Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-13T22:39:44.829Z Has data issue: false hasContentIssue false

15 - Electrically controlling single spin coherence in semiconductor nanostructures

from Part V - Electron transport in quantum dots fabricated by lithographic techniques from III–V semiconductors and graphene

Published online by Cambridge University Press:  05 August 2012

Y. Dovzhenko
Affiliation:
Princeton University, USA
K. Wang
Affiliation:
Princeton University, USA
M. D. Schroer
Affiliation:
Princeton University, USA
J. R. Petta
Affiliation:
Princeton University, USA
Alexander Tartakovskii
Affiliation:
University of Sheffield
Get access

Summary

Introduction

In 1998, Daniel Loss and David DiVincenzo published a seminal paper describing how semiconductor quantum dots could be used to create spin qubits for quantum information processing [28]. They recognized that a single spin in a magnetic field forms a natural two-level system that can serve as a quantum bit. Moreover, owing to the weak magnetic moment of the electron, the spin is relatively well isolated from the environment leading to long coherence times. To confine single spins, Loss and DiVincenzo envisioned the quantum dot architecture shown in Fig. 15.1. A GaAs/AlGaAs heterostructure confines electrons to a two-dimensional electron gas (2DEG). Depletion gates are fabricated on top of the structure to provide a tunable confinement potential, trapping a single electron in each quantum dot. Neighboring quantum dots are tunnel coupled, with the coupling strength controlled by the electrostatic potential. The orientation of a single spin can be controlled by using electron spin resonance (ESR), while nearest-neighbor coupling is mediated by the depletion gate tunable exchange interaction.

It is fair to say that in 1998 many of the requirements of the Loss–DiVincenzo proposal had not been implemented, starting with the most basic necessity of a single electron lateral quantum dot [8]. The purpose of this chapter is to describe several experiments inspired by the Loss–DiVincenzo proposal. Many powerful experiments have been performed since 1998 and, given the space constraints here, we cannot give each experiment the attention it deserves.

Type
Chapter
Information
Quantum Dots
Optics, Electron Transport and Future Applications
, pp. 255 - 276
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Aleiner, I. L., Brouwer, P. W. and Glazman, L. I. 2002. Quantum effects in Coulomb blockade. Phys. Rep., 358(5-6), 309–440.Google Scholar
[2] Amasha, S., MacLean, K., Radu, I. P. et al. 2008. Electrical control of spin relaxation in a quantum dot. Phys. Rev. Lett., 100(4), 046803.Google Scholar
[3] Ashoori, R. C., Stormer, H. L., Weiner, J. S. et al. 1993. N-electron ground state energies of a quantum dot in a magnetic field. Phys. Rev. Lett., 71(4), 613–616.Google Scholar
[4] Atatüre, M., Dreiser, J., Badolato, A. et al. 2006. Quantum-dot spin-state preparation with near-unity fidelity. Science, 312(5773), 551–553.Google Scholar
[5] Barthel, C., Kjærgaard, M., Medford, J. et al. 2010a. Fast sensing of double-dot charge arrangement and spin state with a radio-frequency sensor quantum dot. Phys. Rev.B, 81, 161308.Google Scholar
[6] Barthel, C., Medford, J., Marcus, C. M., Hanson, M. P. and Gossard, A. C. 2010b. Interlaced dynamical decoupling and coherent operation of a singlet–triplet qubit. Phys. Rev. Lett., 105(26), 266803.Google Scholar
[7] Bluhm, H., Foletti, S., Neder, I. et al. 2010. Dephasing time of GaAs electron-spin qubits coupled to a nuclear bath exceeding 200 μs. Nat. Phys., 7, 109–113.Google Scholar
[8] Ciorga, M., Sachrajda, A. S., Hawrylak, P. et al. 2000. Addition spectrum of a lateral dot from Coulomb and spin-blockade spectroscopy. Phys. Rev.B, 61(24), R16315–R16318.Google Scholar
[9] Coish, W. A. and Baugh, J. 2009. Nuclear spins in nanostructures. Phys. Status Solidi B – Basic Solid State Phys., 246(10), 2203–2215.Google Scholar
[10] D'yakonov, M. I. and Kachorovskii, V. Y. 1986. Spin relaxation of two-dimensional electrons in noncentrosymmetric semiconductors. Sov. Phys. Semicond., 20, 110–112.Google Scholar
[11] Elzerman, J. M., Hanson, R., Willems van Beveren, L. H. et al. 2004. Singleshot read-out of an individual electron spin in a quantum dot. Nature, 430(6998), 431–435.
[12] Field, M., Smith, C. G., Pepper, M. et al. 1993. Measurements of Coulomb blockade with a noninvasive voltage probe. Phys. Rev. Lett., 70(9), 1311–1314.Google Scholar
[13] Fujisawa, T., Austing, D. G., Tokura, Y., Hirayama, Y. and Tarucha, S. 2002. Allowed and forbidden transitions in artificial hydrogen and helium atoms. Nature, 419(6904), 278–281.
[14] Gossard, A. C. 1983. Quantum effects at GaAs/AlxGa1−x As junctions. Thin Solid Films, 104(3-4), 279–284.Google Scholar
[15] Hanson, R., Witkamp, B., Vandersypen, L. M. K. et al. 2003. Zeeman energy and spin relaxation i n a one-electron quantum dot. Phys. Rev. Lett., 91(19), 196802.Google Scholar
[16] Hanson, R., Kouwenhoven, L. P., Petta, J. R., Tarucha, S. and Vandersypen, L. M. K. 2007. Spins in few-electron quantum dots. Rev. Mod. Phys., 79(4), 1217–1265.Google Scholar
[17] Johnson, A. C., Petta, J. R., Taylor, J. M. et al. 2005. Triplet–singlet spin relaxation via nuclei in a double quantum dot. Nature, 435(7044), 925–928.
[18] Khaetskii, A., Loss, D. and Glazman, L. 2003. Electron spin evolution induced by interaction with nuclei in a quantum dot. Phys. Rev.B, 67(19), 195329.Google Scholar
[19] Khaetskii, A. V., Loss, D. and Glazman, L. 2002. Electron spin decoherence in quantum dots due to interaction with nuclei. Phys. Rev. Lett., 88(18), 186802.Google Scholar
[20] Koppens, F. H. L., Folk, J. A., Elzerman, J. M. et al. 2005. Control and detection of singlet-triplet mixing in a random nuclear field. Science, 309(5739), 1346–1350.Google Scholar
[21] Koppens, F. H. L., Buizert, C., Tielrooij, K. J. et al. 2006. Driven coherent oscillations of a single electron spin in a quantum dot. Nature, 442(7104), 766–71.
[22] Koppens, F. H. L., Nowack, K. C. and Vandersypen, L. M. K. 2008. Spin echo of a single electron spin in a quantum dot. Phys. Rev. Lett., 100(23), 4.Google Scholar
[23] Kouwenhoven, L. P., Marcus, C. M., McEuen, L. P. et al. 1997. Electron transport in quantum dots. Page 109 of: Sohn, L. L., Kouwenhoven, L. P. and Schön, G. (eds.), Mesoscopic Electronic Transport, vol. 345. Springer.
[24] Kroutvar, M., Ducommun, Y., Heiss, D. and Bichler, M. 2004. Optically programmable electron spin memory using semiconductor quantum dots. Nature, 432(November), 81–84.
[25] Kyriakidis, J., Pioro-Ladriere, M., Ciorga, M., Sachrajda, A. S. and Hawrylak, P. 2002. Voltage-tunable singlet-triplet transition in lateral quantum dots. Phys. Rev.B, 66(3), 035320.Google Scholar
[26] Laird, E. A. 2009. Electrical control of quantum dot spin qubits. Ph.D. thesis, Harvard University.Google Scholar
[27] Levy, J. 2002. Universal quantum computation with spin-1/2 pairs and Heisenberg exchange. Phys. Rev. Lett., 89(14), 147902.Google Scholar
[28] Loss, D. and DiVincenzo, D. P. 1998. Quantum computation with quantum dots. Phys. Rev.A, 57(1), 120–126.Google Scholar
[29] Morello, A., Pla, J. J., Zwanenburg, F. A. et al. 2010. Single-shot readout of an electron spin in silicon. Nature, 467(7316), 687–691.
[30] Nadj-Perge, S., Frolov, S. M., Bakkers, E. and Kouwenhoven, L. P. 2010. Spin-orbit qubit in a semiconductor nanowire. Nature, 468(7327), 1084–1087.
[31] Nowack, K. C., Koppens, F. H. L., Nazarov, Yu. V. and Vandersypen, L. M. K. 2007. Coherent control of a single electron spin with electric fields. Science, 318(5855), 1430–1433.Google Scholar
[32] Ono, K., Austing, D. G., Tokura, Y. and Tarucha, S. 2002. Current rectification by Pauli exclusion in a weakly coupled double quantum dot system. Science, 297(5585), 1313–1317.Google Scholar
[33] Petta, J. R., Johnson, A. C., Taylor, J. M. et al. 2005a. Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science, 309(5744), 2180–2184.Google Scholar
[34] Petta, J. R., Johnson, A. C., Yacoby, A. et al. 2005b. Pulsed-gate measurements of the singlet-triplet relaxation time in a two-electron double quantum dot. Phys. Rev.B, 72(16), 161301.Google Scholar
[35] Petta, J. R., Lu, H. and Gossard, A. C. 2010. A coherent beam splitter for electronic spin states. Science, 327(5966), 669–672.Google Scholar
[36] Reilly, D. J., Marcus, C. M., Hanson, M. P. and Gossard, A. C. 2007. Fast single-charge sensing with a rf quantum point contact. Appl. Phys. Lett., 91(16), 162101.Google Scholar
[37] Schoelkopf, R. J., Wahlgren, P., Kozhevnikov, A. A., Delsing, P. and Prober, D. E. 1998. The radio-frequency single-electron transistor (RF-SET): A fast and ultrasensitive electrometer. Science, 280(5367), 1238–1242.Google Scholar
[38] Schröer, D., Greentree, A. D., Gaudreau, L. et al. 2007. Electrostatically defined serial triple quantum dot charged with few electrons. Phys. Rev.B, 76(7), 075306.Google Scholar
[39] Taylor, J. M., Engel, H. A., Dur, W. et al. 2005. Fault-tolerant architecture for quantum computation using electrically controlled s emiconductor spins. Nat. Phys., 1(3), 177–183.Google Scholar
[40] Taylor, J. M., Petta, J. R., Johnson, A. C. et al. 2007. Relaxation, dephasing, and quantum control of electron spins in double quantum dots. Phys. Rev.B, 76(3), 035315.Google Scholar
[41] van der Wiel, W. G., De Franceschi, S., Elzerman, J. M. et al. 2003. Electron transport through double quantum dots. Rev. of Mod. Phys., 75, 1–22.Google Scholar
[42] Winkler, R., Papadakis, S., De Poortere, E. and Shayegan, M. 2001. Spin–orbit coupling in t wo-dimensional electron and hole systems. Pages 211–223 of: Kramer, B. (ed.), Advances in Solid State Physics. Advances in Solid State Physics, vol. 41. Springer, Berlin/Heidelberg.

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×