters 215: 7388.Google Scholar
Quennell, A.M. 1958. The structural and geomorphic evolution of the Dead Sea Rift. Quarterly Journal of the Geological Society of London 114: 124.Google Scholar
Ryb, U., Mattews, A., Erel, Y., Gordon, G., Anbar, A. & Avni, Y. 2009. Iron mineralization along the northern Negev anticlines: Sources, timing, and paleogeographical implications. Israel Geological Society Annual Meeting abstracts, p. 112.Google Scholar
Schattner, U. & Ben-Avraham, Z. 2007. Transform margin of the northern Levant, eastern Mediterranean: From formation to reactivation. Tectonics 26: TC5020.CrossRefGoogle Scholar
Schattner, U., Ben-Avraham, Z., Lazar, M. & Huebscher, C. 2006. Tectonic isolation of the Levant basin offshore Galilee–Lebanon – effects of the Dead Sea fault plate boundary on the Levant continental margin, eastern Mediterranean. Journal of Structural Geology 28: 2049–66.Google Scholar
Segev, A. 2002. Floodbasalts, continental break up and the dispersal of Gondwana: Evidence for periodic migration of up-welling mantle (plumes). In From Continental Extension to Collision: Africa–Europe Interaction; The Dead Sea Rift and Analogue Natural Laboratories, ed. Cloetingh, S.A.P.L. & Ben-Avraham, Z., Stephan Mueller Special Publication Series 2. Katlenburg-Lindau: Copernicus, pp. 171–91.Google Scholar
Segev, A. & Rybakov, M. 2010. Effects of Cretaceous plume and convergence, and Early Tertiary tectonomagmatic quiescence on the central and southern Levant continental margin. Journal of the Geological Society of London 167: 731–49.Google Scholar
Segev, A., Goldshmidt, V. & Rybakov, M. 1999. Late Precambrian–Cambrian tectonic setting of the crystalline basement in the northern Arabian–Nubian shield as derived from gravity and magnetic data: Basin-and-range characteristics. Israel Journal of Earth Sciences 48: 159–78.Google Scholar
Segev, A., Lyakhovsky, V. & Weinberger, R. 2014. Continental transform–rift interaction adjacent to a continental margin: The Levant case study. Earth-Science Reviews 139: 83103.CrossRefGoogle Scholar
Sneh, A. & Weinberger, R. 2003. Geology of the Metulla quadrangle, northern Israel: Implications for the offset along the Dead Sea Rift. Israel Journal of Earth Sciences 52: 123–38.Google Scholar
Sneh, A., Bartov, Y., Weissbrod, T., Rosensaft, M. & Hall, J.K. 2000. Geological shaded-relief map of Israel and environs, 1:500,000. Israel Geological Survey Map. Jerusalem.Google Scholar
Stein, M. & Goldstein, S.L. 1996. From plume head to continental lithosphere in the Arabian–Nubian shield. Nature 382: 773–8.Google Scholar
Steinitz, G. & Bartov, Y. 1991. The Miocene–Pliocene history of the Dead Sea segment of the rift in light of K–Ar ages of basalts. Israel Journal of Earth-Sciences 40: 199208.Google Scholar
Walley, C.D. 1998. Some outstanding issues in the geology of Lebanon and their importance in the tectonic evolution of the Levantine region. Tectonophysics 298: 3762.Google Scholar
Wdowinski, S. & Zilberman, E. 1997. Systematic analyses of the large-scale topography and structure across the Dead Sea Rift. Tectonics 16: 409–24.CrossRefGoogle Scholar
Weinberger, R., Gross, M.R. & Sneh, A. 2009. Evolving deformation along a transform plate boundary: Example from the Dead Sea fault in northern Israel. Tectonics 28: TC5005.Google Scholar
Weissbrod, T. 2002. Stratigraphy and correlation of the Lower Cretaceous exposures across the Dead Sea Transform with emphasis on tracing the Amir Formation in Jordan. Israel Journal of Earth Sciences 51: 5578.Google Scholar
Weissbrod, T. 2005. The Paleozoic in Israel and Environs. In Geological Framework of the Levant: Volume II: Levantine Basin and Israel, ed. Krasheninnikov, V.A., Hall, J.K., Hirsch, F., Benjamini, C. & Flexer, A.. Jerusalem: Historical Productions – Hall, pp. 283316.Google Scholar
White, R.S. & McKenzie, D. 1989. Magmatism at rift zones: The generation of volcanic continental margins and flood basalts. Journal of Geophysical Research 94: 7685–729.CrossRefGoogle Scholar
Zeyen, H., Volker, F., Wehrle, V. et al. 1997. Styles of continental rifting: Crust–mantle detachment and mantle plumes. Tectonophysics 278: 329–52.Google Scholar
Zilberman, E. 1992. Remnants of Miocene landscape in the central and northern Negev and their paleogeographic implications. Israel Geological Survey Bulletin 83: 54.Google Scholar
Zilberman, E. 2000. The formation of the ‘Makhteshim’ – unique erosion cirques in the Negev, southern Israel. Israel Journal of Earth Science 49: 127–42.Google Scholar
Zilberman, E. & Avni, Y. 2006. The Hemar Conglomerate – a remnant of a middle–late Miocene cross-rift stream. Geological Society of Israel Annual Meeting Abstracts, p. 138.Google Scholar
Zilberman, E., Baer, G., Avni, Y. & Feigin, D. 1996. Pliocene fluvial systems and tectonics in the central Negev, southern Israel. Israel Journal of Earth Sciences 45: 113–26.Google Scholar

References

Agnon, A. 1983. An attempted revision of the Neogene stratigraphy in the Dead Sea Valley. Israel Geological Society Annual Meeting, Nazareth, p. 63.Google Scholar
Agnon, A. 1993. The fault escarpment south west of the Dead Sea: From stratigraphy to morphotectonic history. In Israel Geological Society Annual Meetings Field Trips Guidebook, Arad, Israel, pp. 81–97.Google Scholar
Alfasi, S. 2014. Aggradation and Degradation Processes in the Peres Drainage System during the Pleistocene–Holocene Period. Unpublished M.Sc. thesis, Hebrew University of Jerusalem [Hebrew].Google Scholar
Avni, Y. 1991. The geology, paleogeography and landscape evolution in the Central Negev Highlands and the western Ramon structure. Geological Survey of Israel Report GSI/6/91 [Hebrew, English abstract].Google Scholar
Avni, Y. 1998. Paleogeography and tectonics of the central Negev and the Dead Sea Rift western margin during the late Neogene and Quaternary. Geological Survey of Israel Report GSI/24/98 [Hebrew, English abstract].Google Scholar
Avni, Y. & Zilberman, E. 2006. Landscape evolution triggered by neotectonics in the Sede Zin region, central Negev, Israel. Israel Journal of Earth Sciences 55: 189208.Google Scholar
Avni, Y., Bartov, Y., Garfunkel, Z. & Ginat, H. 2000. Evolution of the Paran drainage basin and its relations to the Plio-Pleistocene history of the Arava Rift western margin, Israel. Israel Journal of Earth Sciences 49: 215–38.Google Scholar
Avni, Y., Segev, A. & Ginat, H. 2012. Oligocene regional denudation of the northern Afar dome: pre and syn-breakup stages of the Afro-Arabian plate. Geological Society of America Bulletin 124: 1871.Google Scholar
Bar, O. 2009. The shaping of the continental margin of central Israel since the Late Eocene – tectonics, morphology and stratigraphy. Geological Survey of Israel Report GSI/32/2009 [Hebrew, English abstract].Google Scholar
Bar, O., Gvirtzman, Z., Feinstein, S. & Zilberman, E. 2013. Accelerated subsidence and sedimentation in the Levant Basin during the Late Tertiary and concurrent uplift of the Arabian Platform: Tectonic versus counteracting sedimentary loading effects. Tectonics 32: 117.Google Scholar
Bar, O., Zilberman, E., Feinstein, S., Calvo, R. & Gvirtzman, Z. 2016. The uplift history of the Arabian Plateau as inferred from geomorphologic analysis of its northwestern edge. Tectonophysics 671: 923.Google Scholar
Bartov, Y. 1974. A Structural and Paleogeographical Study of the Central Sinai Faults and Domes. Unpublished Ph.D. thesis, Hebrew University of Jerusalem [Hebrew, English abstract].Google Scholar
Bartov, Y., Steinitz, G., Eyal, M. & Eyal, Y. 1980. Sinistral movement along the Gulf of Aqaba – its age and relation to the opening of the Red Sea. Nature 285: 220–2.Google Scholar
Bar-Yosef, O. & Goren-Inbar, N. 1993. The Lithic Assemblages of ‘Ubeidiya, a Lower Paleolithic Site in the Jordan Valley, Qedem 34. Jerusalem: Institute of Archaeology, The Hebrew University of Jerusalem.Google Scholar
Bayer, H.J., Hötzl, H., Jado, A.R., Röscher, B. & Voggenreiter, W. 1988. Sedimentary and structural evolution of the northwest Arabian Red Sea margin. Tectonophysics 153: 137–51.Google Scholar
Begin, Z.B. & Zilberman, E. 1997. The main stages and rate of the relief development in Israel. Geological Survey of Israel Report GSI/24/97 [Hebrew, English abstract].Google Scholar
Begin, Z.B., Ehrlich, A. & Nathan, Y. 1974. Lake Lisan, the Pleistocene precursor of the Dead Sea. Geological Survey of Israel Bulletin 63.Google Scholar
Belitzky, S. 2002. The structure and morphotectonics of the Gesher Benot Ya'aqov area, northern Dead Sea Rift, Israel. Quaternary Research 58: 372–80.Google Scholar
Belmaker, M., Tchernov, E., Condemi, S. & Bar-Yosef, O. 2002. New evidence for hominid presence in the Lower Pleistocene of the Southern Levant. Journal of Human Evolution 43: 4356.Google Scholar
Belmaker, R., Lazar, B., Beer, J. et al. 2013. 10Be dating of Neogene halite. Geochimica et Cosmochimica Acta 122: 418–29.Google Scholar
Ben-Avraham, Z. 1985. Structural framework of the Gulf of Elat (Aqaba), northern Red Sea. Journal of Geophysical Research 90: 703–26.Google Scholar
Ben-Avraham, Z. 1992. Development of asymmetric basins along continental transform faults. Tectonophysics 215: 209–20.Google Scholar
Ben-Avraham, Z., Ginzburg, A. & Yuval, Z. 1979. Seismic reflection and refraction investigations of Lake Kinneret; central Jordan Valley, Israel. In International Symposium on Rift Zones of the Earth; The Dead Sea Rift; Program & Abstracts, ed. Picard, L.Y & Freund, R., p. 43.Google Scholar
Ben Avraham, Z., ten-Brink, U.S., Bell, R. & Reznikov, M. 1996. Gravity field over the Sea of Galilee: evidence for a composite basin along a transform fault. Journal of Geophysical Research 101: 533–44.Google Scholar
Bentor, Y.K. & Vroman, A.J. 1951. Map of the Negev (1:100,000), Sheet 18: Avdat. Israel Army SCI.Google Scholar
Bentor, Y.K. & Vroman, A.J. 1961. Map of the Negev (1:100,000), Sheet 16: Mt. Sedom. Israel Army SCI.Google Scholar
Blake, G.S. 1935. The Stratigraphy of Palestine and its Building Stones. Jerusalem: Printing and Stationery Office.Google Scholar
Bloom, A.L. 1998. Geomorphology: Upper Saddle River, 3rd edn. New Jersey: Prentice Hall.Google Scholar
Bohannon, R.G., Naeser, C.W., Schmidt, D.L. & Zimmermann, R.A. 1989. The timing of uplift, volcanism and rifting peripheral to the Red Sea: A case for passive rifting? Journal of Geophysical Research 94: 1683–701.Google Scholar
Boroda, R., Matmon, A., Amit, R. et al. 2014. Evolution and degradation of flat-top mesas in the hyper-arid Negev, Israel revealed from cosmogenic nuclides. Earth Surface Processes and Landforms 39: 1611–21. doi: 10.1002/esp.3551.Google Scholar
Bosworth, W., Huchon, P. & McClay, K. 2005. The Red Sea and Gulf of Aden Basins. Journal of African Earth Sciences 43: 334–78.Google Scholar
Braun, M. 1967. Type Sections of the Avedat Group Eocene Formations in the Negev (Southern Israel). Stratigraphic Section 4. Jerusalem: Geological Survey of Israel.Google Scholar
Braun, D., Ron, H., Marco, S. 1991. Magnetostratigraphy of the hominid tool-bearing Erk el Ahmar Formation in the northern Dead Sea Rift. Israel Journal of Earth Sciences 40: 191–7.Google Scholar
Buchbinder, B. 1975. Lithogenesis of Miocene reef limestone in Israel with particular reference to the significance of the red algae. Geological Survey of Israel Report OD/3/75.Google Scholar
Buchbinder, B. & Zilberman, E. 1997. Sequence stratigraphy of Miocene–Pliocene carbonate-siliciclastic shelf deposits in the eastern Mediterranean margin (Israel): effects of eustasy and tectonics. Sedimentary Geology 112: 732.Google Scholar
Buchbinder, B., Martinotti, G.M., Siman Tov, R. & Zilberman, E. 1993. Temporal and spatial relationships in Miocene reef carbonates in Israel. Palaeogeography, Palaeoecology, Palaeoclimatology 101: 97116.Google Scholar
Buchbinder, B., Calvo, R. & Siman-Tov, R. 2005. The Oligocene in Israel: A marine realm with intermittent denudation accompanied by mass-flow deposition. Israel Journal of Earth Sciences 54: 6385.Google Scholar
Calvo, R. 2002. Stratigraphy and petrology of the Hazeva Formation in the Arava and Negev: Implications for the development of sedimentary basins and morphotectonics of the Dead Sea Rift valley. Geological Survey of Israel Report GSI/22/02.Google Scholar
Calvo, R. & Bartov, Y. 2001. Hazeva Group, southern Israel: New observations, and their implications for its stratigraphy, paleogeography, and tectono-sedimentary regime. Israel Journal of Earth Sciences 50: 7199.Google Scholar
Davis, M.N., Matmon, A., Ron, H., Fink, D. & Niedermann, S. 2011. Dating Pliocene lacustrine sediments in the central Jordan Valley, Israel: implications for cosmogenic burial dating. Earth and Planetary Science Letters 305: 317–27.Google Scholar
Druckman, Y., Buchbinder, B., Martinoty, G., Siman Tov, R. & Aharon, P. 1995. The buried Afiq canyon (eastern Mediterranean, Israel): A case study of a Tertiary submarine canyon exposed in Late Messinian times. Marine Geology 123: 167–85.Google Scholar
Enzel, Y. Shaliv, G. & Kaplan, M. 1988. The Tectonic Deformation along the Zin Lineament. Nuclear Power Plant – Shivta Sits – Preliminary Safety Analysis Report. Appendix 2.5E: Late Cenozoic Geology in the Site Area. Israel Electric Company.Google Scholar
Eran, G. 1982. The Geometry of the Negev Monoclines. Unpublished M.Sc. thesis, Hebrew University of Jerusalem [Hebrew, English abstract].Google Scholar
Freund, R. 1970. The geometry of faulting in Galilee. Israel Journal of Earth Sciences 19: 117–40.Google Scholar
Fruchter, N., Matmon, A., Avni, Y. & Fink, D. 2011. Revealing sediment sources, mixing, and transport during erosional crater evolution in the hyperarid Negev Desert, Israel. Geomorphology 134: 363–77.Google Scholar
Garfunkel, Z. 1981. Internal structure of the Dead Sea leaky transform (rift) in relation to plate kinematics. Tectonophysics 80: 81108.Google Scholar
Garfunkel, Z. 1988. The pre-Quaternary geology of Israel. In The Zoogeography of Israel, ed. Yom-Tov, Y. & Tchernov, E.. Dordrecht: Springer, pp. 734.Google Scholar
Garfunkel, Z. 1997. The history and formation of the Dead Sea basin. In The Dead Sea, the Lake and its Setting, ed. Niemi, T.M., Avraham, Z. Ben & Gat, J.R.. Oxford: Oxford University Press, pp. 3656.Google Scholar
Garfunkel, Z. & Bartov, Y. 1977. The tectonics of the Suez Rift. Geological Survey of Israel Bulletin 71. Jerusalem: Geological Survey of Israel.Google Scholar
Garfunkel, Z. & Horowitz, A. 1966. The Upper Tertiary and Quaternary morphology of the Negev. Israel Journal of Earth Sciences 15: 101–17.Google Scholar
Garfunkel, Z., Zak, I. & Freund, R. 1981. Active faulting in the Dead Sea rift. Tectonophysics 80: 126.Google Scholar
Gilat, A. 1980. The geology of the southern Hebron Mountains. Geological Survey of Israel Current Research 1980: 33–6.Google Scholar
Ginat, H. 1997. Paleogeography and landscape evolution of the Nahal Hiyyon and Nahal Zihor basins (sedimentology, climatic and tectonic aspects). Geological Survey of Israel Report, GSI/19/97 [Hebrew, English abstract].Google Scholar
Ginat, H., Zilberman, E. & Amit, R. 2002. Red sedimentary units as indicator for reconstructing Early Pleistocene tectonic activity in the Southern Negev desert, Israel. Geomorphology 45: 127–46.CrossRefGoogle Scholar
Ginat, H., Zilberman, E. & Saragusti, I. 2003. Early pleistocene lake deposits and Lower Paleolithic finds in Nahal (wadi) Zihor, Southern Negev desert, Israel. Quaternary Research 59: 445–58.Google Scholar
Gur, D., Steinitz, G., Kolodny, Y., Starinsky, A. & McWilliams, M. 1995. 40Ar/39Ar dating of combustion metamorphism (the ‘mottled zone’, Israel). Chemical Geology 122: 171–84.Google Scholar
Guralnik, B., Matmon, A., Avni, Y. & Fink, D. 2010. 10Be exposure ages of ancient desert pavements reveal Quaternary evolution of the Dead Sea drainage basin and rift margin tilting. Earth and Planetary Science Letters 290: 132–41.Google Scholar
Gvirtzman, G. & Buchbinder, B. 1969. Outcrops of Neogene formations in the central and southern coastal plain, Hashephela and Be'er Sheva regions, Israel. Geological Survey of Israel Bulletin 50.Google Scholar
Gvirtzman, G. & Reiss, Z. 1965. Stratigraphic nomenclature in the coastal Plain and Hashephela regions. Geological Survey of Israel Report OD/1/65.Google Scholar
Gvirtzman, Z., Steinberg, J., Bar, O. et al. 2011. Retreating Late Tertiary shorelines in Israel: Implications for the exposure of north Arabia and Levant during Neotethys closure. Lithosphere 3: 95109.Google Scholar
Heimann, A. 1990. The development of the Dead Sea Transform and its margins in northern Israel during the Pliocene and Pleistocene. Geol-ogical Survey of Israel Report GSI/28/90, pp. 1–83 [Hebrew, English summary].Google Scholar
Heimann, A. & Ron, H. 1993. Geometric changes of plate boundaries along part of the northern Dead Sea Transform: Geochronologic and paleomagnetic evidence. Tectonics 12: 477–91.Google Scholar
Heimann, A. & Steinitz, G. 1989. 40Ar/39Ar total gas ages of basalt from Notera 3 well, Hula Valley, Dead Sea Rift: stratigraphic and tectonic implicaions. Israel Journal of Earth Sciences 38: 173–84.Google Scholar
Heimann, A., Steinitz, G., Mor, D. & Shaliv, G. 1996. The geochronology of the Cover Basalt: Revised K–Ar and new 40Ar/39Ar results. Geological Survey of Israel Report GSI/6/96.Google Scholar
Heimann, A., Zilberman, E., Amit, R. & Frieslander, U. 2011. Northward migration of the southern diagonal fault of the Hula pull-apart basin, Dead Sea Transform, northern Israel. Tectonophysics 476: 496511.Google Scholar
Horowitz, A. 1979. The Quaternary of Israel. New York: Academic Press.Google Scholar
Horowitz, A. 1983. Palynostratigraphy of Zemah-1 Borehole. Letter report to Oil Exploration (Investments) Ltd.Google Scholar
Horowitz, A. 2001. The Jordan Rift Valley. Rotterdam: Taylor & Francis.Google Scholar
Hurwitz, S., Garfunkel, Z., Ben Gai, Y. et al. 2002. The tectonic framework of a complex pull-apart basin: seismic reflection observations in the Sea of Galilee, Dead Sea Transform. Tectonophysics 359: 289306.Google Scholar
Hutchinson, D.R., Golmshtok, A.J., Zoneneshain, L.P. et al. 1992. Depositional and tectonic framework of the rift basins of Lake Baikal from multichannel seismic data. Geology 20: 589–92.Google Scholar
Inbar, N., Shulman, H., Flexer, A. & Yellin-Dror, A. 2010. The structure of Kinnarot Basin, Jordan Rift Valley, Israel. The Israel Geological Society, Annual Meeting Abstract Book, p. 77.Google Scholar
Issar, A. 1961. Geology of the Sub-Surface Water Resources of the Shefela and Sharon Areas. Report No. 307. Tel Aviv: Tahal, Water Planning for Israel Ltd (Hebrew).Google Scholar
Joffe, S. & Garfunkel, Z. 1987. Plate kinematics of the circum Red Sea area: a re-evaluating. Tectonophysics 141: 522.Google Scholar
Kashai, E.L. & Croker, P.F. 1987. Structural geometry and evolution of the Dead Sea–Jordan rift system as deduced from new subsurface data. Tectonophysics 141: 3360.Google Scholar
Kaufman, A. 1971. U-series dating of Dead Sea basin carbonates. Geochimica et Cosmochimica Acta 35: 1269–81.Google Scholar
Klang, A. 1984. A new interpretation of the gravimetric anomaly of the Hula basin. Institute of Petroleum Research and Geophysics Report XI/776/81.Google Scholar
Kolodny, Y., Bar, M. & Sass, E. 1971. Fission track age of the ‘Mottled Zone event’ in Israel. Earth and Planetary Science Letters 11: 269–72.Google Scholar
Marcus, E. & Slager, J. 1985. The sedimentary-magmatic sequence of the Zemah 1 well (Jordan–Dead Sea Rift, Israel) and its emplacement in time and space. Israel Journal of Earth Sciences 34: 110.Google Scholar
Martinez-Navarro, B., Belmaker, M. & Bar-Yosef, O. 2009. The large carnivores from ‘Ubeidiya (early Pleistocene, Israel): Biochronological and biogeographical implications. Journal of Human Evolution 56: 514–24.Google Scholar
Martinotti, G., Gvirtzman, G. & Buchbinder, B. 1978. The Late Miocene marine transgression in the Beer Sheva area. Israel Journal of Earth Sciences 27: 7282.Google Scholar
Matmon, A., Enzel, Y., Zilberman, E. & Heimann, A. 1999. Late Pliocene to Pleistocene reversal of drainage systems in Northern Israel: Tectonic implications. Geomorphology 28: 4359.Google Scholar
Matmon, A., Zilberman, E. & Enzel, Y. 2000. Determination of escarpment age using morphologic analysis: An example from the Galilee, northern Israel. Geological Society of America Bulletin 112: 1864–76.2.0.CO;2>CrossRefGoogle Scholar
Matmon, A., Simhai, O., Amit, R. et al. 2009. Where erosion ceases: Desert pavement coated surfaces in extreme deserts present the longest-lived landforms on Earth. Geological Society of America Bulletin 121: 688–97.CrossRefGoogle Scholar
Matmon, A., Fink, D., Davis, M. et al. 2014. Unraveling rift margin evolution and escarpment development ages along the Dead Sea fault using cosmogenic burial ages. Quaternary Research 82: 281–95. http://dx.doi.org/10.1016/j.yqres.2014.04.008Google Scholar
Meiler, M., Shulman, H., Flexer, A., Reshef, M. & Yelin-Dror, A. 2008. A seismic interpretation of the Bet She'an basin. Israel Journal of Earth Sciences 57: 119.Google Scholar
Michelson, H. 1973. ‘Yarmouk Basalt’ and ‘Raqqad Basalt’ – two volcanic phases, which flowed through pre-existing gorges. Israel Journal of Earth Sciences 22: 51–8.Google Scholar
Michelson, H. & Lipson-Benitah, S. 1986. The litho and biostratigraphy of the southern Golan Heights. Israel Journal of Earth Sciences 35: 221–40.Google Scholar
Mimran, Y. 1982. Multi-phase folding activity in eastern Samaria. Geol-ogical Survey of Israel Current Research 1982: 3941.Google Scholar
Mor, D. 1986. The volcanism of the Golan Heights. Geological Survey of Israel Report GSI/5/86 [Hebrew, English abstract].Google Scholar
Mor, D. 1993. A time-table for the Levant Volcanic Province, according to K–Ar dating in the Golan Heights. Israel Journal of Earth Sciences 16: 223–24.Google Scholar
Neev, D. 1960. A pre-Neogene erosion channel in the southern Coastal Plain of Israel. Geological Survey of Israel Bulletin 25: 20.Google Scholar
Neev, D. & Emery, K.O. 1967. The Dead Sea, depositional processes and environments of evaporates. Geological Survey of Israel Bulletin 41.Google Scholar
Neev, D. & Hall, J.K. 1979. Geophysical investigations in the Dead Sea; seismic results and interpretation. In International Symposium on Rift Zones of the Earth; The Dead Sea Rift; Program & Abstracts, ed. Picard, L.Y & Freund, R., p. 11.Google Scholar
Picard, L. 1936. Conditions of underground water in the western Emeq. Bulletin of the Geological Department, Hebrew University of Jerusalem 1: 124.Google Scholar
Picard, L. 1943. Structure and evolution of Palestine with comparative notes on neighboring countries. Bulletin of the Geological Department, Hebrew University of Jerusalem 4.Google Scholar
Picard, L. 1951. Geomorphogeny of Israel, Part 1: The Negev. Bulletin of the Research Council of Israel 8G: 130.Google Scholar
Picard, L. 1965. The geological evolution of the Quaternary in the central-northern Jordan Graben, Israel. Geological Society of America Special Papers 84: 337–66.Google Scholar
Picard, L. & Golani, U. 1965. The Geological Map of Israel (1;250,000), Northern Sheet. Jerusalem: Israel Geological Survey.Google Scholar
Picard, L. & Kashai, E. 1958. On the lithostratigraphy and tectonics of the Carmel. Bulletin of the Research Council of Israel, Section G: Geo-Science 7G: 119.Google Scholar
Plakht, J. 2000. Quaternary units in the Makhteshim, Negev Desert: Similarities and peculiarities. Israel Journal of Earth Sciences 49: 179–87.Google Scholar
Plakht, J. 2003. Quaternary maps of Makhtesh Hatira and Makhtesh Hazera, Negev Desert. Israel Journal of Earth Sciences 52: 31–8.Google Scholar
Quennell, A.M. 1956. The structural and geomorphic evolution of the Dead Sea Rift. Quarterly Journal of the Geological Society of London 114: 124.Google Scholar
Quennell, A.M. 1959. Tectonics of the Dead Sea Rift. Congreso Geologico Internacional, 20th session. Mexico: Asociacion de Servicios Geologicos Africanos, pp. 385405.Google Scholar
Ron, H. & Levi, S. 2001. When did hominids first leave Africa? New high-resolution magnetostratigraphy from the Erk-el-Ahmar formation, Israel. Geology 29: 887–90.Google Scholar
Ron, H., Freund, R., Garfunkel, Z. & Nur, A. 1984. Block rotation by strike slip faulting: Structural and paleomagnetic evidence. Journal of Geophysical Research 89: 6256–70.Google Scholar
Rosendahl, B.R. 1987. Architecture of continental rift with special reference to East Africa. Annual Review of Earth and Planetary Sciences 15: 445503.Google Scholar
Rosenfeld, A., Segev, A. & Halbersberg, E. 1981. Ostracodes species and paleosalinities of the Pliocene Bira and Gesher formations (northwestern Jordan Valley). Israel Journal of Earth Sciences 30: 113–19.Google Scholar
Rotstein, Y., Bartov, Y. & Frieslander, U. 1992. Evidence for local shifting of the main fault and changes in the structural setting, Kinarot Basin, Dead Sea Transform. Geology 20: 251–4.Google Scholar
Ryb, U., Mattews, A., Erel, Y. et al. 2009. Iron mineralization along the northern Negev anticlines: sources, timing, and paleogeographical implications. Israel Geological Society Annual Meeting Abstracts, p. 112.Google Scholar
Ryb, U., Matmon, A., Porat, N. & Katz, O. 2012. From mass-wasting to slope stabilization – putting constrains on a tectonically induced transition in slope erosion mode: A case study in the Judea Hills, Israel. Earth Surface Processes and Landforms 38: 551–60.Google Scholar
Rybakov, M., Fleischer, L. & ten Brink, U.S. 2003. The Hula Valley subsurface structure inferred from gravity data. Israel Journal of Earth Sciences 52: 113–22.CrossRefGoogle Scholar
Sandler, A., Zilberman, E., Rozenbaum, A.G. et al. 2012. A revised chrono-stratigraphy of the Neogene sequence in the eastern Lower Galilee. Israel Geological Society Annual Meeting 2012 (Ashkelon), pp. 114–15.Google Scholar
Sass, E. & Freund, R. 1977. Deeply incised Senonian unconformity in Jerusalem and its implication on early evolution of the Judean Hills. Israel Journal of Earth Sciences 26: 108–11.Google Scholar
Schattner, U. & Weinberger, R. 2008. A mid-Pleistocene deformation transition in the Hula basin, northern Israel: Implications for the tectonic evolution of the Dead Sea Fault. Geochemistry, Geophysics, Geosystems 9: Q07009.Google Scholar
Schattner, U., Ben-Avraham, Z., Lazar, M. & Huebscher, C. 2006. Tectonic isolation of the Levant basin offshore Galilee–Lebanon – effects of the Dead Sea fault plate boundary on the Levant continental margin, eastern Mediterranean. Journal of Structural Geology 28: 2049–66.Google Scholar
Schulman, N. 1962. The Geology of the Central Jordan Valley. Unpublished Ph.D. thesis, Hebrew University of Jerusalem [Hebrew].Google Scholar
Schütt, H. & Ortal, R. 1993. A preliminary correlation between the Plio-Pleistocene malacofaunas of the Jordan Valley (Israel) and the Orontes Valley (Syria). Zoology in the Middle East 8: 69111.Google Scholar
Segev, A. 2000. Synchronous magmatic cycles during the fragmentation of Gondwana: radiometric ages from the Levant and other provinces. Tectonophysics 325: 257–77.Google Scholar
Shaliv, G. 1991. Stages in the tectonic and volcanic history of Neogen continental basins in northern Israel. Geological Survey of Israel Report GSI/11/91, p. 94.Google Scholar
Sharp, W.D. & Clague, D.A. 2006. 50-Ma initiation of Hawaiian–Emperor bend records major change in Pacific plate motion. Science 313: 1281–4.Google Scholar
Shtober-Zisu, N., Greenbaum, N., Inbar, M. & Flexer, A. 2008. Morphometric and geomorphic approaches for assessment of tectonic activity, Dead Sea Rift (Israel). Geomorphology 102: 93104.Google Scholar
Sneh, A. & Buchbinder, B. 1984. Miocene to Pleistocene surfaces and their associated sediments in the Shfela region, Israel. Geological Survey of Israel Current Research 1984: 56–9.Google Scholar
Sneh, A. & Weinberger, R. 2003a. Geological Map of Israel (1:5,0000), Metulla Sheet (2-II). Jerusalem: Geological Survey of Israel.Google Scholar
Sneh, A. & Weinberger, R. 2003b. Geology of the Metulla quadrangle, northern Israel: Implications for the offset along the Dead Sea Rift. Israel Journal of Earth Sciences 52: 123–38.Google Scholar
Sneh, A. & Weinberger, R. 2006. Geological Map of Israel (1:50,000), Rosh Pina Sheet (2-IV). Jerusalem: Geological Survey of Israel.Google Scholar
Steckler, M.S. & ten Brink, U.S. 1986. Lithospheric strength variations as a control on new plate boundaries; Examples from the northern Red Sea region. Earth and Planetary Science Letters 79: 12159–73.Google Scholar
Stein, M. & Agnon, A. 2007. So, what is the age of the Sedom Lagoon? Israel Geological Society Annual Meeting (Newe Zohar), p. 119.Google Scholar
Stein, M., Agnon, A., Starinsky, A. et al. 1994. What is the ‘age’ of the Sedom Formation? Israel Geological Society Annual Meeting 1994, p. 108.Google Scholar
Stein, M., Starinsky, A., Agnon, A. et al. 2000. The impact of brine–rock interaction during marine evaporite formation on the isotopic Sr record in the oceans: Evidence from Mt. Sedom, Israel. Geochimica et Cosmochimica Acta 64: 2039–53.CrossRefGoogle Scholar
Steinitz, G. & Bartov, Y. 1991. The Miocene–Pliocene history of the Dead Sea segment of the rift in light of K–Ar ages of basalts. Israel Journal of Earth Sciences 40: 199208.Google Scholar
Tchernov, E. 1975. The Early Pleistocene Molluscs of Erk el-Ahmar (The Pleistocene of the Central Jordan Valley, the Excavations at Ubeidiya). Jerusalem: The Israel Academy of Sciences and Humanities, p. 36.Google Scholar
Tchernov, E. 1987. The age of the ‘Ubeidiya Formation, an early Pleistocene hominid site in the Jordan Valley, Israel. Israel Journal of Earth-Sciences 36: 330.Google Scholar
ten Brink, U.S. & Ben-Avraham, Z. 1989. The anatomy of a pull-apart basin; seismic reflection observations of the Dead Sea basin, Tectonics 8: 333–50.CrossRefGoogle Scholar
ten Brink, U.S., Schoenberg, N., Kovach, R.L. & Ben-Avraham, Z. 1990. Uplift and a possible Moho offset across the Dead Sea transform. Tectonophysics 180: 7185.Google Scholar
ten Brink, U.S., Rybakov, M., Al-Zoubi, A. et al. 1999. The anatomy of the Dead Sea Transform: Does it reflect continuous changes in plate motion? Geology 27: 887–90.2.3.CO;2>CrossRefGoogle Scholar
Torfstein, A., Gavrieli, I., Katz, A., Kolodny, Y. & Stein, M. 2008. Gypsum as a monitor of the paleo-limnological-hydrological conditions in lake Lisan and the Dead Sea. Geochimica et Cosmochimica. Acta 72: 2491–509.Google Scholar
Torfstein, A., Haase-Schramm, A., Waldmann, N., Kolodny, Y. & Stein, M. 2009. U-series and oxygen isotope chronology of the mid-Pleistocene Lake Amora (Dead Sea basin). Geochimica et Cosmochimica Acta 73: 2603–30.Google Scholar
Vaks, A., Woodhead, J., Bar-Matthews, M. et al. 2013. Pliocene–Pleistocene climate of the northern margin of Saharan-Arabian Desert recorded in speleothems from the Negev Desert, Israel. Earth and Planetary Science Letters 368: 88100.Google Scholar
Wdowinski, S. & Zilberman, E. 1996. Kinematic modeling of large scale structural asymmetry across the Dead Sea Transform. Tectonophysics 266: 187201.Google Scholar
Wdowinski, S. & Zilberman, E. 1997. Systematic analyses of the large-scale topography and structure across the Dead Sea Rift. Tectonics 16: 409–24.Google Scholar
Westaway, R. 2004. Kinematic consistency between the Dead Sea Fault Zone and the Neogene and Quaternary left-lateral faulting in SE Turkey. Tectonophysics 391: 203–37.Google Scholar
Yair, A. 1962. The Morphology of Nahal Dishon. Unpublished M.Sc. thesis, Hebrew University of Jerusalem [Hebrew].Google Scholar
Zak, I. 1967. The Geology of Mt. Sedom. Unpublished Ph.D. thesis, Hebrew University of Jerusalem.Google Scholar
Zilberman, E. 1977. The structures along the Sa'ad-Nafha Lineament in the Avedat Plateau. Geological Survey of Israel Report GSI/31/98.Google Scholar
Zilberman, E. 1985. The geology of the central Sinai–Negev shear zone, central Negev. Part C: The Paran Lineament. Geological Survey of Israel Report GSI/38/85.Google Scholar
Zilberman, E. 1986. Pliocene–Early Pleistocene surfaces in the northwestern Negev – paleogeography and tectonic implications. Geological Survey of Israel Report GSI/26/86.Google Scholar
Zilberman, E. 1991. Landscape evolution in the central, northern and northwestern Negev during the Neogene and the Quaternary. Geological Survey of Israel Report GSI/45/90.Google Scholar
Zilberman, E. 1992. Remnants of Miocene landscape in the central and northern Negev and their paleogeographic implications. Geological Survey of Israel Bulletin 83.Google Scholar
Zilberman, E. 2000. The formation of the ‘Makhteshim’ – unique erosion cirques in the Negev, southern Israel. Israel Journal of Earth Sciences 49: 127–42.Google Scholar
Zilberman, E. & Avni, Y. 2007. The Hemar Conglomerate – a remnant of a middle-late Miocene cross-rift stream. Israel Geological Society Annual Meeting, p. 138.Google Scholar
Zilberman, E. & Calvo, R. 2013. Remnants of Miocene fluvial sediments in the Negev Desert, Israel, and the Jordanian Plateau: Evidence for an extensive subsiding basin in the northwestern margins of the Arabian plate. Journal of African Earth Science 82: 3353.Google Scholar
Zilberman, E. & Porat, N. 2012. The Neogene-Quaternary sequence of the northern Negev and its relation to the morphological structure. In Israel Geological Society Annual Meeting (Ashkelon) Field Trips Guidebook, pp. 17–42.Google Scholar
Zilberman, E., Baer, G., Avni, Y. & Feigin, D. 1996. Pliocene fluvial systems and tectonics in the central Negev, southern Israel. Israel Journal of Earth Sciences 45: 113–26.Google Scholar

References

Alpert, P. & Shay-El, Y. 1994. The moisture source for the winter cyclones in the eastern Mediterranean. Israel Meteorological Research Papers 5: 20–7.Google Scholar
Alpert, P. & Ziv, B. 1989. The Sharav cyclone: Observations and some theoretical considerations. Journal of Geophysical Research: Atmos-pheres 94(D15): 18495–514.CrossRefGoogle Scholar
Alpert, P., Neeman, B.U. & Shay-El, Y. 1990a. Climatological analysis of Mediterranean cyclones using ECMWF data. Tellus 42A: 6577.Google Scholar
Alpert, P., Neeman, B.U. & Shayel, Y. 1990b. Intermonthly variability of cyclone tracks in the Mediterranean. Journal of Climate 3(12): 1474–8.Google Scholar
Alpert, P., Abramski, R. & Neeman, B.U. 1990c. The prevailing summer synoptic system in Israel – subtropical high, not Persian trough. Israel Journal of Earth Sciences 39: 93102.Google Scholar
Alpert, P., Osetinsky, I., Ziv, B. & Shafir, H. 2004a. Semi-objective classification for daily synoptic systems: application to the Eastern Mediterranean climate change. International Journal of Climatology 24(8): 1001–11.Google Scholar
Alpert, P., Osetinsky, I., Ziv, B. & Shafir, H. 2004b. A new seasons defin-ition based on classified daily synoptic systems: An example for the eastern Mediterranean. International Journal of Climatology 24(8): 1013–21.Google Scholar
Antoine, D. & Nobileau, D. 2006. Recent increase of Saharan dust transport over the Mediterranean Sea, as revealed from ocean color satellite (SeaWiFS) observations. Journal of Geophysical Research 111: D12214.Google Scholar
Aviad, Y., Kutiel, H. & Lavee, H. 2013. Empirical models of rain-spells characteristics: A case study of a Mediterranean-arid climatic transect. Journal of Arid Environments 97: 8491.Google Scholar
Barnston, A. & Livezey, R.E. 1987. Classification, seasonality and persistence of low-frequency circulation patterns. Monthly Weather Review 115: 1083–126.Google Scholar
Battisti, D., Ding, Q. & Roe, G. 2014. Coherent pan-Asian climatic and isotopic response to orbital forcing of tropical insolation. Journal of Geophysical Research: Atmospheres 119(21): 119972020.Google Scholar
Ben-Gai, T., Bitan, A., Manes, A., Alpert, P. & Kushnir, Y. 2001. Temperature and surface pressure anomalies in Israel and the North Atlantic Oscillation. Theoretical and Applied Climatology 69(3–4): 171–7.Google Scholar
Bitan, A. & Saaroni, H. 1992. The horizontal and vertical extension of the Persian Gulf pressure trough. International Journal of Climatology 12(7): 733–47.Google Scholar
Campins, J., Genoves, A., Picornell, M.A. & Jansa, A. 2011. Climatology of Mediterranean cyclones using the ERA-40 dataset. International Journal of Climatology 31(11): 1596–614.Google Scholar
Dayan, U. & Abramski, R. 1983. Heavy rain in the Middle East related to unusual jet stream properties. Bulletin of the American Meteorological Society 64(10): 1138–40.Google Scholar
Dayan, U. & Levy, I. 2005. The influence of seasonal meteorological conditions and atmospheric circulation types on PM10 and visibility in Tel-Aviv, Israel. Journal of Applied Meteorology 44: 606–19.Google Scholar
Dayan, U. & Morin, E. 2006. Flash flood-producing rainstorms over the Dead Sea: A review. New Frontiers in Dead Sea Paleoenvironmental Research 401: 5362.Google Scholar
Dayan, U. & Rodnizki, J. 1999. The temporal behavior of the atmospheric boundary layer in Israel. Journal of Applied Meteorology 38: 830–6.Google Scholar
Dayan, U. & Sharon, D. 1980. Meteorological parameters for discriminating between widespread and spotty storms in the Negev. Israel Journal of Earth Sciences 29(4): 253–6.Google Scholar
Dayan, U., Shenhav, R. & Graber, M. 1988. The spatial and temporal behavior of the mixed layer in Israel. Journal of Applied Meteorology 27: 1382–94.Google Scholar
Dayan, U., Heffter, J., Miller, J. & Gutman, G. 1991. Dust intrusion events into the Mediterranean basin. Journal of Applied Meteorology 30: 1185–99.Google Scholar
Dayan, U., Ziv, B., Margalit, A., Morin, E. & Sharon, D. 2001. A severe autumn storm over the Middle-East: Synoptic and mesoscale convection analysis. Theoretical and Applied Climatology 69(1–2): 103–22.Google Scholar
Dayan, U., Lifshitz-Goldreich, B. & Pick, K. 2002. Spatial and structural variation of the atmospheric boundary layer during summer in Israel: Profiler and Rawinsonde measurements. Journal of Applied Meteor-ology 41: 447–57.Google Scholar
Dayan, U., Ziv, B., Shoob, T. & Enzel, Y. 2007. Suspended dust over southeastern Mediterranean and its relation to atmospheric circulations. International Journal of Climatology 28(7): 915–24.Google Scholar
Dayan, U., Tubi, A. & Levy, I. 2012. On the importance of synoptic classification methods with respect to environmental phenomena. International Journal of Climatology 32(5): 681–94.Google Scholar
Dee, D., Uppala, S., Simmons, A. et al. 2011. The ERA-Interim reana-lysis: Configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society 137(656): 553–97.Google Scholar
Dünkeloh, A. & Jacobeit, J. 2003. Circulation dynamics of Mediterranean precipitation variability 1948–98. International Journal of Climat-ology 23(15): 1843–66.Google Scholar
Edgell, S. 2006. Arabian Deserts: Nature, Origin and Evolution. Netherlands: Springer.Google Scholar
Enzel, Y., Bookman, R., Sharon, D. et al. 2003. Late Holocene climates of the Near East deduced from Dead Sea level variations and modern regional winter rainfall. Quaternary Research 60(3): 263–73.Google Scholar
Enzel, Y., Amit, R., Dayan, U. et al. 2008. The climatic and physiographic controls of the eastern Mediterranean over the late Pleistocene climates in the southern Levant and its neighboring deserts. Global and Planetary Change 60(3–4): 165–92.Google Scholar
Enzel, Y., Amit, R., Grodek, T. et al. 2012. Late Quaternary weathering, erosion, and deposition in Nahal Yael, Israel: An impact of climatic change on an arid watershed? Geological Society of America Bulletin 124(5–6): 705–22.Google Scholar
Evans, J.P., Smith, R.B. & Oglesby, R.J. 2004. Middle East climate simulation and dominant precipitation processes. International Journal of Climatology 24(13): 1671–94.Google Scholar
EXACT – Executive Action Team. 1998. Overview of Middle East Water Resources – Water Resources of Palestinian, Jordanian, and Israeli Interest, compiled by the US Geological Survey for the Executive Action Team. Washington, DC: United States Geological Survey.Google Scholar
Flocas, H.A., Simmonds, I., Kouroutzoglou, J. et al. 2010. On cyclonic tracks over the eastern Mediterranean. Journal of Climate 23(19): 5243–57.Google Scholar
Formenti, P., Schutz, L., Balkanski, Y. et al. 2011. Recent progress in understanding physical and chemical properties of African and Asian mineral dust. Atmospheric Chemistry and Physics 11: 8231–56.Google Scholar
Ganor, E. & Mamane, Y. 1982. Transport of Saharan dust across the eastern Mediterranean. Atmospheric Environment 16(3): 581–7.Google Scholar
Goldreich, Y. 2003. The Climate of Israel: Observation, Research and Application. Netherlands: Kluwer Academic/Plenum Publishers.Google Scholar
Goudie, A.S. & Middleton, N.J. 2001. Saharan dust storms: nature and consequences. Earth-Science Reviews 56: 179204.Google Scholar
Greenbaum, N., Porat, N., Rhodes, E. & Enzel, Y. 2006. Large floods during late oxygen isotope stage 3, southern Negev desert, Israel. Quaternary Science Reviews 25(7): 704–19.Google Scholar
Harpaz, T., Ziv, B., Saaroni, H. & Beja, E. 2014. Extreme summer temperatures in the East Mediterranean – dynamical analysis. International Journal of Climatology 34(3): 849–62.Google Scholar
Hashmonay, R., Dayan, U. & Cohen, A. 1991. Lidar observation of the atmospheric boundary layer in Jerusalem. Journal of Applied Meteorology 30: 1228–36.Google Scholar
Hatzaki, M., Flocas, H., Asimakopoulos, D. & Maheras, P. 2007. The eastern Mediterranean teleconnection pattern: Identification and definition. International Journal of Climatology 27(6): 727–37.CrossRefGoogle Scholar
Hoerling, M., Eischeid, J., Perlwitz, J. et al. 2012. On the Increased Frequency of Mediterranean Drought. Journal of Climate 25(6): 2146–61.Google Scholar
Hoskins, B.J. & Hodges, K.I. 2002. New perspectives on the Northern Hemisphere winter storm tracks. Journal of the Atmospheric Sciences 59(6): 1041–61.Google Scholar
Hurrell, J.W., Kushnir, Y., Ottersen, G. & Visbeck, M. 2003. An overview of the North Atlantic Oscillation. In The North Atlantic Oscillation: Climatic Significance and Environmental Impact, ed. Hurrell, J.W., Kushnir, Y., Ottersen, G. & Visbeck, M., Geophysical Monograph Series 134. Washington, DC: American Geophysical Union, pp. 135.Google Scholar
Iskenderian, H. 1995. A 10-year climatology of northern hemisphere tropical cloud plumes and their composite flow pattern. Journal of Climate 8: 1630–7.Google Scholar
Kahana, R., Ziv, B., Enzel, Y. & Dayan, U. 2002. Synoptic climatology of major floods in the Negev Desert, Israel. International Journal of Climatology 22(7): 867–82.Google Scholar
Kahana, R., Ziv, B., Dayan, U. & Enzel, Y. 2004. Atmospheric predictors for major foods in the Negev Desert, Israel. International Journal of Climatology 24: 1137–47.Google Scholar
Kalderon-Asael, B., Erel, Y., Sandler, A. & Dayan, U. 2009. Mineral-ogical and chemical characterization of suspended atmospheric par-ticles over the East Mediterranean based on synoptic-scale circulation patterns. Atmospheric Environment 43(25): 3963–70.Google Scholar
Kelley, C., Ting, M.F., Seager, R. & Kushnir, Y. 2012a. Mediterranean precipitation climatology, seasonal cycle, and trend as simulated by CMIP5. Geophysical Research Letters 39: L21703.Google Scholar
Kelley, C., Ting, M.F., Seager, R. & Kushnir, Y. 2012b. The relative contributions of radiative forcing and internal climate variability to the late 20th century winter drying of the Mediterranean region. Climate Dynamics 38(9–10): 2001–15.Google Scholar
Kelley, C.P., Mohtadi, S., Cane, M.A., Seager, R. & Kushnir, Y. 2015. Climate change in the Fertile Crescent and implications of the recent Syrian drought. Proceedings of the National Academy of Sciences, USA 112(11): 3241–46.Google Scholar
Krichak, S.O. & Alpert, P. 1998. Role of large scale moist dynamics in November 1–5, 1994, hazardous Mediterranean weather. Journal of Geophysical Research – Atmospheres 103(D16): 19453–68.Google Scholar
Krichak, S.O. & Alpert, P. 2005a. Signatures of the NAO in the atmospheric circulation during wet winter months over the Mediterranean region. Theoretical and Applied Climatology 82(1–2): 2739.Google Scholar
Krichak, S.O. & Alpert, P. 2005b. Decadal trends in the east Atlantic–west Russia pattern and Mediterranean precipitation. International Journal of Climatology 25(2): 183–92.Google Scholar
Krichak, S.O., Alpert, P. & Krishnamurti, T.N. 1997. Red Sea trough/cyclone development – numerical investigation. Meteorology and Atmospheric Physics 63(3–4): 159–69.Google Scholar
Krichak, S.O., Kishcha, P. & Alpert, P. 2002. Decadal trends of main Eurasian oscillations and the eastern Mediterranean precipitation. Theoretical and Applied Climatology 72(3–4): 209–20.Google Scholar
Kushnir, Y. & Stein, M. 2010. North Atlantic influence on 19th–20th century rainfall in the Dead Sea watershed, teleconnections with the Sahel, and implication for Holocene climate fluctuations. Quaternary Science Reviews 29(27–28): 3843–60.Google Scholar
Kushnir, Y. & Wallace, J.M. 1989. Low-frequency variability in the Northern Hemisphere winter – geographical-distribution, structure and time-scale dependence. Journal of the Atmospheric Sciences 46(20): 3122–42.Google Scholar
Laurent, B., Marticorena, B., Bergametti, G., Léon, J.F. & Mahowald, N.M. 2008. Modeling mineral dust emissions from the Sahara desert using new surface properties and soil database. Journal of Geophysical Research 113: D14218.Google Scholar
Lelieveld, J., Hadjinicolaou, P., Kostopoulou, E. et al. 2012. Climate change and impacts in the eastern Mediterranean and the Middle East. Climatic Change 114(3–4): 667–87.Google Scholar
Mariotti, A. & Dell'Aquila, A. 2012. Decadal climate variability in the Mediterranean region: Roles of large-scale forcings and regional processes. Climate Dynamics 38(5–6): 1129–45.Google Scholar
Mariotti, A., Zeng, N. & Lau, K.M. 2002. Euro-Mediterranean rainfall and ENSO – a seasonally varying relationship. Geophysical Research Letters 29(12): L21811.Google Scholar
Mariotti, A., Ballabrera-Poy, J. & Zeng, N. 2005. Tropical influence on Euro-Asian autumn rainfall variability. Climate Dynamics 24(5): 511–21.Google Scholar
Mariotti, A., Zeng, N., Yoon, J.-H. et al. 2010. Mediterranean water cycle changes: transition to drier 21st century conditions in observations and CMIP3 simulations. Environmental Research Letters 3(4): 044001.Google Scholar
McGuirk, J.P., Thompson, A.H. & Smith, N.R. 1987. Moisture bursts over the Tropical Pacific Ocean. Monthly Weather Review 115: 787–98.Google Scholar
McGuirk, J.P., Thompson, A.H. & Schaefer, J.R. 1988. An eastern Pacific tropical plume. Monthly Weather Review 116: 2505–21.Google Scholar
Morin, E., Jacoby, Y., Navon, S. & Bet-Halachmi, E. 2009. Towards flash-flood prediction in the dry Dead Sea region utilizing radar rainfall information. Advances in Water Resources 32(7): 1066–76.Google Scholar
Morrill, C., Overpeck, J.T. & Cole, J.E. 2003. A synthesis of abrupt changes in the Asian summer monsoon since the last deglaciation. The Holocene 13(4): 465–76.Google Scholar
Overpeck, J., Anderson, D., Trumbore, S. & Prell, W. 1996. The southwest Indian monsoon over the last 18 000 years. Climate Dynamics 12(3): 213–25.Google Scholar
Pease, P., Tchakerian, V. & Tindale, N. 1998. Aerosols over the Arabian Sea: Geochemistry and source areas for aeolian desert dust. Journal of Arid Environments 39: 477–96.Google Scholar
Pedgley, D. 1972. Desert depression over north-east Africa. Meteorological Magazine 101: 228–43.Google Scholar
Peleg, N., Morin, E., Gvirtzman, H. & Enzel, Y. 2012. Rainfall, spring discharge and past human occupancy in the eastern Mediterranean. Climatic Change 112(3–4): 769–89.Google Scholar
Peleg, N., Shamir, E., Georgakakos, K. & Morin, E. 2015. A framework for assessing hydrological regime sensitivity to climate change in a convective rainfall environment: A case study of two medium-sized eastern Mediterranean catchments, Israel. Hydrology and Earth System Sciences 19(1): 567–81.Google Scholar
Price, C., Stone, L., Huppert, A., Rajagopalan, B. & Alpert, P. 1998. A possible link between El Nino and precipitation in Israel. Geophysical Research Letters 25(21): 3963–6.Google Scholar
Repapis, C., Zerefos, C. & Tritakis, B. 1977. On the Etesians over the Aegean. Praktika Academy of Athens 52: 572606.Google Scholar
Robock, A. 2000. Volcanic eruptions and climate. Reviews of Geophysics 38(2): 191219.Google Scholar
Rodwell, M.J. & Hoskins, B.J. 1996. Monsoons and the dynamics of deserts. Quarterly Journal of the Royal Meteorological Society 122(534): 1385–404.Google Scholar
Rodwell, M.J. & Hoskins, B.J. 2001. Subtropical anticyclones and summer monsoons. Journal of Climate 14(15): 3192–211.Google Scholar
Romem, M., Ziv, B. & Saaroni, H. 2007. Scenarios in the development of Mediterranean cyclones. Advances in Geosciences 12: 5965.Google Scholar
Rubin, S., Ziv, B. & Paldor, N. 2007. Tropical plumes over eastern North Africa as a source of rain in the Middle-East. Monthly Weather Review 135: 4135–48.Google Scholar
Saaroni, H., Ziv, B., Bitan, A. & Alpert, P. 1998. Easterly wind storms over Israel. Theoretical and Applied Climatology 59(1–2): 6177.Google Scholar
Saaroni, H., Ziv, B., Edelson, J. & Alpert, P. 2003. Long-term variations in summer temperatures over the eastern Mediterranean. Geophysical Research Letters 30(18): 1946.Google Scholar
Saaroni, H., Halfon, N., Ziv, B., Alpert, P. & Kutiel, H. 2010. Links between the rainfall regime in Israel and location and intensity of Cyprus lows. International Journal of Climatology 30(7): 1014–25.Google Scholar
Saaroni, H., Ziv, B., Lempert, J., Gazit, Y. & Morin, E. 2014. Prolonged dry spells in the Levant region: climatologic-synoptic analysis. International Journal of Climatology 35(9): 2223–36. doi:10.1002/joc.4143.Google Scholar
Schilman, B., Bar-Matthews, M., Almogi-Labin, A. & Luz, B. 2001. Global climate instability reflected by eastern Mediterranean marine records during the late Holocene. Palaeogeography, Palaeoclimatology, Palaeoecology 176(1–4): 157–76.Google Scholar
Schneider, U., Becker, A., Finger, P. et al. 2014. GPCC's new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theoretical and Applied Climatology 115(1–2): 1540.Google Scholar
Seager, R., Liu, H.B., Henderson, N. et al. 2014. Causes of increasing aridification of the Mediterranean region in response to rising greenhouse gases. Journal of Climate 27(12): 4655–76.Google Scholar
Shao, Y.P., Wyrwoll, K.H., Chappell, A. et al. 2011. Dust cycle: an emer-ging core theme in Earth system science. Aeolian Research 2: 181204.Google Scholar
Sharon, D. & Kutiel, H. 1986. The distribution of rainfall intensity in Israel, its regional and seasonal-variations and its climatological evaluation. Journal of Climatology 6(3): 277–91.Google Scholar
Shay-El, Y. & Alpert, P. 1991. A diagnostic study of winter diabatic heating in the Mediterranean in relation to cyclones. Quarterly Journal of the Royal Meteorological Society 117: 715–47. doi: 10.1256/smsqj.50003.Google Scholar
Sheffer, N., Dafny, E., Gvirtzman, H. et al. 2010. Hydrometeorological daily recharge assessment model (DREAM) for the Western Mountain Aquifer, Israel: Model application and effects of temporal patterns. Water Resources Research 46(5): W05510.Google Scholar
Shohami, D., Dayan, U., Morin, E. 2011. Warming and drying of the eastern Mediterranean: Additional evidence from trend analysis. Journal of Geophysical Research – Atmosphere 116: D22101.Google Scholar
Simpson, I.R., Seager, R., Shaw, T.A. & Ting, M.F. 2015. Mediterranean summer climate and the importance of Middle East topography. Journal of Climate 28(5): 1977–96.Google Scholar
Thompson, D.W.J. & Wallace, J.M. 1998. The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophysical Research Letters 25(9): 1297–300.Google Scholar
Torfstein, A., Goldstein, S.L., Kushnir, Y. et al. 2015. Dead Sea drawdown and monsoonal impacts in the Levant during the last interglacial. Earth and Planetary Science Letters 412: 235–44.Google Scholar
Törnros, T. & Menzel, L. 2014. Addressing drought conditions under current and future climates in the Jordan River region. Hydrology and Earth System Sciences 18(1): 305–18.Google Scholar
Trigo, I.F., Davies, T.D. & Bigg, G.R. 1999. Objective climatology of cyclones in the Mediterranean region. Journal of Climate 12(6): 1685–96.Google Scholar
Trigo, I.F., Bigg, G.R. & Davies, T.D. 2002. Climatology of cyclogenesis mechanisms in the Mediterranean. Monthly Weather Review 130(3): 549–69.Google Scholar
Tsvieli, Y. & Zangvil, A. 2005. Synoptic climatological analysis of ‘wet'and ‘dry’ Red Sea troughs over Israel. International Journal of Climat-ology 25(15): 19972015.Google Scholar
Tubi, A. & Dayan, U. 2014. Tropical plumes over the Middle-East: climat-ology and synoptic conditions. Atmospheric Research 145146: 168–81.Google Scholar
de Vries, A., Tyrlis, E., Edry, D. et al. 2013. Extreme precipitation events in the Middle East: Dynamics of the Active Red Sea Trough. Journal of Geophysical Research: Atmospheres 118(13): 7087–108.Google Scholar
Wallace, J.M. & Gutzler, D.S. 1981. Teleconnections in the geopotential height field during the northern hemisphere winter. Monthly Weather Review 109(4): 784812.Google Scholar
Wallace, J.M., Lim, G.H. & Blackmon, M.L. 1988. Relationship between cyclone tracks, anticyclone tracks and baroclinic wave-guides. Journal of the Atmospheric Sciences 45(3): 439–62.Google Scholar
Washington, R., Todd, M., Middleton, N.J. & Goudie, A.S. 2003. Dust-storm source areas determined by the total ozone monitoring spectrometer and surface observations. Annals of the Association of American Geographers 93: 297313.Google Scholar
Winstanley, D. 1972. Sharav. Weather 27(4): 146–60.Google Scholar
Woollings, T., Lockwood, M., Masato, G., Bell, C. & Gray, L. 2010. Enhanced signature of solar variability in Eurasian winter climate. Geophysical Research Letters 37(20): L20805.Google Scholar
Xoplaki, E., Gonzalez-Rouco, J.F., Gyalistras, D. et al. 2003. Interannual summer air temperature variability over Greece and its connection to the large-scale atmospheric circulation and Mediterranean SSTs 1950–1999. Climate Dynamics 20(5): 537–54.Google Scholar
Zappa, G., Hawcroft, M.K., Shaffrey, L., Black, E. & Brayshaw, D.J. 2015. Extratropical cyclones and the projected decline of winter Mediterranean precipitation in the CMIP5 models. Climate Dynamics doi: 10.1007/s00382-014-2426-8.Google Scholar
Ziv, B. 2001. A subtropical rainstorm associated with a tropical plume over Africa and the Middle-East. Theoretical and Applied Climatology 69: 91102.Google Scholar
Ziv, B., Saaroni, H. & Alpert, P. 2004. The factors governing the summer regime of the eastern Mediterranean. International Journal of Climatology 24(14): 1859–71.Google Scholar
Ziv, B., Dayan, U. & Sharon, D. 2005a. A mid-winter, tropical extreme flood-producing storm in southern Israel: Synoptic scale analysis. Meteorology and Atmospheric Physics 88(1–2): 5363.Google Scholar
Ziv, B., Saaroni, H. Baharad, A., Yekutieli, D. & Alpert, P. 2005b. Indications for aggravation in summer heat conditions over the Mediterranean basin. Geophysical Research Letters 32(12): L12706.Google Scholar
Ziv, B., Dayan, U., Kushnir, Y., Roth, C. & Enzel, Y. 2006. Regional and global atmospheric patterns governing rainfall in the southern Le-vant. International Journal of Climatology 26(1): 5573.Google Scholar
Ziv, B., Saaroni, H., Romem, M. et al. 2010. Analysis of conveyor belts in winter Mediterranean cyclones. Theoretical and Applied Climat-ology 99(3–4): 441–55.Google Scholar
Ziv, B., Harpaz, T. Saaroni, H. & Blender, R. 2015. A new methodology for identifying daughter cyclogenesis: Application for the Mediterranean basin. International Journal of Climatology 35(13): 384761.Google Scholar

References

Adiyaman, Ö. & Chorowicz, J. 2002. Late Cenozoic tectonics and volcanism in the northwestern corner of the Arabian plate: A consequence of the strike-slip Dead Sea fault zone and the lateral escape of Anatolia. Journal of Volcanology and Geothermal Research 117: 327–45.Google Scholar
Al Kwatli, M., Gillot, P.Y., Zeyen, H., Hildenbrand, A. & Al Gharib, I. 2012a. Volcano-tectonic evolution of the northern part of the Arabian plate in the light of new three main mechanisms K–Ar ages and remote sensing: Harrat ash Shaam volcanic province (Syria). Tectonophysics 580: 192207.Google Scholar
Al Kwatli, M., Gillot, P.Y., Zeyen, H., Al Gharib, I. & Lefevre, J.C. 2012b. Integration of K–Ar geochronology and remote sensing: Mapping volcanic rocks and constraining the timing of alteration processes (Al-Lajat Plateau, Syria). Quaternary International 251: 2230.Google Scholar
Al Kwatli, M., Gillot, P.Y., Lefevre, J.C., Hildenbrand, A. & Kluska, J.-M. 2014. Magma genesis controlled by tectonic styles in the northern part of the Arabia plate during Cenozoic time. In Tectonic Evolution of the Oman Mountains, ed. Rollinson, H.R., Abbasi, I.A., Al-Lazki, A. & Al Kindi, M.H., The Geological Society of London, Special Publications 392. Geological Society London, pp. 6191.Google Scholar
Almond, D.C. 1986. Geological evolution of the Afro-Arabian dome. Tectonophysics 131: 301–32.Google Scholar
Altherr, R., Henjes-Kunst, F. & Baumann, A. 1990. Asthenosphere versus lithosphere as possible sources for basaltic magmas erupted during formation of the Red Sea: constraints from Sr, Pb and Nd isotopes. Earth and Planetary Science Letters 96: 269–86.Google Scholar
Baldridge, W.S., Eyal, Y., Bartov, Y., Steinitz, G. & Eyal, M. 1991. Miocene magmatism of Sinai related to the opening of the Red Sea. Tectonophysics 197: 181201.Google Scholar
Bartov, Y., Steinitz, G., Eyal, M. & Eyal, Y. 1980. Sinistral movement along the Gulf of Aqaba (Elat) – its age and relation to the opening of the Red Sea. Nature 285: 220–21.Google Scholar
Boynton, W.V. 1984. Cosmochemistry of the rare earth elements: meteo-rite studies. In Rare Earth Element Geochemistry, ed. Henderson, P.. Elsevier, pp 63114.Google Scholar
Camp, V.E. & Roobol, M.J. 1992. Upwelling asthenosphere beneath western Arabia and its regional implications. Journal of Geophysical Research 97B: 15255–71.Google Scholar
Camp, V.E., Hooper, P.R., Roobol, M.J. & White, D.L. 1987. The Madinah eruption, Saudi Arabia: Magma mixing and simultaneous extrusion of three basaltic chemical types. Bulletin of Volcanology 49: 489508.Google Scholar
Camp, V.E., Roobol, M.J. & Hooper, P.R. 1991. The Arabian continental alkali basalt province, part II, Evolution of Harrats Khaybar, Ithnayn and Kura, Kingdom of Saudi Arabia. Geological Society of America Bulletin 103: 363–91.Google Scholar
Camp, V.E., Roobol, M.J. & Hooper, P.R. 1992. The Arabian continental alkali basalt province, part III, Evolution of Harrat Kishb, Kingdom of Saudi Arabia. Geological Society of America Bulletin 104: 379–96.Google Scholar
Chiesa, S., Civetta, L., De Fino, M., La Volpe, L. & Orsi, G. 1989. The Yemen trap series: Genesis and evolution of a continental flood basalt province. Journal of Volcanology and Geothermal Research 36: 337–50.Google Scholar
Coleman, R.G. & McGuire, A.V. 1988. Magma systems related to the Red Sea opening. Tectonophysics 150: 77100.Google Scholar
Coleman, R.G., Gregory, R.T. & Brown, G.F. 1983. Cenozoic volcanic rocks of Saudi Arabia. US Geological Survey Open File Report, USGS-OF-03–93.Google Scholar
Demir, T., Westaway, R., Bridgland, D. et al. 2007. Ar–Ar dating of late Cenozoic basaltic volcanism in northern Syria: Implications for the history of incision by the River Euphrates and uplift of the northern Arabian platform. Tectonics 26: TC3012. doi:10.1029/2006TC001959.Google Scholar
Dixon, T.H., Ivins, E.R. & Franklin, B.J. 1989. Topographic and volcanic asymmetry around the Red Sea: Constraints on rift models. Tectonics 8: 1193–216.Google Scholar
Dubertret, L. & Dunand, M. 1955. The ossiferous seams of Khirbet El Umbachi and of Hebariye (Safa). Annales Archeologique Syria 45: 5976.Google Scholar
Ershov, A.V. & Nikishin, A.M. 2004. Recent geodynamics of the Caucasus–Arabia–East Africa Region. Geotectonics (Engl. Transl.) 38(2): 123–36.Google Scholar
Garfunkel, Z. 1989. Tectonic setting of Phanerozoic magmatism in Israel. Israel Journal of Earth Sciences 38: 5174.Google Scholar
Giannérini, G., Campredon, R., Feraud, G. & Abou Zakhem, B. 1988. Deformations intraplaques et volcanisme associe: Exemple de la bordure NW da plaque Arabique au Cenozoique. Bulletin de la Société Geologique de France IV (6) 937–47.Google Scholar
Hafkenscheid, E., Wortel, M.J.R. & Spakman, W. 2006. Subduction history of the Tethyan region derived from seismic tomography and tectonic reconstructions. Journal of Geophysical Research – Solid Earth 111(B8), doi: 10.1029/2005JB003791.Google Scholar
Heimann, A., Mor, D., Stein, M. & Foland, K.A. 1993. 40Ar/39Ar dating of prehistoric basalts in southwest Syria. Israel Geological Society Annual Meeting Abstracts, p. 60.Google Scholar
Heimann, A., Steinitz, G., Mor, D. & Shaliv, G. 1996. The Cover Basalt formation, its age and its regional and tectonic setting: Implications from K–Ar and 40Ar/39Ar geochronology. Israel Journal of Earth Sciences 45: 5571.Google Scholar
Ilani, S., Harlvan, Y., Tarawneh, K. et al. 2001. New K–Ar ages of basalts from the Harrat Ash Shaam volcanic field in Jordan: Implications for the span and duration of the upper-mantle upwelling beneath the western Arabian plate. Geology 29:171–74.Google Scholar
Inbar, M. & Gilichinsky, M. 2009. New radiometric dates for the Golan Heights. Israel Geological Society Annual Meeting, Kfar Blum.Google Scholar
Keskin, M., Chugaev, A.V., Lebedev, V.A. et al. 2012a. The geochronology and origin of mantle sources for late cenozoic intraplate volcanism in the frontal part of the Arabian plate in the Karacadağ neovolcanic area of Turkey. Part 2. The results of Isotope-geochronological studies. Journal of Volcanology and Seismology 6(6): 352–60.Google Scholar
Keskin, M., Chugaev, A.V., Lebedev, V.A. et al. 2012b. The geochronology and origin of mantle sources for late cenozoic intraplate volcanism in the frontal part of the Arabian plate in the Karacadağ neovolcanic area of Turkey. Part 2. The results of geochemical and isotope (Sr–Nd–Pb) studies. Journal of Volcanology and Seismology 6(6): 361–82.Google Scholar
Krienitz, M.-S., Haase, K.M., Mezger, K. et al. 2009. Tectonic events, continental intraplate volcanism, and mantle plume activity in northern Arabia: Constraints from geochemistry and Ar–Ar dating of Syrian lavas. Geochemistry Geophysics and Geosystems 10, doi:10.1029/2008GC002254.Google Scholar
Lustrino, M., Keskin, M., Mattioli, M. et al. 2010. Early activity of the largest Cenozoic shield volcano of the Circum-Mediterranean Area: Mt. Karacadag, SE Turkey. European Journal of Mineralogy 22: 343–62.Google Scholar
Ma, G.S.K., Malpas, J., Xenophontos, C. & Chan, G.H.N. 2011. Petrogen-esis of latest Miocene–Quaternary continental intraplate volcanism along the northern Dead Sea Fault System (Al Ghab-Homs Volcanic Field), Western Syria: evidence for lithosphere–asthenosphere interaction. Journal of Petrology 52(2): 401–30.Google Scholar
Ma, G.S.K., Malpas, J., Suzuki, K. et al. 2013. Evolution and origin of the Miocene intraplate basalts on the Aleppo Plateau, NW Syria. Chemical Geology 335: 149–71.Google Scholar
Menzies, B., Baker, J., Chazot, G. & Al'Kadasi, M. 1997a. Evolution of the Red Sea volcanic margin, western Yemen. In Large Igneous Provinces: Continental, Oceanic and Planetary Flood Volcanism, Geophysical Monograph Series 100. American Geophysical Union, pp. 2943.Google Scholar
Menzies, M., Gallagher, K., Yelland, A. & Hurford, A.J. 1997b. Volcanic and non volcanic rifted margins of the Red Sea and Gulf of Aden: crustal cooling and margin evolution in Yemen. Geochimica et Cosmochimica Acta 61(12): 2511–27.Google Scholar
Mor, D. 1993. A time-table for the Levant volcanic province, according to K–Ar dating in the Golan Heights, Israel. Journal of African Earth Sciences 16(3): 223–34.Google Scholar
Pearce, J.A., Bender, J.F., De Long, S.E. et al. 1990. Genesis of collision volcanism in eastern Anatolia, Turkey. Journal of Volcanology and Geothermal Research 44: 189229.Google Scholar
Regenauer-Lieb, K., Rosenbaum, G., Lyakhovsky, V. et al. 2015. Melt in-stabilities in the intraplate lithosphere and implications for volcanism in the Harrat Ash-Shaam volcanic field (NW Arabia). Journal of Geophysical Research – Solid Earth 120(3): 1543–58.Google Scholar
Sebai, A., Zumbo, V., Feraud, G. et al. 1991. 40Ar/39Ar dating of alkaline and tholeiitic magmatism of Saudi Arabia related to the early Red Sea rifting. Earth and Planetary Science Letters 104: 473–87.Google Scholar
Segev, A., Rybakov, M., Lyakhovsky, V. et al. 2006. The structure, isostasy and gravity field of the Levant continental margin and the southeast Mediterranean area. Tectonophysics 425: 137–57.Google Scholar
Segev, A., Lyakhovsky, V. & Weinberger, R. 2014. Continental transform–rift interaction adjacent to a continental margin: The Levant case study. Earth Science Reviews 139: 83103.Google Scholar
Shaanan, U., Porat, N., Navon, O. et al. 2011. OSL dating of a Pleistocene maar: Birket Ram, the Golan heights. Journal of Volcanology and Geothermal Research 201(1–4): 397403.Google Scholar
Shalev, E., Lyakhovsky, V., Weinstein, Y. & Ben-Avraham, Z. 2013. The thermal structure of Israel and the Dead Sea Fault. Tectonophysics 602: 6977.Google Scholar
Shaliv, G. 1991. Stages in the tectonic and volcanic history of the Neogene basin in the Lower Galilee and the valleys. Geological Survey of Israel Report GSI/11/91 [Hebrew].Google Scholar
Sharkov, E.V., Chernyshev, I.V., Devyatkin, E.V. et al. 1998. New data on the geochronology of Upper Cenozoic plateau basalts from northeastern periphery of the Red Sea rift area (Northern Syria). Doklady Earth Sciences 358(1): 1922.Google Scholar
Shaw, J.A., Baker, J.A., Menzies, M.A., Thirlwall, M.F. & Ibrahim, K.M. 2003. Petrogenesis of the largest intraplate volcanic field on the Arabian plate (Jordan): a mixed lithosphere–asthenosphere source activated by lithospheric extension. Journal of Petrology 44: 1657–79.Google Scholar
Stein, M. & Hofmann, A.W. 1992. Fossil plume head beneath the Arabian lithosphere? Earth and Planetary Science Letters 114: 193209.Google Scholar
Stein, M., Navon, O. & Kessel, R. 1997. Chromatographic metasomatism of the Arabian–Nubian lithosphere. Earth and Planetary Science Letters 152: 7591.Google Scholar
Trifonov, V.G., Dodonov, A.E., Sharkov, E.V. et al. 2011. New data on the late Cenozoic basaltic volcanism in Syria, applied to its origin. Journal of Volcanology and Geothermal Research 199: 177–92.Google Scholar
Weinstein, Y. 2000. Spatial and temporal geochemical variability in basin-related volcanism, northern Israel. Journal of African Earth Sciences 30: 865–85.Google Scholar
Weinstein, Y. 2012. Transform faults as lithospheric boundaries, an ex-ample from the Dead Sea Transform. Journal of Geodynamics 54: 21–8.Google Scholar
Weinstein, Y. & Garfunkel, Z. 2014. The Dead Sea Transform and the volcanism in Northwestern Arabia. In Dead Sea Transform Fault System: Reviews, ed. Garfunkel, Z., Ben-Avraham, Z., Kagan, E.. Modern Approaches in Solid Earth Sciences 6. Springer, pp. 91108.Google Scholar
Weinstein, Y., Navon, O., Altherr, R. & Stein, M. 2006. The role of lithospheric mantle heterogeneity in the generation of Plio-Pleistocene alkali basaltic suites from NW Harrat Ash Shaam (Israel). Journal of Petrology 47: 1017–50.Google Scholar
Weinstein, Y., Weinberger, R. & Calvert, A. 2013. High-resolution 40Ar/39Ar study of Mount Avital, northern Golan: Reconstructing the interaction between volcanism and a drainage system and their impact on eruptive styles. Bulletin of Volcanology 75: 712.Google Scholar
Westaway, R., Guillou, H., Seyrek, A. et al. 2009. Late Cenozoic surface uplift, basaltic volcanism, and incision by the River Tigris around Diyarbakir, SE Turkey. International Journal of Earth Science 98: 601–25.Google Scholar
White, R.S. & McKenzie, D. 1989. Magmatism at rift zones: The generation of volcanic continental margins and flood basalts. Journal of Geophysical Research 94: 7685–730.Google Scholar

References

Abou-Deeb, J.M., Otaki, M.M., Tarling, D.H. & Abdeldayem, A.L. 1999. A palaeomagnetic study of Syrian volcanic rocks of Miocene to Holocene age. Geofisica Internacional-Mexico 38: 1726.Google Scholar
Ben-Yosef, E., Ron, H., Tauxe, L. et al. 2008a. Application of copper slag in geomagnetic archaeointensity research. Journal of Geophysical Research – Solid Earth 113. doi:10.1029/2007JB005235.Google Scholar
Ben-Yosef, E., Tauxe, L., Ron, H. et al. 2008b. A new approach for geomagnetic archaeointensity research: Insights on ancient metallurgy in the Southern Levant. Journal of Archaeological Science 35: 2863–79.Google Scholar
Ben-Yosef, E., Tauxe, L. & Levy, T.E. 2010. Archaeomagnetic dating of copper smelting site F2 in the Timna valley (Israel) and its implications for the modelling of ancient technological developments. Archaeometry 52: 1110–21.Google Scholar
Braun, D., Ron, H. & Marco, S. 1991. Magnetostratigraphy of the hominid tool-bearing Erk el Ahmar Formation in the northern Dead Sea Rift. Israel Journal of Earth Sciences 40: 191–7.Google Scholar
Butler, R.F. 1992. Paleomagnetism: Magnetic Domains to Geologic Terranes. Boston: Blackwell Scientific Publications.Google Scholar
Cande, S.C. & Kent, D.V. 1995. Revised calibration of the geomagnetic polarity timescale for the late Cretaceous and Cenozoic. Journal of Geophysical Research – Solid Earth 100: 6093–5.Google Scholar
Cox, A., Doell, R.R. & Dalrymple, G.B. 1964. Geomagnetic polarity epochs. Science 143: 351–2.Google Scholar
Davis, M., Matmon, A., Fink, D., Ron, H. & Niederniann, S. 2011. Dating Pliocene lacustrine sediments in the central Jordan Valley, Israel – implications for cosmogenic burial dating. Earth and Planetary Science Letters 305: 317–27.Google Scholar
Develle, A.L., Gasse, F., Vidal, L. et al. 2011. A 250 ka sedimentary record from a small karstic lake in the northern Levant (Yammouneh, Lebanon) Paleoclimatic implications. Palaeogeography Palaeoclimatology Palaeoecology 305: 1027.Google Scholar
Dunlop, D.J. & Özdemir, Ö. 2001. Rock Magnetism: Fundamentals and Frontiers. New York: Cambridge University Press.Google Scholar
Evans, M.E. & Heller, F. 2001. Magnetism of loess/palaeosol sequences: Recent developments. Earth-Science Reviews 54: 129–44.Google Scholar
Fisher, R.A. 1953. Dispersion on a sphere. Proceedings of the Royal Society of London Series A 217: 295305.Google Scholar
Frank, U., Schwab, M.J. & Negendank, J.F.W. 2002. A lacustrine record of paleomagnetic secular variations from Birkat Ram, Golan Heights (Israel) for the last 4400 years. Physics of the Earth and Planetary Interiors 133: 2134.Google Scholar
Frank, U., Nowaczyk, N.R. & Negendank, J.F.W. 2007a. Palaeomagnetism of greigite bearing sediments from the Dead Sea, Israel. Geophysical Journal International 168: 904–20.Google Scholar
Frank, U., Nowaczyk, N.R. & Negendank, J.F.W. 2007b. Rock magnetism of greigite bearing sediments from the Dead Sea, Israel. Geophysical Journal International 168: 921–34.Google Scholar
Freund, R., Oppenheim, M.J. & Schulman, N. 1965. Direction of magnetization of some basalts in Jordan Valley and Lower Galilee (Israel). Israel Journal of Earth Sciences 14: 3744.Google Scholar
Gallet, Y., Genevey, A., Le Goff, M., Fluteau, F. & Ali Eshraghi, S. 2006. Possible impact of the Earth's magnetic field on the history of ancient civilizations. Earth and Planetary Science Letters 246: 1726.Google Scholar
Gee, J.S. & Kent, D.V. 2007. Source of oceanic magnetic anomalies and the geomagnetic polarity timescale. In Treatise on Geophysics. Vol. 5. Geomagnetism, ed. Kono, M.. Amsterdam: Elsevier.Google Scholar
Goren-Inbar, N., Belitzky, S., Verosub, K. et al. 1992. New discoveries at the middle Pleistocene Acheulean site of Gesher Benot Yaaqov, Israel. Quaternary Research 38: 117–28.Google Scholar
Goren-Inbar, N., Feibel, C.S., Verosub, K.L. et al. 2000. Pleistocene milestones on the out-of-Africa corridor at Gesher Benot Ya'aqov, Israel. Science 289: 944–7.Google Scholar
Goren-Inbar, N., Alperson, N., Kislev, M.E. et al. 2004. Evidence of hominin control of fire at Gesher Benot Ya'aqov, Israel. Science 304: 725–7.Google Scholar
Gradstein, F.M., Ogg, J.G., Schmitz, M.D. & Ogg, G.M. (ed.) 2012. The Geological Time Scale. Amsterdam: Elsevier.Google Scholar
Gregor, C.B., Mertzman, S., Nairn, A.E.M. & Negendan, J. 1974. Paleomagnetism and alpine tectonics of Eurasia. V. Paleomagnetism of some mesozoic and cenozoic volcanic-rocks from Lebanon. Tectonophysics 21: 375–95.Google Scholar
Gvirtzman, G., Wieder, M., Marder, O. et al. 1999. Geological and pedological aspects of an Early Paleolithic site: Revadim, Central Coastal Plain, Israel. Geoarchaeology 14: 101–26.Google Scholar
Heimann, A. & Ron, H. 1993. Geometric changes of plate boundaries along part of the northern Dead-Sea Transform – geochronological and paleomagnetic evidence. Tectonics 12: 477–91.Google Scholar
Heimann, A., Steinitz, G., Mor, D. & Shaliv, G. 1996. The Cover Basalt, its age and its regional and tectonic setting: Implications from K–Ar and 40Ar/39Ar geochronology. Israel Journal of Earth Sciences 45: 5571.Google Scholar
Hurwitz, S., Matmon, A., Ron, H. & Heiman, A. 1999. Deformation along the margins of the Dead Sea Transform: The Yehudiyya Block, Golan Heights. Israel Journal of Earth Sciences 48: 257–64.Google Scholar
Kirschvink, J. 1980. The least-squares line and plane and the analysis of paleomagnetic data. Geophysical Journal of the Royal Astronomical Society 62: 699718.Google Scholar
Laj, C. & Channell, J.E.T. 2007. Geomagnetic excursions. In Treatise on Geophysics. Vol. 5. Geomagnetism, ed. Kono, M.. Amsterdam: Elsevier, pp. 347416.Google Scholar
Laukhin, S.A., Ronen, A., Pospelova, G.A. et al. 2001. New data on the geology and geochronology of the Lower Palaeolithic site Bizat Ruhama in the southern Levant. Paléorient 27: 6980.Google Scholar
Liu, Q., Deng, C., Torrent, J. & Zhu, R. 2007. Review of recent developments in mineral magnetism of the Chinese loess. Quaternary Science Reviews 26: 368–85.Google Scholar
Liu, Q., Roberts, A.P., Larrasoana, J.C. et al. 2012. Environmental magnetism: Principles and applications. Reviews of Geophysics 50: RG4002. doi:10.1029/2012RG000393.Google Scholar
Malinsky-Buller, A., Barzilai, O., Ayalon, A. et al. 2016. The age of the lower Palaeolithic site of Kefar Menachem West, Israel – Another facet of Acheulian variability. Journal of Archaeological Science: Reports 10: 350–62.Google Scholar
Marco, S. 2002. Late Pleistocene paleomagnetic secular variation from the Sea of Galilee, Israel. Geophysical Research Letters 29. doi:10.1029/2001GL014038.Google Scholar
Marco, S., Ron, H., McWilliams, M.O. & Stein, M. 1998. High-resolution record of geomagnetic secular variation from Late Pleistocene Lake Lisan sediments (paleo Dead Sea). Earth and Planetary Science Letters 161: 145–60.Google Scholar
Marco, S., Ron, H., McWilliams, M.O. & Stein, M. 1999. The locking in of remanence in Late Pleistocene sediments of Lake Lisan (palaeo Dead Sea). In Palaeomagnetism and Diagenesis in Sediments, ed. Tarling, D.H. & Turner, P.. London.Google Scholar
Marder, O., Gvirtzman, G., Ron, H. et al. 1999. The Lower Paleolithic site of Revadim Quarry, preliminary finds. Journal of the Israel Prehistoric Society – Mitekufat Haeven 28: 2153.Google Scholar
Mashiah, M., Greenbaum, N., Zilberman, E., Ron, H. & Ronen, A. 2009. Pleistocene tectonic stability of the western Carmel escarpment – evidence from magnetostratigraphy of calcretes. Geological Survey of Israel, Report GSI/19/2009.Google Scholar
Matmon, A., Katz, O., Shaar, R. et al. 2010. Timing of relay ramp growth and normal fault linkage, Upper Galilee, northern Israel. Tectonics 29.Google Scholar
Nowaczyk, N.R. 2011. Dissolution of titanomagnetite and sulphidization in sediments from Lake Kinneret, Israel. Geophysical Journal Inter-national 187: 34U624.Google Scholar
Roberts, A.P. 2008. Geomagnetic excursions: knowns and unknowns. Geophysical Research Letters 35: L17307. doi:10.1029/2008GL034719.Google Scholar
Ron, H. & Gvirtzman, G. 2001. Magnetostratigraphy of Ruhama bad-land Quaternary deposits: A new age of the Lower Paleolithic site. Abstracts of the Annual Meeting – Israel Geological Society.Google Scholar
Ron, H. & Levi, S. 2001. When did hominids first leave Africa? New high-resolution magnetostratigraphy from the Erk-el-Ahmar Formation, Israel. Geology 29: 887–90.Google Scholar
Ron, H., Freund, R., Garfunkel, Z. & Nur, A. 1984. Block rotation by strike-slip faulting – structural and paleomagnetic evidence. Journal of Geophysical Research 89: 6256–70.Google Scholar
Ron, H., Heimann, A. & Garfunkel, Z. 1992. Pliocene paleomagnetic pole of the Arabian Plate: Implication for the Levant plate kinematics. Institute for Petroleum Research and Geophysics Report, 889/33/90.Google Scholar
Ron, H., Porat, N., Ronen, A., Tchernov, E. & Horwitz, L.K. 2003. Magnetostratigraphy of the Evron Member – implications for the age of the Middle Acheulian site of Evron Quarry. Journal of Human Evolution 44: 633–9.Google Scholar
Ron, H., Nowaczyk, N.R., Frank, U., Marco, S. & Mcwilliams, M.O. 2006. Magnetic properties of Lake Lisan and Holocene Dead Sea sediments and the fidelity of chemical and detrital remanent magnet-ization. Geological Society of America Special Papers 401: 171–82.Google Scholar
Ron, H., Nowaczyk, N.R., Frank, U. et al. 2007. Greigite detected as dominating remanence carrier in Late Pleistocene sediments, Lisan Formation, from Lake Kinneret (Sea of Galilee), Israel. Geophysical Journal International 170: 117–31.Google Scholar
Sagi, A. 2005. Magnetostratigraphy of ‘Ubeidiya’ Formation, Northern Dead Sea Transform. Unpublished M.Sc. thesis, Hebrew University of Jerusalem.Google Scholar
Segal, Y. 2003. Paleomagnetic Secular Variation of the Last 4 Millennia Recorded in Dead Sea Sediments and Archaeological Sites in Israel. Unpublished M.Sc. thesis, Tel-Aviv University.Google Scholar
Shaar, R., Ron, H., Tauxe, L. et al. 2010. Testing the accuracy of absolute intensity estimates of the ancient geomagnetic field using copper slag material. Earth and Planetary Science Letters 290: 201–13.Google Scholar
Shaar, R., Ben-Yosef, E., Ron, H. et al. 2011. Geomagnetic field intensity: How high can it get? How fast can it change? Constraints from Iron-Age copper-slag. Earth and Planetary Science Letters 301: 297306.Google Scholar
Shaar, R. & Tauxe, L. 2013. Thellier GUI: An integrated tool for analyzing paleointensity data from Thellier-type experiments. Geochemistry Geophysics Geosystems 14: 677–92.Google Scholar
Singer, B.S. 2014. A Quaternary geomagnetic instability time scale. Quaternary Geochronology 21: 2952.Google Scholar
Sternberg, R.S. 1997. Archaeomagnetic dating. In Chronometric and Allied Dating in Archaeology, ed. Taylor, R.E. & Aitken, M.. New York: Plenum Press.Google Scholar
Tauxe, L. 2010. Essentials of Paleomagnetism. Berkeley: University of California Press.Google Scholar
Tauxe, L. & Yamazaki, T. 2007. Paleointensities. In Treatise on Geophysics. Vol. 5. Geomagnetism, ed. Kono, M.. Amsterdam: Elsevier, pp. 509–63.Google Scholar
Thompson, R., Turner, G.M., Stiller, M. & Kaufman, A. 1985. Near-East paleomagnetic secular variation recorded in sediments from the Sea of Galilee (Lake Kinneret). Quaternary Research 23: 175–88.Google Scholar
Valet, J.P. & Fournier, A. 2016. Deciphering records of geomagnetic reversals. Reviews of Geophysics 54: 410–46.Google Scholar
Vandonge, P.G., Vandervo, R. & Raven, T. 1967. Paleomagnetic research in Central Lebanon Mountains and in Tartous area (Syria). Tectonophysics 4: 3553.Google Scholar
Weinberger, R., Agnon, A. & Ron, H. 1997. Paleomagnetic reconstruction of a diapir emplacement: a case study from Sedom diapir, the Dead Sea Rift. Journal of Geophysical Research – Solid Earth 102: 5173–92.Google Scholar
Zilberman, E. 2013. The Plio-Pleistocene tectonic history of the Modi'in fault and its implications on the seismic hazard assessment for the Modi'in area. Geological Survey of Israel Report GSI/06/2013.Google Scholar
Zilberman, E., Ron, H. & Shaar, R. 2011. Evaluating the potential seismic hazards of the Ahihud Ridge fault system by paleomagnetic and morphological analyses of calcretes. Geological Survey of Israel Report GSI/15/11.Google Scholar

References

Almogi-Labin, A., Buchbinder, B., Siman-Tov, R. et al. 2001. Stratigraphy and environmental analysis of the Romi-1 borehole, offshore Israel. Geological Survey of Israel Report GSI/7/2001.Google Scholar
Amit, R., Enzel, Y., Crouvi, O. et al. 2011. The role of the Nile in initiating a massive dust influx to the Negev late in the middle Pleistocene. Geological Society of America Bulletin 123: 873–89.Google Scholar
Avni, Y. 1998. Paleogeography and tectonics of the central Negev and the Dead Sea Rift western margin during the late Neogene and Quaternary. Geological Survey of Israel Report GSI/24/98.Google Scholar
Avni, Y., Bartov, Y., Garfunkel, Z. & Ginat, H. 2000. The evolution of the Paran drainage basin and its relation to the Plio-Pleistocene history of the Arava Rift western margin, Israel. Israel Journal of Earth Sciences 49: 215–38.Google Scholar
Ben-Avraham, Z., Tibor, G., Limonov, A.F. et al. 1995. Structure and tectonics of the eastern Cyprean arc. Marine and Petroleum Geology 12: 263–71.Google Scholar
Ben-Avraham, Z., Schattner, U., Lazar, M. et al. 2006. Segmentation of the Levant continental margin, eastern Mediterranean. Tectonics 25: TC5002.Google Scholar
Ben-Gai, Y., Buchbinder, B. & Ben-Avraham, Z. 1996. Sequence stratigraphy of the Yafo formation (Pliocene–lower Pleistocene) in the coastal plain of central Israel. Geological Survey of Israel Current Research 10: 19.Google Scholar
Ben-Gai, Y., Ben-Avraham, Z., Buchbinder, B. & Kendall, C.G.S.C. 2005. Post-Messinian evolution of the southeastern Levant Basin based on two-dimensional stratigraphic simulation. Marine Geology 221: 359–79.Google Scholar
Bowen, R. & Jux, U. 1987. Afro-Arabian Geology: A Kinematic View. Springer Science & Business Media.Google Scholar
Bowman, S.A. 2011. Regional seismic interpretation of the hydrocarbon prospectivity of offshore Syria. GeoArabia 16: 95124.Google Scholar
Buchbinder, B., Siman-Tov, R., Eshet, Y., Grossowicz, L. & Almogi-Labin, A. 2000. Stratigraphic and environmental analysis of the Nir-1 well, offshore Israel (confidential). Geological Survey of Israel Bulletin 33/00.Google Scholar
Carmignani, L., Salvini, R. & Bonciani, F. 2009. Did the Nile River flow to the Gulf of Sirt during the late Miocene? Bollettino della Societa Geologica Italiana 128: 403–8.Google Scholar
Carton, H., Singh, S.C., Tapponier, P. et al. 2007. Seismic evidence for Neogene and active shortening offshore Lebanon (SHALIMAR Cruise). In American Geophysical Union, Fall Meeting 2007, abstract T42B-07.Google Scholar
Carton, H., Singh, S.C., Tapponier, P. et al. 2009. Seismic evidence for Neogene and active shortening offshore of Lebanon (SHALIMAR cruise). Journal of Geophysical Research 114: B07407.Google Scholar
Cartwright, J.A. & Jackson, M.P.A. 2008. Initiation of gravitational collapse of an evaporite basin margin: The Messinian saline giant, Levant Basin, eastern Mediterranean. Bulletin of the Geological Society of America 120: 399413.Google Scholar
Cartwright, J., Jackson, M., Dooley, T. & Higgins, S. 2012. Strain partitioning in gravity driven shortening of a thick, multilayered evaporite sequence. In Salt Tectonics, Sediments and Prospectivity, ed. Alsop, G.I., Archer, S.G., Hartley, A.J., Grant, N.T., & Hodgkinson, R.. Geological Society, London, Special Publications 363: 449–70.Google Scholar
Clark, I.R. & Cartwright, J.A. 2011. Key controls on submarine channel development in structurally active settings. Marine and Petroleum Geology 28: 1333–49.Google Scholar
Crouvi, O., Amit, R., Enzel, Y., Porat, N. & Sandler, A. 2008. Sand dunes as a major proximal dust source for late Pleistocene loess in the Negev Desert, Israel. Quaternary Research 70(2): 275–82.CrossRefGoogle Scholar
Daëron, M., Tapponnier, P., Jacques, E. et al. 2001. Evidence for Holocene slip and large earthquakes on the Yammouneh Fault (Lebanon). In EOS Transactions American Geophysical Union Abstract S52D-0666, Fall Meeting Supplement.Google Scholar
Daëron, M., Benedetti, L., Tapponnier, P., Sursock, A. & Finkel, R.C. 2004. Constraints on the post ∼25-ka slip rate of the Yammouneh fault (Lebanon) using in situ cosmogenic 36Cl dating of offset limestone-clast fans. Earth and Planetary Science Letters 227: 105–19.Google Scholar
deMenocal, P.B. 1995. Plio-Pleistocene African Climate. Science 270: 53–9.Google Scholar
deMenocal, P.B. 2004. African climate change and faunal evolution during the Pliocene–Pleistocene. Earth and Planetary Science Letters 220: 324.Google Scholar
Drake, N.A., El-Hawat, A.S., Turner, P. et al. 2008. Palaeohydrology of the Fazzan Basin and surrounding regions: The last 7 million years. Palaeogeography, Palaeoclimatology, Palaeoecology 263: 131–45.Google Scholar
Ducassou, E., Migeon, S., Mulder, T. et al. 2009. Evolution of the Nile deep-sea turbidite system during Late Quaternary: influence of climate change on fan sedimentation. Sedimentology, 56: 2061–90.Google Scholar
Dümmong, S. & Hübscher, C. 2011. Levant Basin – Central Basin. In Atlas of the Messinian Seismic Markers in the Mediterranean and Black Seas, ed. Lofi, J., Déverchère, J., Gaullier, V. et al. Société Géologiede France & CCGM.Google Scholar
Dumont, H.J. 1986. The Nile River system. In The Ecology of River Systems, ed. Davies, B.R. & Walker, K.F.. Dr W. Junk Publishers, pp. 6174.Google Scholar
Dumont, H.J. 2009. A description of the Nile Basin, and a synopsis of its history, ecology, biogeography and natural resources. In The Nile: Origin, Environments, Limnology and Human Use. Springer, pp. 121.Google Scholar
Elias, A., Tapponier, P., Singh, S.C. et al. 2007. Active thrusting offshore Mount Lebanon: Source of the tsunamigenic A.D. 551 Beirut–Tripoli earthquake. Geology 35: 755–8.Google Scholar
Frey-Martinez, J., Cartwright, J. & Hall, B. 2005. 3D seismic interpretation of slump complexes: Examples from the continental margin of Israel. Basin Research 17: 83108.Google Scholar
Gallego-Torres, D., Martinez-Ruiz, F., Meyers, P.A. et al. 2011. Productivity patterns and N-fixation associated with Pliocene–Holocene sapropels: Paleoceanographic and paleoecological significance. Biogeosciences 8: 415–31.Google Scholar
Gardosh, M.A., Druckman, Y. & Buchbinder, B. 2009. The late Tertiary deep-water siliciclastic system of the Levant margin – an emerging play offshore Israel. American Association of Petroleum Geologists Search and Discovery, Article 10211.Google Scholar
Garfunkel, Z. & Almagor, G. 1984. Geology and structure of the continental margin off northern Israel and the adjacent part of the Levantine Basin. Marine Geology 62: 105–31.Google Scholar
Ginat, H. 1997. Paleogeography and landscape evolution of the Nahal Hiyyon and Nahal Zihor basins (sedimentology, climatic and tectonic aspects). Geological Survey of Israel Report GSI/19/97.Google Scholar
Ginat, H., Zilberman, E. & Amit, R. 2002. Red sedimentary units as indicator for reconstructing Early Pleistocene tectonic activity in the Southern Negev desert, Israel. Geomorphology 45: 127–46.Google Scholar
Goudie, A.S. 2005. The drainage of Africa since the Cretaceous. Geo-morphology 67: 437–56.Google Scholar
Gradmann, S., Hübscher, C., Ben-Avraham, Z., Gajewski, D. & Netzeband, G. 2005. Salt tectonics off northern Israel. Marine and Petroleum Geology 22: 597611.Google Scholar
Griffin, D.L. 2011. The late Neogene Sahabi rivers of the Sahara and the hamadas of the eastern Libya–Chad border area. Palaeogeography, Palaeoclimatology, Palaeoecology 309: 176–85.Google Scholar
Gvirtzman, Z., Reshef, M., Buch-Leviatan, O. et al. 2015. Bathymetry of the Levant basin: Interaction of salt-tectonics and surficial mass movements. Marine Geology 360: 2539.Google Scholar
Hall, J.K. 2005. Introduction. In Geological Framework of the Levant, Volume II: The Levantine Basin and Israel, ed. Hall, J.K., Krasheninnikov, V.A., Hirsch, F., Benjamini, C. & Flexer, A.. Historical Productions-Hall, pp. 826.Google Scholar
Harrison, R.W., Newell, W.L., Batihanli, H. et al. 2004. Tectonic framework and Late Cenozoic tectonic history of the northern part of Cyprus: Implications for earthquake hazards and regional tectonics. Journal of Asian Earth Sciences 23: 191210.Google Scholar
Haug, G.H. & Tiedemann, R. 1998. Effect of the formation of the Isthmus of Panama on Atlantic Ocean thermohaline circulation. Nature 393: 673–6.Google Scholar
Hawie, N. 2014. Architecture, Geodynamic Evolution and Sedimentary Filling of the Levant Basin: A 3d Quantitative Approach Based on Seismic Data. Unpublished Ph.D thesis, Université Pierre et Marie Curie – Paris VI.Google Scholar
Hsü, K.J., Cita, M.B. & Ryan, W.B.F. 1973. The origin of the Mediterranean evaporites. Initial Reports of the Deep Sea Drilling Project 13: 1203–31.Google Scholar
Issawi, B. & McCauley, J.F. 1992. The Cenozoic rivers of Egypt: The Nile problem. In The Followers of Horus: Studies Dedicated to Michael Allen Hoffman, ed. Adams, B. & Friedman, R.. Egyptian Studies Association Publication Oxbow Monograph 20, pp. 118.Google Scholar
Kafri, U. 1997. Neogene to Quaternary drainage systems and their relationship to young tectonics: Lower Galilee, Israel. Geological Survey of Israel Report GSI/1/97.Google Scholar
Kempler, D. 1998. Eratosthenes Seamount: The possible spearhead of incipient continental collision in the eastern Mediterranean. In Proceedings of the ODP Report, Scientific Results 160, ed. Robertson, A.H.F., Eneis, K.C., Richter, C. & Camerlenghi, A.. College Station, TX: Ocean Drilling Program, pp. 709–21.Google Scholar
Klimke, J. & Ehrhardt, A. 2014. Impact and implications of the Afro-Eurasian collision south of Cyprus from reflection seismic data. Tectonophysics 626: 105–19.Google Scholar
Lazar, M. & Schattner, U. 2010. Landscape evolution and hominin dispersal. Quaternary Science Reviews 29: 1495–500.Google Scholar
Loncke, L., Gaullier, V., Mascle, J., Vendeville, B. & Camera, L. 2006. The Nile deep-sea fan: An example of interacting sedimentation, salt tectonics and inherited subsalt paleotopographic features. Marine and Petroleum Geology 23: 297315.Google Scholar
Macgregor, D. 2010. Understanding African and Brazilian margin climate, topography and drainage systems, implications for predicting deepwater reservoirs and source rock burial history. Search and Discovery article 10270.Google Scholar
Macgregor, D. 2011. Rift shoulder source to prodelta sink: The Cenozoic development of the Nile drainage system. Search and Discovery art-icle 50506.Google Scholar
Macgregor, D. 2012. The development of the Nile drainage system: Integration of onshore and offshore evidence. Petroleum Geosciences 18: 417–31.Google Scholar
Matmon, A., Enzel, Y., Zilberman, E. & Heimann, A. 1999. Late Pliocene and Pleistocene reversal of drainage systems in northern Israel: tectonic implications. Geomorphology 28: 4359.Google Scholar
Matmon, A., Wdowinski, S. & Hall, J.K. 2003. Morphological and structural relations in the Galilee extensional domain, northern Israel. Tectonophysics 371: 223–41.Google Scholar
Millard, A., Tahchi, E. & Benkhelil, J. 2015. Chapter 11 – Cyprus Arc. In Seismic Atlas of the Messinian Salinity Crisis Markers in the Mediterranean and Black Seas, Vol. 2, ed. Lofi, J., Déverchère, J., Gaullier, V. et al. Société Géologiede France & CCGM.Google Scholar
Monegatti, P. & Raffi, S. 2001. Taxonomic diversity and stratigraphic distribution of Mediterranean Pliocene bivalves. Palaeogeography, Palaeoclimatology, Palaeoecology 165: 171–93.Google Scholar
Nader, F.H. 2011. The petroleum prospectivity of Lebanon: An overview. Journal of Petroleum Geology 34: 135–56.Google Scholar
Netzband, G., Hübscher, C. & Gajewski, D. 2006. The structural evolution of the Messinian evaporites in the Levantine Basin. Marine Geology 230: 249–73.Google Scholar
Paillou, P., Schuster, M., Tooth, S. et al. 2009. Mapping of a major paleo-drainage system in eastern Libya using orbital imaging radar: the Kufrah River. Earth and Planetary Science Letters 277: 327–33.Google Scholar
Paillou, P., Tooth, S. & Lopez, S. 2012. The Kufrah paleodrainage system in Libya: A past connection to the Mediterranean Sea? Comptes Rendus Geoscience 344: 406–14.Google Scholar
Plummer, M., Belopolsky, A., Fish, P. & Norton, M. 2013. Tectonostratigraphic evolution and exploration potential of the Northern Levant Basin. Search and Discovery article 10516.Google Scholar
Rafat, Z. 2007. Pleistocene evolution of the Nile Valley in northern Upper Egypt. Quaternary Science Reviews 26: 2883–96.Google Scholar
Roberts, G. & Peace, D. 2007. Hydrocarbon plays and prospectivity of the Levantine Basin, offshore Lebanon and Syria from modern seismic data. GeoArabia 12: 99124.Google Scholar
Robertson, A.H.F. 1998. Mesozoic–Tertiary tectonic evolution of the easternmost Mediterranean area: Integration of marine and land evidence. In Proceedings of the ODP Report, Scientific Results 160, ed. Robertson, A.H.F., Eneis, K.C., Richter, C. & Camerlenghi, A.. Ocean Drilling Program, pp. 723–82.Google Scholar
Rzóska, J. 1978. On the Nature of Rivers with Case Stories of Nile, Zaire and Amazon. Dr W. Junk Publishers.Google Scholar
Said, R. 1981. The Geological Evolution of the River Nile. Springer.Google Scholar
Said, R. 1993. The River Nile: Geology, Hydrology, and Utilization. Pergamon.Google Scholar
Salamon, A., Hofstetter, A., Garfunkel, Z. & Ron, H. 2003. Seismotectonics of the Sinai subplate – the eastern Mediterranean region. Geophys-ical Journal International 155: 149–73.Google Scholar
Schattner, U. 2010. What triggered the early-to-mid Pleistocene tectonic transition across the entire eastern Mediterranean? Earth and Planetary Science Letters 289: 539–48.Google Scholar
Schattner, U. 2011. Early-to-mid Pleistocene tectonic transition across the eastern Mediterranean influences the course of human history. In New Frontiers in Tectonic Research – At the Midst of Plate Convergence, ed. Schattner, U. InTech. doi: 10.5772/20123.Google Scholar
Schattner, U. & Ben-Avraham, Z. 2007. Transform margin of the northern Levant, eastern Mediterranean: From formation to reactivation. Tectonics 26: 117.Google Scholar
Schattner, U. & Lazar, M. 2009. Subduction, collision and initiation of hominin dispersal. Quaternary Science Reviews 28: 1820–4.Google Scholar
Schattner, U. & Lazar, M. 2014. Flip convergence across the Phoenician basin through nucleation of subduction. Gondwana Research 25: 729–35.Google Scholar
Schattner, U., Ben-Avraham, Z., Reshef, M., Bar-Am, G. & Lazar, M. 2006. Oligocene–Miocene formation of the Haifa basin: Qishon-Sirhan rifting coeval with the Red Sea–Suez rift system. Tectonophysics 419: 112.Google Scholar
Schattner, U., Lazar, M., Harari, D. & Waldmann, N. 2012. Active gas migration systems offshore northern Israel, first evidence from seafloor and subsurface data. Continental Shelf Research 48: 167–72.Google Scholar
Selley, R.C. 1997. The Sirte basin. In African Basins, ed. Selley, R.C.. Elsevier, pp. 2738.Google Scholar
Skiple, C., Anderson, E. & Fürstenau, J. 2012. Seismic interpretation and attribute analysis of the Herodotus and the Levantine Basin, offshore Cyprus and Lebanon. Petroleum Geoscience Issue 18: 433–42.Google Scholar
Tibor, G., Ben-Avraham, Z., Steckler, M. & Fligelman, H. 1992. Late Tertiary subsidence history of the southern Levant Margin, eastern Mediterranean Sea, and its implications to the understanding of the Messinian Event. Journal of Geophysical Research: Solid Earth 97: 17593–614.Google Scholar
Tiedemann, R., Sarnthein, M. & Stein, R. 1989. Climatic changes in the western Sahara: Aeolo-marine sediment record of the last 8 million years (sites 657–661). Proceedings ODP, Scientific Results, pp. 241–78.Google Scholar
Trauth, M.H., Maslin, M.A., Deino, A. & Strecker, M.R. 2005. Late Cenozoic moisture history of East Africa. Science 309: 2051–3.Google Scholar
Wang, P., Li, Q., Tian, J. et al. 2013. Long-term cycles in the carbon reservoir of the Quaternary ocean: A perspective from the South China Sea. National Science Review nwt028.Google Scholar
Wdowinski, S. & Zilberman, E. 1996. Kinematic modeling of large-scale structural asymmetry across the Dead Sea Rift. Tectonophysics 266: 187201.Google Scholar
Wdowinski, S. & Zilberman, E. 1997. Systematic analyses of the large scale topography and structure across the Dead Sea Rift. Tectonics 16: 409–24.Google Scholar
Weinberger, G., Gross, M.R. & Sneh, A. 2009. Evolving deformation along a transform plate boundary: Example from the Dead Sea Fault in northern Israel. Tectonics 28: TC5005.Google Scholar
Wichura, H., Bousquet, R., Oberhänsli, R., Strecker, M.R. & Trauth, M.H. 2011. The Mid-Miocene East African Plateau: A pre-rift topographic model inferred from the emplacement of the phonolitic Yatta lava flow, Kenya. Geological Society London Special Publications 357: 285300.Google Scholar
Zaki, R. 2007. Pleistocene evolution of the Nile Valley in northern Upper Egypt. Quaternary Science Reviews 26: 2883–96.Google Scholar
Zhang, Y.G., Ji, J., Balsam, W., Liu, L. & Chen, J. 2009. Mid-Pliocene Asian monsoon intensification and the onset of Northern Hemisphere glaciation. Geology 37: 599602.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×