Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-20T13:32:32.355Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  09 February 2017

Giacomo Mauro D'Ariano
Affiliation:
Università degli Studi di Pavia, Italy
Giulio Chiribella
Affiliation:
The University of Hong Kong
Paolo Perinotti
Affiliation:
Università degli Studi di Pavia, Italy
Get access
Type
Chapter
Information
Quantum Theory from First Principles
An Informational Approach
, pp. 329 - 337
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aharonov, D., Kitaev, A., and Nisan, N. 1998. Quantum circuits with mixed states. In: Proceedings of the 30th Annual ACM Symposium on Theory of Computing (STOC). New York, NY: ACM.
Aharonov, Y., Anandan, J., and Vaidman, L. 1993. Meaning of the wave function. Phys. Rev. A, 47, 4616–4626.Google Scholar
Aharonov, Y. and Vaidman, L. 1993. Measurement of the Schrödinger wave of a single particle. Phys. Lett. A, 178, 38–42.Google Scholar
Alfsen, E. M. and Shultz, F. W. 2001. State Spaces of Operator Algebras: Basic Theory, Orientations, and C*-products. Boston, MA: Birkhäuser.
Alfsen, E. M. and Shultz, F. W. 2003. Geometry of State Spaces of Operator Algebras. Boston, MA: Birkhäuser.
Alicki, R. and Lendi, K. 1987. Quantum Dynamical Semigroups and Applications. Lecture Notes in Physics, vol. 286. Berlin: Springer.
Alter, O. and Yamamoto, Y. 1995. Inhibition of the measurement of the wave function of a single quantum system in repeated weak quantum nondemolition measurements. Phys. Rev. Lett., 74, 4106–4109.Google Scholar
Araki, H. 1980. On a characterization of the state space of quantum mechanics. Comm. Math. Phys., 75(1), 1–24.Google Scholar
Barnum, H., Nielsen, M. A., and Schumacher, B. 1998. Information transmission through a noisy quantum channel. Phys. Rev. A, 57, 4153–4175.Google Scholar
Barnum, H., Gaebler, C. P., and Wilce, A. 2009. Ensemble steering, weak self-duality, and the structure of probabilistic theories. arXiv, quant-ph.
Barnum, H., Mueller, M. P., and Ududec, C. 2014. Higher-order interference and singlesystem postulates characterizing quantum theory. arXiv:1403.4147.
Barrett, J. 2007. Information processing in generalized probabilistic theories. Phys. Rev. A, 75(3), 032304.Google Scholar
Barvinok, A. 2002. A Course in Convexity. Graduate Studies in Mathematics. Providence, RI: American Mathematical Society.
Baumeler, Ä. and Wolf, S. 2015. Device-independent test of causal order and relations to fixed-points. arXiv.org.
Belavkin, V. P. and Staszewski, P. 1986. A Radon Nikodym theorem for completely positive maps. Rep. Math. Phys., 24, 49–53.Google Scholar
Belavkin, V. P., D'Ariano, G. M., and Raginsky, M. 2005. Operational distance and fidelity for quantum channels. J. Math. Phys., 46(6), 062106.Google Scholar
Béllissard, J. and Iochum, B. 1978. Homogeneous self-dual cones, versus Jordan algebras: the theory revisited. Ann. Inst. Fourier (Grenoble), 28(1), v, 27–67.Google Scholar
Beltrametti, E. G., Cassinelli, G., Rota, G.-C., and Carruthers, P. A. 2010. The Logic of Quantum Mechanics. Vol. 15. Cambridge: Cambridge University Press.
Bennett, C. H. and Wiesner, S. J. 1992. Communication via one-and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. lett., 69(20), 2881.Google Scholar
Bennett, C. H., Brassard, G., et al. 1984. Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, vol. 175. New York: IEEE.
Bennett, C. H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., and Wootters, W. K. 1993. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett., 70(13), 1895.Google Scholar
Bennett, C. H., Bernstein, H. J., Popescu, S., and Schumacher, B. 1996. Concentrating partial entanglement by local operations. Phys. Rev. A, 53, 2046.Google Scholar
Bernstein, E. and Vazirani, U. 1993. Quantum complexity theory. Pages 11–20 of: Proceedings of the Twenty-fifth Annual ACM Symposium on Theory of Computing. New York, NY: ACM.
Bhatia, R. 1997. Matrix Analysis. New York: Springer-Verlag.
Birkhoff, G. 1984. Lattice theory. In: Dilworth, R. P. (ed.), Proceedings of the Second Symposium in Pure Mathematics of the American Mathematical Society April 1959, vol. 175. Providence, RI: American Mathematical Society.
Birkhoff, G. and von Neumann, J. 1936. The logic of quantum mechanics. Math. Annal., 37, 823.Google Scholar
Bisio, A., Chiribella, G., D'Ariano, G. M., Facchini, S., and Perinotti, P. 2009a. Optimal quantum tomography. IEEE J. Select. Topics Quantum Elec., 15(6), 1646.Google Scholar
Bisio, A., Chiribella, G., D'Ariano, G. M., Facchini, S., and Perinotti, P. 2009b. Optimal quantum tomography of states, measurements, and transformations. Phys. Rev. Lett., 102(1), 010404.Google Scholar
Bisio, A., Chiribella, G., D'Ariano, G. M., and Perinotti, P. 2012. Quantum networks: general theory and applications. Acta Phys. Slovaca, 61(1), 273–390.Google Scholar
Brandenburger, A. and Yanofsky, N. 2008. A classification of hidden-variable properties. J. Phys. A, 41(42), 425302.Google Scholar
Brassard, G. 2005. Is information the key? Nature Phys., 1(1), 2–4.Google Scholar
Brukner, C. 2014a. Bounding quantum correlations with indefinite causal order. arXiv.org.
Brukner, C. 2014b. Quantum causality. Nature Phys., 10(4), 259–263.Google Scholar
Bruss, D., D'Ariano, G. M., Macchiavello, C., and Sacchi, M. F. 2000. Approximate quantum cloning and the impossibility of superluminal information transfer. Phys. Rev. A, 62(6), 062302.Google Scholar
Buscemi, F., D'Ariano, G. M., and Perinotti, P. 2004. There exist nonorthogonal quantum measurements that are perfectly repeatable. Phys. Rev. Lett., 92, 070403.Google Scholar
Buscemi, F., Chiribella, G., and D'Ariano, G. M. 2005. Inverting quantum decoherence by classical feedback from the environment. Phys. Rev. Lett., 95, 090501.Google Scholar
Busch, P., Lahti, P. J., and Mittelstaedt, P. 1991. The Quantum Theory of Measurement. Berlin: Springer.
Childs, A. M., Chuang, I. L., and Leung, D. W. 2001. Realization of quantum process tomography in NMR. Phys. Rev. A, 64(Jun), 012314.Google Scholar
Chiribella, G. and Spekkens, R. (eds). 2015. Quantum Theory: Informational Foundations and Foils. Japan: Springer Verlag.
Chiribella, G., D'Ariano, G. M., and Schlingemann, D. 2007. How continuous quantum measurements in finite dimensions are actually discrete. Phys. Rev. Lett., 98(19), 190403.Google Scholar
Chiribella, G., D'Ariano, G. M., and Perinotti, P. 2008a. Quantum circuit architecture. Phys. Rev. Lett., 101(6), 060401.Google Scholar
Chiribella, G., D'Ariano, G. M., and Perinotti, P. 2008b. Optimal cloning of unitary transformation. Phys. Rev. Lett., 101, 180504.Google Scholar
Chiribella, G., D'Ariano, G. M., and Perinotti, P. 2008c. Quantum circuit architecture. Phys. Rev. Lett., 101, 060401.Google Scholar
Chiribella, G., D'Ariano, G. M., and Perinotti, P. 2009. Theoretical framework for quantum networks. Phys. Rev. A, 80(2), 022339.Google Scholar
Chiribella, G., D'Ariano, G. M., and Perinotti, P. 2010a. Probabilistic theories with purification. Phys. Rev. A, 81(6), 062348.Google Scholar
Chiribella, G., D'Ariano, G. M., and Schlingemann, D. 2010b. Barycentric decomposition of quantum measurements in finite dimensions. J. Math. Phys., 51(2), 022111.Google Scholar
Chiribella, G., D'Ariano, G. M., and Perinotti, P. 2010c. Probabilistic theories with purification. Phys. Rev. A, 81(6), 062348.Google Scholar
Chiribella, G., D'Ariano, G. M., and Perinotti, P. 2011. Informational derivation of quantum theory. Phys. Rev. A, 84(1), 012311.Google Scholar
Chiribella, G., D'Ariano, G. M., Perinotti, P., and Valiron, B. 2013a. Quantum computations without definite causal structure. Phys. Rev. A, 88(Aug), 022318.Google Scholar
Chiribella, G., D'Ariano, G. M., and Perinotti, P. 2013b. A short impossibility proof of quantum bit commitment. Phys. Lett. A, 377, 1076–1087.Google Scholar
Chiribella, G., D'Ariano, G. M., and Perinotti, P. 2014. Non-causal theories with purification. arxiv.
Chiribella, G., D'Ariano, G. M., and Perinotti, P. 2015. Non-causal theories with purification. in preparation.
Choi, M.-D. 1972. Positive linear linear maps on C* algebras. Canad. J. Math., XXIV(3), 520–529.Google Scholar
Choi, M.-D. 1975. Completely positive linear maps on complex matrices. Linear Algebra Appl., 10, 285–290.Google Scholar
Chuang, I. L. and Nielsen, M. A. 2000. Quantum Information and Quantum Computation. Cambridge: Cambridge University Press.
Clifton, R., Bub, J., and Halvorson, H. 2003. Characterizing quantum theory in terms of information-theoretic constraints. Foundations of Phys., 33(11), 1561–1591.Google Scholar
Coecke, B. 2008. Introducing categories to the practicing physicist. Adv. Stud. Math. Logic, 30, 45.Google Scholar
Coecke, B. 2006. Introducing categories to the practicing physicist. Pages 289–355 of: What is Category Theory? Advanced Studies in Mathematics and Logic, vol. 30. Milan, Italy: Polimetrica Publishing.
Coecke, B., Moore, D., and Wilce, A. 2000. Current research in operational quantum logic: algebras, categories, languages. Vol. 111. New York: Springer Science & Business Media.
Cox, R. T. 1961. The Algebra of Probable Inference. Baltimore, OH: Johns Hopkins University.
Dakic, B. and Brukner, C. 2011. Quantum theory and beyond: is entanglement special? Pages 365–392 of: Halvorson, H. (ed.), Deep Beauty: Understanding the Quantum World through Mathematical Innovation. Cambridge University Press.
D'Ariano, G. M. 1997. Homodyning as universal detection. Pages 365–392 of: Hirota, O., Holevo, A. S., and Caves, C. M. (eds), Quantum Communication, Computing and Measurement. New York and London: Plenum.
D'Ariano, G. M. 2005. Homodyning as universal detection. Pages 494–508 of: Hayashi, M. (ed.), Asymptotic Theory of Quantum Statistical Inference, Selected Papers. Singapore: World Scientific.
D'Ariano, G. M. 2006a. How to derive the Hilbert-space formulation of quantum mechanics from purely operational axioms. In: Bassi, A., Duerr, D., Weber, T., and Zanghi, N. (eds), Quantum Mechanics, vol. 844. USA: American Institute of Physics.
D'Ariano, G. M. 2006b. On the missing axiom of Quantum Mechanics. Pages 114–130 of: AIP Conference Proceedings, vol. 810.
D'Ariano, G. M. 2007a. Operational axioms for a C*,-algebraic formulation for Quantum Mechanics. Page 191 of: Hirota, O., Shapiro, J. H., and Sasaki, M. (eds), Proceedings of the 8th Int. Conf. on Quantum Communication, Measurement and Computing. Japan: NICT press.
D'Ariano, G. M. 2007b. Operational axioms for quantum mechanics. Page 79 of: Adenier, G., Fuchs, C. A., and Khrennikov, A. Yu. (eds), AIP Conference Proceedings, vol. 889. USA: American Institute of Physics.
D'Ariano, G. M. 2010. Probabilistic theories: what is special about quantum mechanics? Chap. 5 of: Bokulich, A. and Jaeger, G. (eds), Philosophy of Quantum Information and Entanglement. Cambridge: Cambridge University Press.
D'Ariano, G. M. and Lo Presti, P. 2001. Quantum tomography for measuring experimentally the matrix elements of an arbitrary quantum operation. Phys. Rev. Lett., 86(May), 4195–4198.Google Scholar
D'Ariano, G. M. and Lo Presti, P. 2003. Imprinting a complete information about a quantum channel on its output state. Phys. Rev. Lett., 91, 047902.Google Scholar
D'Ariano, G. M. and Perinotti, P. 2005. Efficient universal programmable quantum measurements. Phys. Rev. lett., 94(9), 090401.Google Scholar
D'Ariano, G. M. and Perinotti, P. 2007. Optimal data processing for quantum measurements. Phys. Rev. Lett., 98, 020403.Google Scholar
D'Ariano, G. M. and Tosini, A. 2010. Testing axioms for quantum theory on probabilistic toy-theories. Quantum Inf. Proc., 9, 95–141.Google Scholar
D'Ariano, G. M. and Tosini, A. 2013. Emergence of space-time from topologically homogeneous causal networks. Studies in History and Philosophy of Modern Physics.
D'Ariano, G. M. and Yuen, H. P. 1996. Impossibility of measuring the wave function of a single quantum system. Phys. Rev. Lett., 76(Apr), 2832–2835.Google Scholar
D'Ariano, G. M., Macchiavello, C., and Paris, M. G. A. 1994. Detection of the density matrix through optical homodyne tomography without filtered back projection. Phys. Rev. A, 50(Nov), 4298–4302.Google Scholar
D'Ariano, G. M., Lo Presti, P., and Sacchi, M. 2000. Bell measurements and observables. Phys. Lett. A, 272, 32.Google Scholar
D'Ariano, G. M., Lo Presti, P., and Perinotti, P. 2005. Classical randomness in quantum measurements. J. Phys. A: Math. Gen., 38(26), 5979–5991.Google Scholar
D'Ariano, G. M., Giovannetti, V., and Perinotti, P. 2006. Optimal estimation of quantum observables. J. of Math. Phys., 47, 022102–1.Google Scholar
D'Ariano, G. M., Kretschmann, D., Schlingemann, D., and Werner, R. F. 2007. Reexamination of quantum bit commitment: the possible and the impossible. Phys. Rev. A, 76, 032328.Google Scholar
D'Ariano, G. M., Manessi, F., and Perinotti, P. 2014a. Determinism without causality. Physica Scripta, T163, 014013.Google Scholar
D'Ariano, G. M., Manessi, F., Perinotti, P., and Tosini, A. 2014b. Fermionic computation is non-local tomographic and violates monogamy of entanglement. EPL (Europhysics Letters), 107(2), 20009.Google Scholar
Davies, E. B. 1977. Quantum dynamical semigroups and the neutron diffusion equation. Rep. Math. Phys., 11, 169.Google Scholar
Dieks, D. G. B. J. 1982. Communication by EPR devices. Phys. Lett. A, 92(6), 271–272.Google Scholar
Dowe, P. 2007. Physical Causation. Cambridge Studies in Probability, Induction and Decision Theory. Cambridge: Cambridge University Press.
Eberhard, P. H. 1978. Bell's theorem and the different concepts of locality. Il Nuovo Cimento B Series 11, 46(2), 392–419.Google Scholar
Einstein, A., Podolsky, B., and Rosen, N. 1935. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev., 47(10), 777–780.Google Scholar
Ekert, A. K. 1991. Quantum cryptography based on Bell's theorem. Phys. Rev. Lett., 67(6), 661.Google Scholar
Ellis, G. F. R. 2008. On the flow of time. arXiv preprint arXiv:0812.0240.
Feynman, R. 1965. The Character of Physical Law. London: BBC Books.
Foulis, D. J. and Randall, C. H. 1984. A note on misunderstandings of Piron's axioms for quantum mechanics. Found. Phys., 14, 65–88.Google Scholar
Foulis, D. J., Piron, C., and Randall, C. H. 1983. Realism, operationalism, and quantum mechanics. Found. Phys., 13, 813–841.Google Scholar
Fuchs, C. A. 2002. Quantum mechanics as quantum information (and only a little more). arXiv preprint quant-ph/0205039.
Fuchs, C. A. 2003. Quantum mechanics as quantum information, mostly. J. of Modern Optics, 50(6-7), 987–1023.Google Scholar
Fuchs, C. A. and Schack, R. 2013. Quantum-Bayesian coherence. Rev. Mod. Phys., 85, 1693–1715.Google Scholar
Fuchs, C. A., et al. 2001. Quantum foundations in the light of quantum information. NATO Science Series Sub Series III Comp. Syst. Sci., 182, 38–82.Google Scholar
Ghirardi, G.-C., Rimini, A., and Weber, T. 1980. A general argument against superluminal transmission through the quantum mechanical measurement process. Lettere Al Nuovo Cimento (1971–1985), 27(10), 293–298.Google Scholar
Gillies, D. 2000. Philosophical Theories of Probability. Move Psychology Press.
Gordon, J. P. and Louisell, W. H. 1966. Simultaneous measurements of noncommuting observables. Phys. of Quantum Elec., 1, 833–840.Google Scholar
Gorini, V., Kossakowski, A., and Sudarshan, E. C. G. 1976. Completely positive dynamical semigroups of N-level systems. J. Math. Phys., 17, 821.Google Scholar
Goyal, P., Knuth, K. H., and Skilling, J. 2010. Origin of complex quantum amplitudes and Feynman's rules. Phys. Rev. A, 81(Feb), 022109.Google Scholar
Gregoratti, M. and Werner, R. F. 2003. Quantum lost and found. Journal of Modern Optics, 50(6-7), 915–933.Google Scholar
Gross, D., Müller, M., Colbeck, R., and Dahlsten, O. C. O. 2010. All reversible dynamics in maximally nonlocal theories are trivial. Phys. Rev. Lett., 104(Feb), 080402.Google Scholar
Grover, L. K. 1996. A fast quantum mechanical algorithm for database search. Pages 212–219 of: Proceedings of the Twenty-eighth Annual ACM Symposium on Theory of Computing. STOC–96. New York, NY: ACM.
Haag, R. 1993. Local Quantum Physics. Berlin: Springer-Verlag.
Haag, R. and Haag, R. 1996. Local Quantum Physics: Fields, Particles, Algebras, Vol. 2. Berlin: Springer.
Hardy, L. 2001. Quantum theory from five reasonable axioms. arXiv:quant-ph/0101012.
Hardy, L. 2011. Reformulating and reconstructing quantum theory. quant-ph, Apr.
Hardy, L. and Wootters, W. K. 2012. Limited holism and real-vector-space quantum theory. Found. Phys., 42(3), 454–473.Google Scholar
Heisenberg, W. 1930. The Physical Principles of the Quantum Theory. Trans. C., Eckart and F. C., Hoyt. Chicago, IL: Chicago University Press.
Helstrom, C. W. 1976. Quantum Detection and Estimation Theory.Mathematics in Science and Engineering, Vol. 123. New York NY: Academic Press.
Herbert, N. 1982. FLASH – A superluminal communicator based upon a new kind of quantum measurement. Found. Phys., 12, 1171.Google Scholar
Hilbert, D., von Neumann, J., and Nordheim, L. 1928. Über die Grundlagen der Quantenmechanik. Mathematische Annalen, 98(1), 1–30.Google Scholar
Holevo, A. S. 1982. Probabilistic and Statistical Aspects of Quantum Theory. Series in Statistics and Probability, vol. 1. Amsterdam: North-Holland.
Holevo, A. S. 2011. The Choi–Jamiolkowski forms of quantum Gaussian channels. J. Math. Phys., 52(4), 042202.Google Scholar
Horodecki, M., Horodecki, P., and Horodecki, R. 1996. Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A, 223, 1–8.Google Scholar
Imamoglu, A. 1993. Logical reversibility in quantum-nondemolition measurements. Phys. Rev. A, 47, R4577–R4580.Google Scholar
Jamiolkowski, A. 1972. Linear transformations which preserve trace and positive semidefiteness of operators. Rep. Math. Phys., 3, 275.Google Scholar
Jauch, J. M. and Piron, C. 1963. Can hidden variables be excluded in quantum mechanics? Helv. Phys. Acta, 36, 827.Google Scholar
Jaynes, E. T. 2003. Probability Theory: The Logic of Science. Cambridge: Cambridge University Press.
Johnson, D. and Feige, U. (eds) 2007. Toward a General Theory of Quantum Games. Vol. STOC–07 Symposium on Theory of Computing Conference. New York, NY: ACM.
Jordan, P., von Neumann, J., and Wigner, E. 1934. On an algebraic generalization of the quantum mechanical formalism. Ann. Math., 35, 29.Google Scholar
Joyal, A. and Street, R. 1991. The geometry of tensor calculus, I. Adv. Math., 88(1), 55–112.Google Scholar
Kaiser, D. 2011. How the Hippies Saved Physics: Science, Counterculture, and the Quantum Revival. New York: WW Norton & Company.
Kato, T. 1980. Perturbation Theory for Linear Operators. New York, NY: Springer.
Keynes, J. M. 2004. A Treatise on Probability. Dover Books on Mathematics Series. Mineola, NY: Dover Publications.
Knill, E. and Laflamme, R. 1997. Theory of quantum error-correcting codes. Phys. Rev. A, 55(Feb), 900–911.Google Scholar
Kretschmann, D. and Werner, R. F. 2005. Quantum channels with memory. Phys. Rev. A, 72, 062323.Google Scholar
Leung, D. 2001. Towards Robust Quantum Computation PhD thesis, Stanford University. Ljys, 48, 199.
Lindblad, G. 1999. A general no-cloning theorem. Lett. Math. Phys., 47(2), 189–196.Google Scholar
Lo, H.-K. and Chau, H. F. 1997. Is quantum bit commitment really possible? Phys. Rev. Lett., 78, 3410.Google Scholar
Ludwig, G. 1983. Foundations of Quantum Mechanics. New York, NY: Springer-Verlag.
Mac Lane, S. 1978. Categories for the Working Mathematician, Vol. 5. Berlin: Springer Science & Business Media.
Mackey, G. W. 1963. The Mathematical Foundations of Quantum Mechanics, Vol. 1. Mineola, NY: Dover Publications.
Masanes, L. and Müller, M. P. 2011. A derivation of quantum theory from physical requirements. New J. Phys., 13(6), 063001.Google Scholar
Masanes, L., Müller, M. P, Augusiak, R., and Pérez-Garćıa, D. 2013. Existence of an information unit as a postulate of quantum theory. Proc. Nat. Acad. Sci., 110(41), 16373–16377.Google Scholar
Mayers, D. 1997. Unconditionally secure quantum bit commitment is impossible. Phys. Rev. Lett., 78, 3414.Google Scholar
Nielsen, M. A. and Chuang, I. L. 1997. Programmable quantum gate arrays. Phys. Rev. Lett., 79(2), 321–324.Google Scholar
Oreshkov, O., Costa, F., and Brukner, C. 2012. Quantum correlations with no causal order. Nature Commun., 3, 1092.Google Scholar
Ozawa, M. 1984. Quantum measuring processes of continuous observables. J. Math. Phys., 25, 79.Google Scholar
Ozawa, M. 1997. Quantum state reduction and the quantum bayes principle. Pages 233– 241 of: Hirota, O., Holevo, A. S., and Caves, C. M. (eds), Quantum Communication, Computing and Measurement. New York, NY: Plenum.
Paris, M. and Rehacek, J. 2004. Quantum State Estimation, Vol. 649. Berlin: Springer.
Parthasarathy, K. R. 1999. Extremal decision rules in quantum hypothesis testing. Infin. Dimens. Anal. Quantum. Probab. Relat. Top., 02(04), 557–568.Google Scholar
Paulsen, V. I. 1986. Completely Bounded Maps and Dilations. Harlow, UK: Longman Scientific and Technical.
Pearl, J. 2012. Causality: Models, Reasoning, and Inference. Cambridge: Cambridge University Press.
Penrose, R. 1971. Applications of negative dimensional tensors. Pages 221–244 of: Welsh, D. J. A. (ed.), Combinatorial Mathematics and its Applications. New York, NY: Academic Press.
Piron, C. 1964. Axiomatique quantique. Helvetica Phys. Acta, 37(4-5), 439.Google Scholar
Piron, C. 1976. Foundations of Quantum Physics. Mathematical Physics Monograph Series. Benjamin-Cummings Publishing Company.
Planck, M. 1941. Der Kausalbegriff in der Physik. Verlag von S. Hirzel.
Plenio, M. B. and Virmani, S. 2007. An introduction to entanglement measures. Quantum Inf. Comput., 7, 1.Google Scholar
Procopio, L. M, Moqanaki, A., Araújo, M., Costa, F., Alonso Calafell, I., Dowd, E. G., et al. 2015. Experimental superposition of orders of quantum gates. Nature Commun., 6(Aug.), 7913.Google Scholar
Rambo, T., Altepeter, J., D'Ariano, G. M., and Kumar, P. 2012. Functional quantum computing: an optical approach. arXiv:1211.1257.
Rockafellar, R. T. 2015. Convex Analysis. Princeton, NJ: Princeton University Press.
Royer, A. 1994. Reversible quantum measurements on a spin 1/2 and measuring the state of a single system. Phys. Rev. Lett., 73, 913–917.Google Scholar
Royer, A. 1995. Reversible quantum measurements on a spin 1/2 and measuring the state of a single system (erratum). Phys. Rev. Lett., 74, 1040–1040.Google Scholar
Russel, B. 1912. On the notion of cause. Proc. Aristotelian Soc., 13, 1–26.Google Scholar
Salmon, W. 1967. The Foundations Of Scientific Inference. Pittsburgh, PA: University of Pittsburgh Press.
Salmon, W. C. 1998. Causality and Explanation: Wesley C. Salmon. Oxford Scholarship online. Oxford University Press.
Schrödinger, E. 1935a. Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften, 23, 807–812; 823–828; 844–849.Google Scholar
Schrödinger, E. 1935b. Probability relations between separated systems. Pages 555–563 of: Proc. Camb. Phil. Soc, vol. 31. Cambridge Univ Press.
Schumacher, B. 1996. Sending entanglement through noisy quantum channels. Phys. Rev. A, 54, 2614–2628.Google Scholar
Schumacher, B. and Nielsen, M. A. 1996. Quantum data processing and error correction. Phys. Rev. A, 54, 2629–2635.Google Scholar
Schumacher, B. and Westmoreland, M. D. 2012. Modal quantum theory. Found. Phys., 42(7), 918–925.Google Scholar
Scott, A. J. and Grassl, M. 2009. SIC-POVMs: a new computer study. arXiv preprint arXiv:0910.5784.
Selinger, P. A Survey of Graphical Languages for Monoidal Categories. Available at www.mathstat.dal.ca/selinger/papers/graphical.pdf.
Selinger, P. 2011. A survey of graphical languages for monoidal categories. Pages 289–355 of: New Structures for Physics. Berlin: Springer.
Shor, P. W. 1997. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comp., 26(5), 1484–1509.Google Scholar
Smithey, D. T., Beck, M., Raymer, M. G., and Faridani, A. 1993. Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: Application to squeezed states and the vacuum. Phys. Rev. Lett., 70(Mar), 1244–1247.Google Scholar
Solovay, R. M. 1970. A model of set theory in which every set of reals is Lebesgue measurable. Annals of Mathematics, 92, 1–56.Google Scholar
Ueda, M. and Kitagawa, M. 1992. Reversibility in quantum measurement processes. Phys.Rev. Lett., 68, 3424–3427.Google Scholar
Uhlmann, A. 1977. Relative entropy and the Wigner–Yanase–Dyson–Lieb concavity in an interpolation theory. Commun. Math. Phys., 54(1), 21–32.Google Scholar
Varadarajan, V. S. 1962. Probability in physics and a theorem on simultaneous observability. Comm. Pure Appl. Math., 15, 189.Google Scholar
Vogel, K. and Risken, H. 1989. Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase. Phys. Rev. A, 40(Sep), 2847–2849.Google Scholar
von Neumann, J. 1932. Mathematische Grundlagen der Quantenmechanik. Berlin: Springer-Verlag. Translated as Mathematical Foundations of Quantum Mechanics, Princeton University Press, 1955. Chap. 4.
von Neumann, J. 1996. Mathematical Foundations of Quantum Mechanics, Vol. 2. Princeton, NJ: Princeton university press.
Werner, R. F. 1989. Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model. Phys. Rev. A, 40, 4277–4281.Google Scholar
Wheeler, J. A. 1990. Complexity, entropy and the physics of information. In: Zurek, W. H. (ed.), Santa Fe Institute Studies in the Sciences of Complexity, Proceedings of the 1988 Workshop on Complexity, Entropy and the Physics of Information, Santa Fe, New Mexico, May–June, 1989. Redwood City, CA: Addison-Wesley.
Wiesner, S. 1983. Conjugate coding. Sigact News, 15, 78.Google Scholar
Wilce, A. 2010. Formalism and interpretation in quantum theory. Foundations of Physics, 40(4), 434–462.Google Scholar
Wilce, A. 2012. Conjugates, correlation and quantum mechanics. arXiv:1206.2897.
Wootters, W. K. and Zurek, W. H. 1982. A single quantum cannot be cloned. Nature, 299(5886), 802–803.Google Scholar
Yao, A. C.-C. 1993. Quantum circuit complexity. Pages 352–361 of: Proceedings of Thirty-fourth IEEE Symposium on Foundations of Computer Science (FOCS1993).
Yuen, H. P. 1986. Amplification of quantum states and noiseless photon amplifiers. Phys. Lett. A, 113, 405–407.Google Scholar
Yuen, H. P. 2012. An unconditionally secure quantum bit commitment protocol. arXiv preprint arXiv:arXiv:1212.0938v1.

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×