Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-19T23:21:31.700Z Has data issue: false hasContentIssue false

12 - Elementary scattering theory

Published online by Cambridge University Press:  05 January 2013

Michel Le Bellac
Affiliation:
Université de Nice, Sophia Antipolis
Get access

Summary

Up to now we have mainly studied bound states, except for the brief mention of one-dimensional scattering in Section 9.4. However, essential information on interactions between particles, atoms, molecules, etc., as well as on the structure of composite objects, can be obtained from scattering experiments. Bound states – when they exist, which is not always the case – give only partial information on such interactions, whereas it is nearly always possible to perform scattering experiments. In this chapter we shall limit ourselves to potential scattering, which can be used to describe elastic collisions of two particles of masses m1 and m2. Indeed, in the center-of-mass frame the problem is reduced to that of a particle of mass m = (m1m2)/(m1 + m2) in a potential (Exercise 8.5.6).

In Sections 12.1 and 12.2 we develop the elementary formalism of elastic scattering theory with emphasis on the low-energy limit, which plays an extremely important role in practice. In Section 12.3 we generalize the formalism to the inelastic case; more precisely, we examine the effect of inelastic channels on elastic scattering. Finally, Section 12.4 is devoted to some more formal aspects of scattering theory.

The cross section and scattering amplitude

The differential and total cross sections

A scattering experiment is shown schematically in Fig. 12.1. A beam of particles of mass m1 and well-defined momentum moving along the z axis collides with a target composed of particles of mass m2. To simplify the discussion, we assume that m1m2 and we neglect the recoil of the target in the collision. In general, it is necessary to go from the laboratory frame to the center-of-mass frame via a simple kinematic transformation (Exercise 8.5.6).

Type
Chapter
Information
Quantum Physics , pp. 404 - 437
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×