Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-23T11:35:02.357Z Has data issue: false hasContentIssue false

7 - Amino Acid Anhydrous Crystals

Published online by Cambridge University Press:  21 January 2021

Eudenilson L. Albuquerque
Affiliation:
Universidade Federal do Rio Grande de Norte
Umberto L. Fulco
Affiliation:
Universidade Federal do Rio Grande de Norte
Ewerton W. S. Caetano
Affiliation:
Instituto Federal de Educação, Ciência e Tecnologia do Ceará
Valder N. Freire
Affiliation:
Universidade Federal do Ceará
Get access

Summary

Density functional theory computations within the local density approximation and generalized gradient approximation, in pure form and with dispersion correction, were carried out to investigate the structural, electronic, and optical properties of several amino acid anhydrous crystals. The electronic (band structure and density of states) and optical absorption properties were used to interpret the light absorption measurements performed at room temperature. Mulliken and Hirshfeld population analysis were also performed to assess the degree of charge polarization in the zwitterion state of some amino acid molecules in the DFT converged crystal. Different dielectric function profiles obtained for some of the most important symmetry directions also demonstrate the optical anisotropy of the amino acid anhydrous crystals. The infrared absorption and Raman scattering spectra were recorded and interpreted, with their normal modes assigned. The complex role of water on the carrier transport properties in the monohydrated aspartic acid crystals is also highlighted.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×