Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T22:43:23.357Z Has data issue: false hasContentIssue false

18 - Electrically operated entangled light sources based on quantum dots

from Part VI - Single dots for future telecommunications applications

Published online by Cambridge University Press:  05 August 2012

R. M. Stevenson
Affiliation:
Toshiba Research Europe Limited, UK
A. J. Bennett
Affiliation:
Toshiba Research Europe Limited, UK
A. J. Shields
Affiliation:
Toshiba Research Europe Limited, UK
Alexander Tartakovskii
Affiliation:
University of Sheffield
Get access

Summary

Introduction

Quantum information technology promises to offer incredible advantages over current digital systems, allowing intractable problems in science and engineering to be tackled almost instantaneously through quantum computing, and unconditionally secure communication over long distances using quantum key distribution. Many schemes have been developed to implement quantum computing, including using linear optics [28]. The linear optical approach has proved popular due to the limited decoherence of photons with the environment, and accessibility of the components required for simple experiments. At the heart of an optical quantum computer, or extended range quantum key distribution using quantum relays or repeaters [14, 8, 24], lie entangled photons. The characteristics of the sources that create entangled photons, and their properties, are therefore central to realizing the full potential of such applications.

Quantum dots are one technology with which entangled light sources can be built [6]. Although first realised only relatively recently [49], they in principle offer key fundamental and practical advantages over other entangled photon sources. In the fundamental sense, quantum dots can be triggered, so that no more than one entangled photon pair is emitted at a time. This is in stark contrast to Poissonian entangled light sources [47, 27, 13], including the most widely used parametric down-conversion, where zero or multiple photon-pairs are usually emitted due to their probabilistic nature. Furthermore quantum dots have the potential to operate with high efficiency, with current experiments reporting up to 72% collection efficiency for the first and second photon [9, 12].

Type
Chapter
Information
Quantum Dots
Optics, Electron Transport and Future Applications
, pp. 319 - 340
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Akopian, N., Lindner, N. H., Poem, E. et al. 2006. Entangled photon pairs from semiconductor quantum dots. Phys. Rev. Lett., 96(13), 130501.Google Scholar
[2] Aspect, A., Grangier, P. and Roger, G. 1982. Experimental realization of Einstein Podolsky Rosen Bohm Gedankenexperiment: a new violation of Bell's inequalities. Phys. Rev. Lett., 49(2), 91–94.Google Scholar
[3] Bayer, M., Ortner, G., Stern, O. et al. 2002. Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots. Phys. Rev.B, 65(19), 195315.Google Scholar
[4] Bennett, A. J., Patel, R. B., Skiba-Syzmanska, J. et al. 2010a. Giant Stark shift in the emission of single semiconductor quantum dots. Phys. Rev.B., 97, 031104.Google Scholar
[5] Bennett, S. D., Cockins, L., Miyahara, Y., Grütter, P., and Clerk, A. A. 2010b. Strong electromechanical coupling of an atomic force microscope cantilever to a quantum dot. Phys. Rev. Lett., 104(1), 2–5.Google Scholar
[6] Benson, O., Santori, C., Pelton, M. and Yamamoto, Y. 2000. Regulated and entangled photons from a s ingle quantum dot. Phys. Rev. Lett., 84(11), 2513–6.Google Scholar
[7] Braun, P. -F., Marie, X., Lombez, L. et al. 2005. Direct observation of the electron spin relaxation induced by nuclei in quantum dots. Phys. Rev. Lett., 94(11), 116601.Google Scholar
[8] Briegel, H.-J., Dür, W., Cirac, J. I. and Zoller, P. 1998. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett., 81(26), 5932–5935.Google Scholar
[9] Claudon, J., Bleuse, J., Malik, N. S. et al. 2010. A highly efficient single-photon source based on a quantum dot in a photonic nanowire. Nature Photonics, 4, 174.Google Scholar
[10] de la Giroday, A. B., Bennett, A. J., Pooley, M. A. et al. 2010. All-electrical coherent control of the exciton states in a single quantum dot. Phys. Rev.B., 82, 241301.Google Scholar
[11] Dousse, A., Suffczyski, J., Krebs, O. et al. 2010a. A quantum dot based bright source of entangled photon pairs operating at 53 K. Appl. Phys. Lett., 97(8), 081104.Google Scholar
[12] Dousse, A., Suffczynski, J., Beveratos, A. et al. 2010b. Ultrabright source of entangled photon pairs. Nature, 466, 217–220.
[13] Edamatsu, K., Oohata, G., Shimizu, R., and Itoh, T. 2004. Generation of ultraviolet entangled photons in a semiconductor. Nature, 431, 167–170.
[14] Ekert, A. K. 1991. Quantum cryptography based on Bell's theorem. Phys. Rev. Lett., 67(6), 661–663.Google Scholar
[15] Ellis, D. J. P., Stevenson, R. M., Young, R. J. et al. 2007. Control of fine-structure splitting of individual InAs quantum dots by rapid thermal annealing. Appl. Phys. Lett., 90(1), 011907.Google Scholar
[16] Fattal, D., Inoue, K., Vučković, , et al. 2004. Entanglement formation and violation of bell's inequality with a semiconductor single photon source. Phys. Rev. Lett., 92(3), 037903.Google Scholar
[17] Finley, J. J., Sabathil, M., Vogl, P. et al. 2004. Quantum-confined Stark shifts of charged exciton complexes in quantum dots. Phys. Rev.B, 70(20), 201308.Google Scholar
[18] Gammon, D., Efros, A. L., Kennedy, T. et al. 2001. Electron and nuclear spin interactions in the optical spectra of single GaAs quantum dots. Phys. Rev. Lett., 86(22), 5176–5179.Google Scholar
[19] Gerardot, B. D., Seidl, S., Dalgarno, P. A. et al. 2007a. Contrast in transmission spectroscopy of a single quantum dot. Appl. Phys. Lett., 90(22), 221106.Google Scholar
[20] Gerardot, B. D., Seidl, S., Dalgarno, P. A. et al. 2007b. Manipulating exciton fine structure in quantum dots with a lateral electric field. Appl. Rev. Lett., 90, 041101.Google Scholar
[21] Hafenbrak, R., Ulrich, S. M., Michler, P. et al. 2007. Triggered polarization-entangled photon pairs from a single quantum dot up to 30 K. New J. Phys., 9(9), 315.Google Scholar
[22] Hudson, A. J., Stevenson, R. M., Bennett, A. J. et al. 2007. Coherence of an entangled exciton–photon state. Phys. Rev. Lett., 99, 266802.Google Scholar
[23] Imamoglu, A. 2003. Are quantum dots useful for quantum computation?Physica E: Low-dimensional Systems and Nanostructures, 16(1), 47–50.Google Scholar
[24] Jacobs, B. C., Pittman, T. B. and Franson, J. D. 2002. Quantum relays and noise suppression using linear optics. Phys. Rev.A, 66(5), 052307.Google Scholar
[25] Jundt, G., Robledo, L., Högele, A.Fält, S. and Imamoǧlu, A. 2008. Observation of dressed excitonic states in a single quantum dot. Phys. Rev. Lett., 100(17), 177401.Google Scholar
[26] Khaetskii, A. V., Loss, D. and Glazman, L. 2002. Electron spin decoherence in quantum dots due to interaction with nuclei. Phys. Rev. Lett., 88(18), 186 802–186 806.Google Scholar
[27] Kiess, T. E.Shih, Y. H., Sergienko, A. V. and Alley, C. O. 1993. Einstein–Podolsky–Rosen–Bohm experiment using pairs of light quanta produced by type-II parametric down-conversion. Phys. Rev. Lett., 71(24), 3893–3897.Google Scholar
[28] Knill, E., Lafiamme, R. and Milburn, G. J. 2001. A scheme for efficient quantum computation with linear optics. Nature, 409, 46–52.
[29] Koppens, F. H. L. 2005. Control and detection of singlet–triplet mixing in a random nuclear field. Science, 309, 1346–1350.Google Scholar
[30] Kowalik, K., Krebs, O., Lemaitre, A. et al. 2005. Infiuence of an in-plane electric field on exciton fine structure in InAs-GaAs self-assembled quantum dots. Appl. Phys. Lett., 86(4), 041907.Google Scholar
[31] Kowalik, K., Krebs, O., Senellart, P. et al. 2006. Stark spectroscopy of coulomb interactions in individual InAs.GaAs self-assembled quantum dots. Phys. Stat. Sol. (c)., 3, 3980–3984.Google Scholar
[32] Kowalik, K., Krebs, O., Lemaitre, A. et al. 2007. Monitoring the electrically driven cancellation of exciton fine structure in a semiconductor quantum dot by optical orientation. Appl. Rev. Lett., 91, 183104.Google Scholar
[33] Lai, C. W., Maletinsky, P., Badolato, A. and Imamoǧlu, A. 2006. Knight-field-enabled nuclear spin polarization in single quantum dots. Phys. Rev. Lett., 96(16), 167 403–167 407.Google Scholar
[34] Maletinsky, P. and Imamoǧlu, A. 2009. Single Semiconductor Quantum Dots. Springer. Chap. 5, pages 145–184.
[35] Marcet, S., Ohtani, K. and Ohno, H. 2010. Vertical electric field tuning of the exciton fine structure splitting and photon correlation measurements of GaAs quantum dot. Appl. Phys. Lett., 96, 101117.Google Scholar
[36] Merkulov, I. A. 2002. Electron spin relaxation by nuclei in semiconductor quantum dots. Phys. Rev.B, 65(20), 205309.Google Scholar
[37] Michler, P., Kiraz, A., Becher, C. et al. 2000a. A quantum dot single-photon turnstile device. Science, 290(5500), 2282–2285.Google Scholar
[38] Michler, P., Kiraz, A., Becher, C. et al. 2000b. A quantum dot single-photon turnstile device. Science, 290, 2282.Google Scholar
[39] Mohan, A., Felici, M., Gallo, P. et al. 2010. Polarization-entangled photons produced with high-symmetry s ite-controlled quantum dots. Nature Photon., 4, 302–306.Google Scholar
[40] Muller, A., Fang, W., Lawall, J. and Solomon, G. S. 2009. Creating polarization-entangled photon pairs from a semiconductor quantum dot using the optical stark effect. Phys. Rev. Lett., 103(21), 217402.Google Scholar
[41] Pan, J.-W., Bouwmeester, D., Weinfurter, H. and Zeilinger, A. 1998. Experimental entanglement swapping: entangling photons that never interacted. Phys. Rev. Lett., 80(18), 3891–3894.Google Scholar
[42] Petta, J. R., Johnson, A. C., Taylor, J. M. et al. 2005. Coherent manipulation of coupled electron s pins in semiconductor quantum dots. Science, 309(5744), 2180–2184.Google Scholar
[43] Press, D., Greve, K. De, McMahon, P. L. et al. 2010. Ultrafast optical spin echo in a single quantum dot. Nature Photon., 4, 367.Google Scholar
[44] Salter, C. L., Stevenson, R. M., Farrer, I. et al. 2010. An entangled-light-emitting diode. Nature, 465, 594–597.
[45] Santori, C., Fattal, D., Vucković, J., Solomon, G. S. and Yamamoto, Y. 2002. Indistinguishable photons from a single-photon device. Nature, 419(6907), 594–597.
[46] Seidl, S., Kroner, M., Hogele, A. et al. 2006. Effect of uniaxial stress on excitons in a self-assembled quantum dot. Appl. Rev. Lett., 88, 203113.Google Scholar
[47] Shih, Y. H. and Alley, C. O. 1988. New type of Einstein–Podolsky–Rosen–Bohm experiment using pairs of light quanta produced by optical parametric down conversion. Phys. Rev. Lett., 61(26), 2921–2924.Google Scholar
[48] Singh, R. and Bester, G. 2010. Lower bound for the excitonic fine structure splitting in self assembled quantum dots. Phys. Rev. Lett., 104, 196803.Google Scholar
[49] Stevenson, R., Young, R., See, P. et al. 2006a. Magnetic-field-induced reduction of the exciton polarization splitting in InAs quantum dots. Phys. Rev.B, 73(3), 1–4.Google Scholar
[50] Stevenson, R., Young, R. P., Gevaux, D. et al. 2006b. Magnetic-field-induced reduction of the exciton polarization splitting in InAs quantum dots. Phys. Rev.B, 73(3), 1–4.Google Scholar
[51] Stevenson, R., Hudson, A., Bennett, A. et al. 2008. Evolution of entanglement between distinguishable light states. Phys. Rev. Lett., 101(17), 1–4.Google Scholar
[52] Stevenson, R. M., Salter, C. L., de la Giroday, A. et al. 2011. Coherent entangled light generated by quantum dots in the presence of nuclear magnetic fields. arXiv:1103.2969v1 [quant-ph].
[53] Stevenson, R. M., Thompson, R. M., Shields, A. J. et al. 2002. Quantum dots as a photon source for passive quantum key encoding. Phys. Rev.B, 66(8), 081302.Google Scholar
[54] Stevenson, R. M., Young, R. J., See, P. et al. 2004. Time-resolved studies of single quantum dots in magnetic fields. Physica E, 21, 381–384.Google Scholar
[55] Ulrich, S. M., Strauf, S., Michler, P., Bacher, G. and Forchel, A. 2003. Triggered polarization-correlated photon pairs from a single CdSe quantum dot. Appl. Phys. Lett., 83(9), 1848.Google Scholar
[56] Vogel, M. M., Ulrich, S. M., Hafenbrak, R. et al. 2007. Infiuence of lateral electric fields on multiexcitonic transitions and fine structure of single quantum dots. Appl. Rev. Lett., 91, 051904.Google Scholar
[57] Young, R. J., Stevenson, R. M., Shields, A. J. et al. 2005. Inversion of exciton level splitting in quantum dots. Phys. Rev.B, 72, 113305.Google Scholar
[58] Young, R. J., Stevenson, R. M., Hudson, A. J. et al. 2009. Bell-inequality violation with a triggered photon-pairs ource. Phys. Rev. Lett., 102, 030406.Google Scholar
[59] Yuan, Z., Kardynal, B. E., Stevenson, R. M. et al. 2002. Electrically driven single-photon source. Science, 295, 102.Google Scholar
[60] Żukowski, M., Zeilinger, A.Horne, M. A. and Ekert, A. K. 1993. “Event-ready-detectors” Bell experiment via entanglement swapping. Phys. Rev. Lett., 71(26), 4287–4290.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×